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Abstract: As a significant role in healthcare and sports applications, human activity recognition
(HAR) techniques are capable of monitoring humans’ daily behavior. It has spurred the demand for
intelligent sensors and has been giving rise to the explosive growth of wearable and mobile devices.
They provide the most availability of human activity data (big data). Powerful algorithms are required
to analyze these heterogeneous and high-dimension streaming data efficiently. This paper proposes
a novel fast and robust deep convolutional neural network structure (FR-DCNN) for human activity
recognition (HAR) using a smartphone. It enhances the effectiveness and extends the information of
the collected raw data from the inertial measurement unit (IMU) sensors by integrating a series of
signal processing algorithms and a signal selection module. It enables a fast computational method
for building the DCNN classifier by adding a data compression module. Experimental results on the
sampled 12 complex activities dataset show that the proposed FR-DCNN model is the best method
for fast computation and high accuracy recognition. The FR-DCNN model only needs 0.0029 s to
predict activity in an online way with 95.27% accuracy. Meanwhile, it only takes 88 s (average) to
establish the DCNN classifier on the compressed dataset with less precision loss 94.18%.

Keywords: human activity recognition; convolutional neural network; data compression

1. Introduction

With the widespread usage of portable and wearable smart devices, human activity recognition
(HAR) becomes an active and comfortable research field. Various device-embedded sensors gather
human motion data using the method proposed by the authors of [1]. Continuous HAR systems are
developed as part of a framework to monitor long-term human behaviors, such as ambient assisted
the living, sports injury detection, and surveillance [2]. A HAR system is expected to report on
people’s daily activities outside a hospital setting becomes an essential tool for healthcare interventions
evaluation and clinical decision-making [3]. In a home setting, the wearable sensor technology
can potentially facilitate many applications such as rehabilitation instruction, motion evaluation,
activity reminder, and fall detection [4]. As an increasingly important role, HAR improves life
quality and promoting health at an individual. In assisted living systems, HAR helps bridge the
gap between the low-level sensor and the high-level human-centric applications. Among the various
available sensing components, the smartphone is widely used due to its low intrusiveness, convenience,
and high adherence. Overall, monitoring daily human activity provides a significant reference for
healthcare, such as prevent or delay diabetes, blood glucose control, heart failure, and cardiovascular
disease [5]. Smartphones offer too much convenient for monitoring human’s physical and physiological
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parameters by embedding many suitable sensors, such as the inertial measurement unit (IMU),
oximeter, thermometer, and GPS [6]. Currently, these kinds of the smartphone are omnipresent
in society.

To HAR performance enhancement, some of the pioneering classification approaches using the
IMU (smartphone) sensors had been studied for many years. Moreover, it will be researched extensively.
A Robust Least Squares Twin Support Vector Machine (RLS-TWSVM) algorithm [7] was used for
addressing the presence of noise between related activity classes along with the high computational
time of the HAR system. By extracting 248 features from the integrated sensors in smartphones,
a HAR system based on Support Vector Machine (SVM) [8,9] was written on Windows and Android
platforms and operated in real-time could identify six actions, i.e., standing, sitting, walking, lying,
and walking up and downstairs. To achieve the real-time HAR, a time series segmentation method
based on k-Nearest Neighbor (k-NN) [10] and Artificial Neural Network (ANN) [11-13] was described
by collecting data from a single triaxial accelerometer from a smartphone. Primarily, it must assume
that each meaningful segment corresponds to one fundamental period of motion. Unfortunately,
the above approaches were implemented in the controlled lab environment, and the smartphone
was fixed on body position. The embedded accelerometer and gyroscope in a smartwatch had been
especially used for HAR [14]. The comparison results of six classes classification by using accelerometer,
gyroscope, and combined sensors proved that the combined sensors are useful. However, research
for using multiple body-worn IMU sensors in a free-living situation to recognize a wide range of
activities became the most challenging research. Fullerton et al. [15] tried to recognize activity through
adopting multiple accelerometers in a free-living environment. The comparison results shew the k-NN
classifier reported the highest recognition accuracy (97.6%) with mean and standard deviation features
of unfiltered data, while the decision tree (DT) [16] method demonstrated the lowest computing time.
The k-NN algorithm [11] was evaluated as the fastest method to build a classifier for classifying six
activities (i.e., walking, sitting, standing, and going upstairs and downstairs) by comparing with other
four approaches such as logistic regression (LR), ANN, SVM, and J48 DT.

With the growing dimension of the inputs, the number of selected nearest neighbors k in k-NN
method becomes difficult to search. A Particle Swarm Optimization (PSO)-based k-NN algorithm [17]
was employed for finding the optimal value of k and was successfully applied for recognizing
19 activities sampled from three body positions. Some complex activities were considered to be
detected, such as writing, typing, talking, and drinking coffee, by wearing a wrist-worn motion
sensor and carrying smartphone together [18]. Although the k-NN method always got better
performance than other traditional ML algorithms, it needed to extract more features for building the
classifier [19]. To solve this problem, a clustered k-NN algorithm [20] was designed to eliminate the
computational complexity of the previous k-NN method by creating clusters, for example, creating
smaller training sets for each activity and performing the classification processing based on these
reduced sets. By selecting in consultation with the first-responder from inertial data, the Gradient
Boosted Trees (GBT) [21] could be applied to recognizing 17 activities. Moreover, it was proved to
get better performance than k-NN and SVM algorithms [22]. The Levenberg-Marquardt (LM)-based
ANN [23] algorithms have better HAR performance (by 92.81% accuracy) though comparing with
Quick Propagation (QP) and Batch Back Propagation (BBP) based ANN methods on Massachusetts
Institute of Technology (MIT) smart home dataset. The comparison results illustrated that the Naive
Bayes (NB) classifier acquired the highest F-Measure value using both a’ccelerometer and gyroscope.
However, the data collection was performed in a supervised environment, and the classification should
be optimistic in real-world. To enhance the efficiency of the extracted features, Hassan et al. established
a series of operational mechanisms. The features, i.e., mean, median, and autoregressive coefficients,
were extracted from the triaxial angular velocity and linear acceleration signals. Further, a kernel
principal component analysis (KPCA) and linear discriminant analysis (LDA) were used to make the
features more robust. Finally, they adopted the Deep Belief Network (DBN) algorithms to build the
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activity classifier. The high performance of this approach was proved by comparing with SVM and
ANN on the same dataset.

