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Simple Summary: The signal transducer and activator of transcription 3 (STAT3) activation corre-
late with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that
the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130
(gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type
1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor
(TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through
regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we
demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active
promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription
in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC
CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC,
and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination
of PDAC (146/150).

Abstract: Signaling pathways involving signal transducer and activator of transcription 3 (STAT3)
play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their
tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC
aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we in-
vestigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein
130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by
culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 path-
way activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes
to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase
(MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates
the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal tran-
sition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