Unfortunately, all of the above traditional ML algorithms depended on a features extraction (FE)
module. In other words, the performance of the designed FE algorithms decided the recognition
rate and computational speed of the classifier [24], for example, k-NN, SVM, DT, and ANN
methods [25] only worked well under the premise of extracting perfect features from the collected
signals. Meanwhile, this HAR architecture was designed based on “shallow’ layer features and obtain
an optimum performance dependent on the set task [26]. The most challenging part of the mobile
and wearable sensor-based HAR pipeline was the extraction of relevant features [27]. It influenced
the classification performance, computation time, and complexity. However, with the growing of the
influx of multimodal and high dimensional sensor data, the current HAR system based on the above
mentioned ML algorithms were incapable of handling complex activities [28]. Most of them relied on
handcrafted features. Besides, for obtaining a high classification accuracy, most of the evaluation of the
experiment was limited in a controlled area for collecting data. Moreover, the complexity of human
motions brings more difficulties for accuracy enhancement [29]. Many commercial frameworks were
implemented for performing these problems [30]. An efficient group-based context-aware method was
proposed for exploiting hierarchical group-based scheme to improve the classification efficiency [31].

The emergence of deep learning (DL), artificial intelligence (AL), and computation powers
techniques [32-34] skipped the step to extract features manually. The DL method was being adopted
for automatic feature learning in diverse fields like healthcare, image classification, and recently,
for complex HAR in mobile and wearable sensors [35]. Recently, a large number of DL algorithms had
been successfully implemented in HAR by selecting features spectrum automatically. An efficient and
effective HAR model based on deep convolutional neural network (CNN) [36] was proposed to exploit
accelerometer, gyroscope, and the inherent characteristics of activities. In this paper, Ronao et al.
also provided a way to automatically and data-adaptively extract robust features from raw data
with the 1D time series signals. The transformed frequency spectrum was implemented on three
public datasets based on a designed DCNN model [37] with four CNN modules. By comparing
with another feature-based method, the proposed DCNN approach acquired the best performance
on all of the datasets. A DCNN model with three CNN layers and two maximum pooling layers [38]
was successfully identified eight activities. Notably, this model overcame the 8-layer Deep Belief
Network (DBN) for recognizing each behavior. Due to the scarcity of labeled training data and the
poor classification accuracy of existing recognition methods, a deep activity recognition system based
on Gaussian-binary restricted Boltzmann machines (GRBMs) [39] was proposed. A bidirectional Long
short-terms memory (Bi-LSTM) structure was proposed [40] for identifying six daily activities. It used
both acceleration and angular velocity signals to build the Bi-LSTM classifier. Even though it obtained
93.79% classification accuracy, the types of activity were so simple, which also can be identified well
by many traditional ML algorithms. The possible rotational interference present in the raw signals
decreased the recognition rate of HAR [1]. To solve this problem, a robust one-dimensional (1D)
Convolutional Neural Network (CNN)-based method was presented by utilizing vector magnitude
accelerometer data. The deep CNN structure was also suitable for identifying the data coming
from the multichannel time series [41]. Although the proposed deep CNN model obtained the best
classification performance by comparing with other ML methods, like k-NN, SVM, and means and
variance (MV), the less number of subjects in the selected dataset were not enough to measure the
claims. For fast recognition, a new deep recurrent neural network (DRNN) was proposed [42]. By using
both acceleration and angular velocity, a presented DCNN model obtained a high recognition rate
(94.79%). Moreover, it gets a higher accuracy (95.75%)by adding the frequency spectrum information.
By comparing deep feedforward neural network (DNN) [43], CNN and RNN on three representative
datasets, CNN structure was proved as the best algorithm [44]. To achieve a real-time classification for
low-power wearable devices, a deep temporal convolution network [24] was designed and applied
on the frequency spectrum calculating by short-time, fast Fourier-transform (STFT). Capturing these
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temporal dynamics during human motion period is fundamental for successful HAR. A deep generic
framework based on CNN and RNN (LSTM) units were implemented on multimodal wearable
sensors [45]. It was independent of the knowledge in designing features and could perform sensor
fusion naturally.

Nweke et al. [2] summarized and divided the state-of-the-art DL methods for HAR using
a smartphone and wearable sensor into five-folds, i.e., restricted Boltzmann machine, autoencoder,
sparse coding, DCNN, and DRNN. However, there still had many challenges for HAR. For example,
to implement the DL algorithms on mobile and wearable devices was energy-consuming, and it
was difficult to collect large sensor datasets. The most difficult challenge of HAR was how to
classify the no or minimal labeled data. Hence, exploring DL structures with fast computation
and high precision is a hot topic [2]. A transfer learning motivated CNN-based HAR framework
was proposed (called Heterogeneous DCNN) [46], which could automatically adapt and learn the
model in new unlabeled data. The method was evaluated on real-world data and achieved high
accuracy, while these conclusion needed to be proved on more data sampled from the non-stationary
environment. Most recently, many contributions were explored the unsupervised HAR. The Molecular
Complex Detection method (MCODE for short) [47] was utilized on recognizing daily living activities
(e.g., walking, race walking and running), and basketball playing (e.g., standing, bouncing or passing
the ball, free throw, and moving with ball). By comparing with other clustering algorithms, like
Gaussian Mixture Model (GMM) [48] with Expectation Maximization, hierarchical clustering method
(HC) [49], two centroid-based clustering methods (k-means [50] and k-medoids [51]) and a graph-based
clustering method (spectral clustering) [52], the MCODE methods acquired the highest performance
of classification.

By summarizing the previous contributions of HAR, such as methods, platform, systems,
and algorithms, monitoring human activity by using the signals acquired from IMU sensors in the
field is complicated by the following three difficulties.

e  Although it can reduce the computational complexity of data storage and transfer for the
onboard implementation of DL algorithms on smartphone and wearable devices, this technique
is hampered by data acquisition and memory constrained. Therefore, exploring optimal
compression methods and adopting mobile phone enabled GPU to minimize computation time is
highly needed.

e  The signals processing and dimensionality reduction are two significant aspects of HAR process
for enhancing the recognition rate. The acquired new signals with low dimensional data
minimize computational complexity, especially in mobile devices with limited computation
powers and memory.

e  Human activity is too complex to be recognized because it is easy to be affected by the user’s
habit, age, physical status, and even wearable devices. For example, there are many transitions
between two activities, such as from sitting to standing [53]. Thus, to explore an algorithm to
identify the transfer motions and other complex activities becomes more popular.

This paper proposes a new fast and robust deep convolutional neural networks (FR-DCNN)
architecture to identify 12 complex human activities collected from a smartphone. It includes five
exercises (i.e., walking, jogging, jumping, and go upstairs and go downstairs), six postures (i.e., sitting,
standing, lying to the left and right side, and lying supine and prone), and a series of transitions,
(e.g., from standing to sitting). This study aims to train and apply the FR-DCNN model, which can
accurately recognize the 12 activities and fast establish the DCNN classifier. To achieve the claims,
a data compression module is designed to remove the similarity training segments for saving the
computational time of building the DCNN classifier. A signal processing model is established by
adopting several denoising and matrix rotation methods for overcoming the defects of white noises
and rotational interference. Moreover, a new DCNN structure is designed with dropout layer to reduce
the training time.
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The outline of this article is as follows. Section 2 describes the wireless communications system
for data collection and explains the details of the sampled signals. Subsequently, it introduces the
architecture of the proposed FR-DCNN model. Section 3 compares the performance (e.g., classification
accuracy and computational time) among FR-DCNN and the state-of-the-art algorithms. Finally,
Section 4 summarizes the works presented in this paper and presents the future works.

2. Materials and Methods

2.1. Data Preparation

For collected the mentioned activities in Section 1, a wireless communication network [54]
(shown in Figure 1) was built among the user, the smart devices (smartphone), and the data analyzing
unit (laptop). The users were instructed to record the 12 activities by carrying the smartphones
(iPhone 6s) fixed on the waist. It included five types of dynamical exercises (i.e., walking, jogging,
jumping, and going upstairs and downstairs), six static postures (namely, sitting, standing, lying to
the left and right side, and lying supine and prone), and a series of transitions, (e.g., from standing
to sitting). All three types of IMU sensors were used for data gathering: accelerometer, gyroscope,
and magnetometer. We acquired the raw data by installing the MATLAB app in the mobile phone and
sent them to the cloud storage through a wireless connection (cellular network or Wi-Fi). The proposed
HAR algorithm was run in the smartphone and the PC for identifying the collected signal segments in
real-time. Finally, the whole wireless communication system can monitor the subject’s activity both on
the smartphone and PC. The raw signals had nine dimensions because each sensor provided three-axis
data (i.e., x, y, and z). They were recorded at 50Hz frequency (i.e., 50 samples per second) along with
the activity labels per given timestamp (hand-labeled by the observer).

Remote Monitoring

Router
Laptop

- =

Cloud Storage . AR——.

Figure 1. The schematic diagram of data collection and wireless communication between the user
carrying the mobile device and the data analyzing unit (laptop). The activities can be identified on
both smartphone and PC platform. The cloud storage can save the collected signals for future analysis.

Twenty subjects (ten males and ten females, age range from 21 to 30) were asked to do the
12 activities with fixed order and experimental protocol, as it was described in Figure 2. To satisfy the
demands of building a DCNN classifier for applying on more users, it needs to collect a large sampling
dataset. Hence, the subjects are asked to do each activity for about one minute. Usually, a total of 25 to
30 min data would be obtained from one subject with the fixed order in Figure 2. Moreover, it would
get more than 5 x 10* samples with 50Hz sample frequency. The testing started from three times
sitting and standing postures. Then, the subjects would be asked to repeat the jumping and jogging
three times. To avoid making them too tired, they could stand during those strenuous exercises period.
The four kinds of lying postures (supine, prone, and lying to the left and right side) had been done
twice with several different transition activities. For example, one kind of transfer activity was labeled
as lying supine to prone. The rest dynamic exercises (i.e., walking and going upstairs and downstairs)
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were also repeated three times. The ’standing’” motion could be collected many times because it helps
the subjects to get a break. For instance, the user could get relax during the walking testing period.

Finally, it could acquire ~3 min data of the following activities, namely sitting, jumping, jogging,
walking, go up and downstairs. It would collect ~2 min of data of the four types of lying positions.
Moreover, much more extended times of standing. The transition process presented a stage when
people transferred from one motion state to another. For example, a lying transition means that the
user changes their position from lying supine to lying prone.

Tri-axial Accelerometer with Fixed Activity Programming
T T T T T
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65 —
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Figure 2. The schematic diagram of labeled 12 activities on the collected 3-axis acceleration signals.

2.2. The Proposed Method

To achieve online (or real-time) monitoring human activity [55-57], identifying the motions on
each segment is required. According to the description of collecting dataset in Section 2.1, many similar
components might be produced to causes the computational efficiency for training the DL classifier.
Meanwhile, several noises are coming from human movement and the direction change of smartphone,
which decrease the recognition rate of HAR. To improve the computational speed and classification
accuracy, we propose a new fast and robust structure based on deep convolutional neural networks
(DCNN), called FR-DCNN model. Figure 3 introduces the structure of the FR-DCNN with data stream
procedure. The raw signals are collected from an embed IMU sensor, including a tri-axis accelerometer,
a tri-axis gyroscope, and a tri-axis magnetometer. Hence, the raw signals have nine dimensions (9D),
namely S°. It can be processed four signal processing methods, i.e., low-pass elliptical filter, attitude
and heading reference system algorithm (AHRS filter), absolution of accelerometer, and the sum of
angular velocity. As the next step is to remove the similar components for fast computation, the chosen
method must be able to avoid deleting too many segments in a low-dimensions level. For achieving
this aim, we add the 9D raw signals into the processed signals through the signal processing module.
Hence, the processed signals have 19 dimensions, i.e., s;,i = 1,2,--- ,N,s" € R, Subsequently,
the 19D signals will be separated into several segments by a fixed detection length with the slide
window mechanism. Moreover, they will be labeled by the marked classes for building the classifier
in the future, namely (s}, y;),y € A. Where A is a discrete class label in the classification problems.
Due to the extended dataset increases the dimensions of the raw signals set, it can leave the useful
information after deleting the similar segments by the data compression module. This module is
designed by computing the cosine similarity between two segments with the same label. For achieve
fast computation and high accuracy classification, it is better to select some of the components from the
19D signals to build the classifier. The selected inputs (5]’-‘,y]-), j=12---,M,8 € R", where M <N
and m < 19, is acquired through the signal selection module. The labeled and selected segments are
used for establishing the DCNN classifier. Finally, the DCNN classifier can be applied on activity
recognition in an online way.
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Figure 3. The structure and data stream of the fast and robust deep convolutional neural networks
(FR-DCNN) for complex human activity recognition (HAR). The signal processing module is to extend
the dimension of raw signals and label the divided segments. The data compression module aims to
remove similar components for fast computation. The signal selection module is to choose the useful
signals for high-accuracy classification. The new designed DCNN algorithm is to build the DL classifier
for the next step—activity recognition.

2.2.1. Signal Processing

As described in Section 2.2, the embedded IMU sensors in a mobile phone consists of
an accelerometer, a gyroscope, and a magnetometer. They can provide 9D original signals, namely,
proper acceleration S,, angular velocity Sg, and magnetism S,—the direction, strength, or relative
change of a magnetic field at a particular location, respectively. When people does different activities by
carrying the smartphone on a fixed body position, the values of S = {S,, Sg, S} will change. So, it can
classify human activity by analyzing the collected dynamic signal. Unfortunately, the performance of
the established HAR classifier will be affected by several kinds of noises and interference. To improve
the identification ability, the proposed FR-DCNN model adopts a series of signal processing algorithms
to extend the dimensions of raw signals. That can expand the information of raw signals. Meanwhile,
several filters are adopted for denoising. There are four types of signal processing algorithms are
chosen in this article. The third-order zero phases Low-Pass Elliptic Filter (LPEF) [58] is implemented
to divide the raw acceleration into a gravity and the linear acceleration S,:. The LPEEF filter removes
the abrupt changes and high-frequency components by the gain function as follows.

1
-~ V1+eC(tf/f)

where the cutoff frequency f. is round between 0.3 Hz and 20 Hz, ¢ is the ripple factor, and 7 is the
selectivity element. Cy, is the nth-order Chebyshev rational function [59].

The meaning of the tri-axis accelerometer will change along with the changing of the direction
of the smartphone. Hence, it is difficult to identify the four positions of lying mentioned in Section 1.
We choose two methods to solve this problem. First, the absolution of acceleration S,» = |S,| will be
used for reduce the direction change of the smartphone. Second, the attitude and heading reference
system algorithm (AHRS filter) [60] help to fix the three axes of both acceleration and magnetism by
calculating the orientation. The obtained 3-axis orientation S; is computed according to the three raw

Gu(f) @

sensors—S,, Sg, and S, }—by Eqution (2).

S5, S5,

ZM =F Z“H + wi 2)
Bt Bt-1

S’Yt S'Yt—l

where w; is 12-by-1 additive noise vector and F; is the state transition model. The orientation
components also increase the accuracy of identifying the two similar activities, for example, go upstairs
and downstairs. Notably, the orientation is proved to divide the four lying positions, because it will
not be affected by the detection change of the smartphone. Finally, since the angular velocities are
shown to provide more information for identifying the dynamical activities, especially the most similar
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motions (e.g., going upstairs and walking). We add an information of the sum of the three angular
velocities Sg1 = Sg. 4 Sp, + Sp, in s™ to solve this problem.
Finally, the raw 9D signals are extended into 19 dimensions based on the above transitions.

S= [SIXI S‘B/ S’}’] = S* = [SIXI Sﬁ/ S’}’/ Slxllslxzfsﬂlls(s] (3)

where the S, S/g, and S., are the three original signals. S,1 and S> are the linear acceleration and the
absolution of acceleration, respectively. Sz is the sum of the angular velocities. S is the orientation.

Afterward, it will be divided into several labeled segments by a fixed detection length L; with
the slide window mechanism [61], namely, (s;*, vi),i=1,2,---,N. Where y € A is a discrete class
label sequence.

2.2.2. Data Compression

For achieving the fast computation on building the DCNN classifier, we design a data compression
module to delete the similar segments in s},i = 1,2, -+, N with the same label. The obtained 19D
segments sequence s;,i = 1,2,- - - , N have many similar (even same) components in the same labeled
dataset. This is the main reason for causing time-consuming for training the DL classifier. Meanwhile,
it will occupy more storage. The method get some idea from seeker optimization algorithm (SoA)
which is based on the concept of simulating the act of the intelligent of humans searching with
experience, memory, and uncertainty [62,63]. When the start point, search direction, search radius,
and trust degree are given, every seeker moves to a new position (next solution) by the cognitive or
social learning, and uncertainty reasoning [64]. The SoA algorithm provides new idea for solving the
problem of time-consuming and energy-consuming on DL programming [65,66]. To solve the problem,
the cosine similarity method [67] is adopted to compute the similarity degree between two segments
in the same labeled dataset. The procedure of this method is to measure the similarity coefficient p
by calculating the cosine of the angle between two non-zero vectors (s; and s;) of an inner product
space as

K
_ Sa " Sp _ ZkzlsZkSZk @
P szl K (o2 /oK (o 12
alll®b Y—1(ss,) Zk:l(shk)

In this article, when p < 0.99, we regard the two segments are similar and delete one of them.
To avoid removing too much segment from the same labeled dataset, we define the coefficient { in 5 to
control the compression process.

L*=CxL (5)
When { = 0.5, it means there are 50% segments with the same labeled dataset will be removed.

2.2.3. Deep Convolutional Neural Networks

After acquired the training dataset, it can build the classifier for HAR. The procedure of training
a DCNN classifier on (5]*, yi),j=1,2,---,M,8" € R" can be regard as a supervised learning problem.
The designed DCNN structure consists of four deep convolutional modules, a dropout layer [68], a full
connection layer, and a classification module. The first three deep convolutional modules consist of
a 2D convolution layer [69], a batch normalization layer [70] and a rectified linear units (ReLU) [71].
The last deep convolutional module add a max-pooling layer [72]. Figure 4 shows the 2D DCNN
architecture of our proposed method.
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Figure 4. The structure of Deep Convolutional Neural Networks.

The details of the DCNN frame can be described as follows.

e Inputs: A matrix with m dimensions and fixed time-length, namely §; L Specifically,
we constructed four kinds of inputs for comparison experiments, i.e., 85, L= = [sal, 87 L, = [Sa, Slg],
gngd = [sa, S s,| and gngd = [sal,s“z,sﬁl,stgylz]. Where s;5, , represent the Y and Z axis of
orientation signals. Figure 4 ‘inputs’ shows the 3 s input vector of a given training data size,
namely L; = 150 with 50 Hz sample frequency.

o  Deep Convolution Modules: Four deep convolutional modules are designed in DCNN model.
The first three modules (Conv.Module #1 to Conv.Module #3), consist of a 2D CNN layers,
a batch normalization (BN) layer and a Rectified Linear Unit (ReLU) activation function. The last
convolution module Conv.Module #4 add a max-pooling layer. The convolution operations
were performed using the four window sizes, 5, 10, 15 and 20. The size of yielded feature
map are (m —2) x (Ly;—2), (m—4) x (Ly—4), (im—6) x (Ly —6), and (m —8) x (L; — 8).
The convolution operations were performed using the window size 3 x 3. The BN layer is adopted
for allowing each layer of the CNN network to learn by itself a little bit more independently
of other layers. The ReLU layer aims to solve the vanishing gradient and exploding gradient
problems [73].

e  Max-pooling: The max-pooling was performed to select the largest feature value finally.
The max-pooled result acquired from the last layer of Conv.Module #4 reshape to create a feature
vector for the input matrix.

e  Dropout: The convolved and max-pooled feature vectors usually too large to cause overfitting
problem. This phenomenon will decrease the classification accuracy. The dropout layer is applied
for avoiding overfitting and reducing the training time. The percentage of the dropout is set to 0.5
in our evaluation experiment to be explained later.

e  Output: The SoftMax layer was placed as an output layer of the fully-connected layer as shown
in Figure 4. It classify the activities by computing the probability of each input of the node in the
softmax layer, like sitting, standing, walking and lying. The highest probability is then determined
as the predicted (or recognized) activity. Finally, the activity label is outputted to the final node
(in red).

3. Results and Discussion

To evaluate the claims of the merits of the proposed FR-DCNN model in Section 1, we design
several experiments to compare with the state-of-the-art DL algorithms and using different inputs.
The experiments are implemented and evaluated these methods in MATLAB 2018b on a Windows
PC with the hardware platform based on Intel(R) i7 Core 2.80 GHz CPU and 16.0 GB RAM. The first
experiment is implemented to compare the classification accuracy, training time, and online recognition
time among four types of inputs. It is also to evaluate the effectiveness of the described signal
processing algorithms and signal selection module described in Section 2 (Figure 3). Due to these
designing aims to enhance classification precision and avoid the time-consuming of training the DCNN
classifier, the four picture drown by the comparison results are displayed in Figure 5.
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Figure 5. The comparison results among four types inputs: ‘acc’ (§* = sy), ‘acc+gyro’ (8% = {sq,sp}),
‘acctgyro+tmag’ (8* = {sa,sp, 81 }), and ‘Our’ (8" = {s,1,8,2,841, 85, , }). The reconstruction and testing
accuracy are computed on the whole training and testing dataset, respectively. The total training time
means the cost time for building the proposed DCNN classier. The average predicted time is to display
the computational time to output an activity among these four kinds of inputs.

The label “acc’ on the x-axial means that it adopts the tri-axis acceleration signals as the inputs,
namely §* = s,. The "acc+gyro’ means that the DL classifier use both 3-axis acceleration and 3D angular
velocity as the inputs, namely §* = {s4, s }. The "acc+gyro+mag’ means it adopts all of the raw signals
collected from the three original IMU sensors, namely 8" = {sq, 8,8, }. ‘Our’ method means that it
uses the 9D inputs selected from 3 to build the DCNN classifier, i.e., §* = {Sal, S42, 841,56y , }. We adopt
the proposed DCNN structure to build the classifier. The results in blue boxes choose the first 80%
datasets for training the DCNN classifier and the last 20% datasets for testing (called 80-20%), while
the results of rad boxes are acquired by adopting 90% datasets for training the classifier and the last
10% for testing (called 90-10%). To save the experimental time, we remove 50% segments from each
dataset with the same label for obtaining the training datasets, namely, { = 0.5.

By observing the reconstruction accuracy shown in the top left picture 5, adopting all of the
three IMU sensors as the inputs will decrease the recognition rate. Dut to the training datasets are
compressed 50%, it cannot get 100% accuracy. Our method obtain the highest classification accuracy
on the training datasets than the other kinds of inputs. Our method acquires up to 95% accuracy for
reconstructing the whole training dataset. Specially, by testing on second experiment (90% training,
10% testing), our inputs 8" = {s,1,5,2,841, 85, , } is the most robust method for recognizing the training
data. By comparing the results on the testing data, the ‘acc+gyro+mag’ inputs acquires the lowest
accuracy in the 80-20% experiment. Even though it gets a good performance in the 90-10% experiment,
it is not a robust method due to the computed large standard deviation. The length of boxes represents
the robust of the method. Our method obtains a larger average accuracy 94% than the other methods
in the 90-10% experiment. Specially, our method show the best robust in the 80-20% experiment.
Although the classification accuracy obtained by "acc+gyro” inputs in 90-10% experiment is higher than
that acquired in 80-20% experiment, it is a little bit lower than the accuracy obtained by ‘our” inputs.
And the standard deviation of them are quit close to each other. The top two pictures in Figure 5
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show the computed accuracy on “acc+gyro+mag’ inputs is so much lower than that obtained from
other inputs. Because the magnetometer is easy to be effected by various noises, which will affect the
classification accuracy. However, this negative influence can be removed by the proposed FR-DCNN
method. The orientation signals combine all of the three initial signals and we only use the data of
Y-axis and Z-axis. The left bottom picture in Figure 5 display the training time for building a DCNN
classifier. Even if adopting our method will cost a longer time (average 88s) than using the inputs
“acc+gyro’, our inputs §* = {s,1,s,2, Sgi, Ssy , } can obtain the robust results. The average prediction
time (shown in the right bottom in Figure 5) of the four kinds of inputs are close to each other (0.0029 s),
even if the online testing time obtained from "acc+gyro” inputs is lower than that from ‘our’ inputs.
Because only 0.0001 s difference cannot affect too much to the prediction speed. The most important
aim of our work is to find a more strong algorithm to reduce the effect from the inputs, overfitting and
underfitting. Meanwhile, by comparing the average prediction time in Figure 5, the dimension of the
inputs has not affect the online recognition time. Hence, the proposed FR-DCNN algorithm provides
a better method for increasing the classification accuracy and enhancing the robust of a classifier.

For more in-depth verification the efficiency of input dimensions, we draw the four confusion
matrix examples of the mentioned four types of inputs from Figures 6-9. All of these experiments are
tested on 5088 samples. Most of the activities can be identified only using the tri-axis accelerometer
shown in Figure 6. The total classification accuracy is 90.07%. However, using “acc’” inputs it is difficult
to identify the transition from other dynamical activities. It has 49.4% error, and the lying to left-side
position is recognized by the right-side and "transferred’.

Confusion Matrix Using Input acc

downstairs | 121 12 1 9.7%
jog 218 3.5%

jump 254 7 2.7%

left 234 59 15 24.0%

prone 319 13 22 9.9%

) right 54 281 19 20.6%
é sit 507 | 126 35 1 24.3%
o stand 7 60 22 12 6 2.8%
=  supine 345 | 22 6.0%
transfer | 6 1 3 22 1 183 1 15.7%
upstairs 5 15 146 5 14.6%

walk | 1 2 1 368 1.1%

86.4% 99.5% 98.8%  75.5% 100.0% 82.4% 100.0% 92.0% 100.0% F:OEVZE 90.7% 96.6%
13.6% | 0.5% 1.2% | 24.5% 17.6% 8.0% 494% | 9.3% | 3.4%

© A
N

SR TR R = R P\ P XY R 1
e \ \\>(<\ \¢ &© RS ECAIRS v o0 S

o
Predicted class
Figure 6. An example of the confusion matrix computed based on the input ‘acc’ (§* = s,). It have

a column summary matrix and a row summary matrix to display the accuracy and the errors of
each activity.

However, adopting only two IMU sensors, i.e., 3D accelerometer and tri-axis gyroscope, can
get better performance for identifying the 12 activities. As shown in Figure 7, the total classification
accuracy improved to 91.59% and the recognition rate of ‘transfer” is better than using “acc’ in Figure 6,
and the established DCNN classifier has not sacrificed too much of the accuracy for identifying the
four lying positions.
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Confusion Matrix Using Input acct+gyro

downstairs | 112 1 3 2 5.1%
jog 217 8 3.6%

jump 251 3 1.2%

left 249 59 19 23.9%

prone 318 13 16 8.4%

» right 31 239 9 14.3%
8 sit 507 | 18 aa | 1 | 1 11.2%
@ stand| 5 16 | 7 | 3 1.8%
= supine 337 18 51%
transfer | 14 1 6 30 1 43 8 206 4 9 36.0%
upstairs | 7 1 15 146 2 14.6%

walk 2 5 3 364 2.7%

80.0% 99.1% 97.7% 80.3% 99.7% 100.0% 98.2% 97.7% [:lEM/H 90.7%  95.5%

Predicted class

Figure 7. An example of the confusion matrix computed based on the input “acc+gyro’ (3" = {s, s })-
It have a column summary and row summary to display the accuracy and the errors of each activity.

After adding both gyroscope and magnetometer information, the miss classification rate does
not acquire improvement, even worse. Figure 8 shows the obtained confusion matrix based on
"acc+gyro+mag’ inputs and the total classification accuracy is 84.59% which is so much lower than the
previous two experiments. Almost all of the activities are recognized into wrong classes. Specially,
the "upstairs” lying to the left and right sides can not be identified well. Meanwhile, most of the
transition activities are miss classified. Although the classification accuracy (60.2%) of "transfer” gets
better than that only use “acc” as the inputs (50.6%), using all of the three IMU sensors (‘acc+gyro+mag’)
is the worst method for building the DCNN classifier.

Confusion Matrix Using Input acc+gyro+mag

downstairs | 112 1 6 5.9%
jog| 1 | 217 | 3 6 4.4%

jump 249 1 0.4%

left 167 8 4.6%

prone 283 13 12 8.1%

» right 39 171 11 22.6%
8 sit 507 15 2.9%
Q stand | 11 66 33 19 8 41%
= supine 290 | 14 4.6%
transfer| 5 1 5 104 36 170 55 218 9 3 63.8%
upstairs | 2 10 68 15 28.4%

walk | 9 66 28 69 | 355 32.6%

80.0% 99.1% 96.9%

Predicted class
Figure 8. An example of the confusion matrix computed based on the input ‘acc+gyro+mag’

(8" = {sa,sp,8¢}). It have a column summary matrix and a row summary matrix to display the
accuracy and the errors of each activity.

By comparing with all of the above three types of inputs, our method to select the inputs
8" = {s,1,8,2, Sgi, Ssy , } for building the DCNN classifier is proven to obtain a higher classification
accuracy. Figure 9 shows the computed confusion matrix by the DCNN classifier built on ‘our” inputs.
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The total classification accuracy is 96.34%. It can be seen that most of the 'transfer” activities are
classified into the correct class with 72.9% accuracy in the raw-summary and 93.5% accuracy the
column summary. The only worst classification happens on identifying "upstairs’; it gets 53.1% error in
the column summary because some of them are recognized into the ‘stand’ class. Specially, our method
get 100% recognition rate for recognizing lying supine, prone, right, sitting and jogging, which is
evaluated so much better than the other three methods.

Confusion Matrix Using Input our

downstairs | 67 26 2 29.5%
jog| 4 200 | 18 14 15.3%
jump 236 8 3.3%
left 270 2 0.7%

prone 313
» right 34 319 5 10.9%
8 sit 632 8 1.2%
g stand| 5 6 | 1 | 2 0.8%
= supine 404 9 2.2%
transfer | 2 4 1 233 2 8 6.8%
upstairs | 3 65 8 97 6 45.8%
walk | 6 18 6 10 269 12.9%

77.0% 100.0% 91.5% 88.5% 100.0% 100.0% 100.0% 95.5% 100.0% 88.2% 93.7%

23.0% 8.5% | 11.5% 4.5% 28.3% | 11.8% | 6.3%

© 0 L« & @ g &N & e et R N
(\6\3 \ \\)‘(\ \ o K &8 5\)9\ P &5 \y;sé@ e

Predicted class

Figure 9. An example of the confusion matrix computed based on our input §* = {s,1,8,2, 541,85, , }-
It have a column summary and row summary to display the accuracy and the errors of each activity.

Table 1 compares the HAR performance between the designed DCNN classifier and other popular
DL classifier, i.e., LSTM, Bi-LSTM and the other two DCNN model with 3 and 5 CNN modules,
by building the DCNN classifier on 50% ({ = 0.5) compressed training datasets. It uses the 90% data
(collected from 18 subjects) for training and the last 10% data (sampled from two subjects) for testing.
To enhance the persuasive capability of this comparison experiment, all of the algorithms are tested
20 times to compute the average and standard deviation of each results set. The proposed FR-DCNN
have four convolutional modules including 2D CNN layers, a batch normalization (BN) layer and
a Rectified Linear Unit (ReLU). In these experiment, we compare the FR-DCNN method with three
and five convolutional modules, called 3-Module DCNN and 5-Module DCNN. The replacement
optimization algorithm is the adaptive moment estimation optimizer (adam). The optimization
parameters of DCNN model are set as follows. The learn rate is 0.001 with 0.1 drop factor and 100 drop
period. The LSTM model consists of one LSTM layer with 50 neurons and 50 size of minibatch, a fully
connected layer, a softmax layer and a classification layer. Similarly, the Bi-LSTM model adopts the
same layers as LSTM model with the 50 nodes Bi-LSTM layer. Both LSTM and Bi-LSTM models use the
same learning rate, drop factor and drop period with DCNN models. By comparing the classification
accuracy calculated on the whole training dataset, our FR-DCNN method get the highest reconstruction
rate (94.09%) than all of the other methods. Although the Bi-LSTM classifier is the most robust method
because it obtains the lowest standard deviation (0.0065), out method also get a close value with
Bi-LSTM (0.0070). Hence, FR-DCNN method is still the best algorithm for reconstruct the training
dataset. By comparing the accuracy computed on the testing dataset, although our FR-DCNN method
obtain a little bit lower average accuracy (94.18%) than the LSTM and Bi-LSTM methods (95.39% and
95.35%, respectively), the FR-DCNN method only spend 88s to build the DCNN classifier. That is too
much less than the LSTM, Bi-LSTM, and 5-Module DCNN algorithms. Meanwhile, our FR-DCNN
method is one of the fast classifier to output a result (activity) on testing data. It only need 0.0022s
(average time) to predict the activity on a signal segment, while the Bi-LSTM needs 0.0142 s.
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Table 1. The comparison performance on the compressed training dataset ({ = 0.5) among FR-DCNN,
DCNN, LSTM, and Bi-LSTM.

Accuracy Computational Time
Algorithms
Train Test Train Test

FR-DCNN 94.09% £ 0.0070 94.18% £ 0.0170  88.00s £15.57  0.0028 s & 0.0007
3 Modules DCNN  93.92% + 0.0075 93.04% £ 0.0170  71.75s £13.32  0.0022 s £ 0.0006
5Modules DCNN  93.23% =+ 0.0317  93.06% 4 0.0308 118.32s +18.32  0.0036 s £ 0.0009
LSTM 93.59% £ 0.0103  95.39% £ 0.0178  226.29s+3.92  0.0118 s &= 0.0004
Bi-LSTM 93.65% £ 0.0065 95.35% 4 0.0157  266.28 s = 6.61  0.0142 s &= 0.0004

As the data compression module is designed to remove similar training segments, which might
cause slow building of the DL classifier, the compressed training dataset is expected to leave the most
useful information for establishing the DCNN classifier. Hence, the difference of the comparative
results calculated based on the whole training dataset (90%) among FR-DCNN, two kinds of DCNN,
LSTM, and Bi-LSTM should be similar to the results acquired in Table 2. Although the classification
accuracy obtained on the training dataset is higher than the results computed on the compressed
training set (specially, the FR-DCNN method acquires 96.88% accuracy), they cost more time to train
the model. For example, the FR-DCNN model need 179.38 s to build the classifier, which is the twice
of that obtained on the compressed dataset.

Table 2. The comparison performance on the whole training dataset (90%) among FR-DCNN, DCNNSs,
LSTM, and Bi-LSTM.

Accuracy Computational Time
Algorithms : .
Train Test Train Test

FR-DCNN 96.88% £ 0.0050 95.27% %+ 0.0160 179.38 s £ 36.41  0.0029 s £ 0.0008
3 Modules DCNN  96.06% =+ 0.0055 93.61% 4 0.0163  135.28 s +26.45  0.0022 s =+ 0.0006
5Modules DCNN  95.60% =+ 0.0090 94.26% =+ 0.0166 226.24 s 4= 36.62  0.0038 s &= 0.0008
LSTM 94.55% £ 0.0088 96.43% + 0.0077  406.28 s +=4.53  0.0115s =£ 0.0001
Bi-LSTM 94.52% + 0.0080 96.42% =+ 0.0107 515.76 s +28.35 0.0143 s & 0.0007

Figure 10 displays the errors and training time trend obtained on the last 10% testing dataset. Since
the compression degree  is an significant decisive factor for maintaining the consistency between the
compressed and without compressed training dataset, we set the value ¢ from 0.1 to 0.9 for comparing
the errors computed on the whole training and testing dataset and the time of building the DCNN
classifier. By observing the misclassification rate in the top two pictures shown in Figure 10, the errors
decrease along with the increase of value . To avoid the defects of NN such as overfitting and
underfitting, all of the models are tested 20 times and the middle line of each picture is the average
values. The shaded parts represent the Quartile range (0.25-0.75) of the results of each experiment.
The trend of total training time grows when the compression degree is increase. Despite the structure
cost about 90 s to build the DCNN classifier on the 50% compressed dataset, it is the best degree for
both fast computation and high accuracy classification.

Figure 11 shows two examples of the confusion matrix computed by the DCNN classifier which
is built on two different training datasets. The first one is compressed 80% ( = 0.2), while the second
one is compressed 20% (¢ = 0.8). The whole classification accuracy is 87.36% and 94.37%, respectively.
By observing the accuracy for identifying each activity in the row summary matrix on the right, the 80%
compression training dataset classify too may ‘downstairs” to the ‘'walk’, and it lost the recognition
ability for identifying the transition. However, the recognition rate gain improvement on the 20%
compressed training dataset. It not only solve the problem of identifying ‘transition” and "upstairs’
activities, but also increase the whole classification accuracy.
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Figure 10. The performance trend with the increasing degree of data compression {. The top two
pictures show the error rates on the testing and training datasets. The bottom picture is the whole
training time. The shaded parts represent the Quartile range from 0.25 to 0.75.

Confusion Matrix with 80% Compressed Training Dataset

downstairs | 52 18 1 1
jog| 4 100 7
jump 128 7
left 167 75 4
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Confusion Matrix with 20% Compressed Training Dataset
downstairs | 51 9 1 16.4%
jog| 4 | 100 8 10.7%
jump 127 2 1.6%
left 168 79 4 33.1%
prone 209 5 23%
2 right 137 1 0.7%
] sit 316 4 1.2%
g stand | 2 3 1 1 06%
= supine 236 7 2.9%
transfer 1 2 1 122 3 2 6.9%
upstairs 1 4 70 2 9.1%
walk 6 2 8 5 183 10.3%
78.5% 100.0% 98.4% 100.0% 100.0% 100.0% 99.7% 100.0% 87.5% 97.3%
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Figure 11. An example of the confusion matrix computed based on 80% and 20% compression training
dataset. The top matrix is the prediction results computed by the DCNN classifier building on the
80% compressed dataset. The bottom picture is the results by the same classifier established on the 20%
compressed training dataset. All of the matrix have a row summary to display the accuracy and the
errors of each activity.
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4. Conclusions

In this paper, we proposed a fast and robust deep convolutional neural network (FR-DCNN)
architecture to perform complex activity recognition from smartphone sensors. The new framework
decreases the computational time to training a DCNN classifier through the designed data compressing
module to remove the similar components in the same labeled dataset. By comparing the training time
and classification accuracy along with the different compression degrees , it is found that deleting
50% of the training data not only saves half of the training time, but also keeps the high precision of
predicting the 12 activities. The FR-DCNN method focuses on complex HAR. Except recognizing the
typical activities in the previously published contributions, such as jumping, jogging, and walking,
the FR-DCNN algorithm can identify four types of lying positions (left and right sides, lying supine
and prone) and a series of transitions. All of these activities are the current challenges of HAR area.
Furthermore, we design a series of measures in the FR-DCNN model to enhance classification accuracy.
In this study, it conducts extensive research to explore the power of the triaxial accelerometer and
gyroscope in activity recognition. The signal selection module chooses the most useful signals obtained
from the signal processing module. The used 9D inputs for recognizing the 12 activities outperformed
the results computed based on other inputs. Especially, the experimental results show that the used
9D inputs can provide more discriminant information than adopting the fusion of accelerometer and
gyroscope data contributes to obtaining better classification performance. Besides, the designed DCNN
model outperformed the results obtained from other DL algorithms, like LSTM, Bi-LSTM, and DCNN
models with 3 and 5 CNN modules in the collected training dataset by ~1% on average. Although the
DCNN method is not the best algorithm for predicting the activities on the testing dataset (actually,
the LSTM get about 1% average better than DCNN)), it only needs less than half time of LSTM to train
the classifier and cost 25% time of LSTM to predict an output.

For future work, we will investigate a transfer learning approach to conduct further research
in the following lines. First, human activity is an open mind and complex issue, which can not be
regarded as a simple multiple classification problem. Therefore, establishing a classifier on the less
labeled dataset for implementing on the extensive unknown data becomes the most popular challenge.
Second, exploring other active and fast clustering or classification algorithms and comparing them
with the proposed one in this study remains a topic for future research. Third, perceiving the state
of an individual and development of human-centric applications are helped by the accurate activity
recognition. Therefore, developing an assisted living system in order to understand users behavior
patterns will promote healthcare in a home setting.
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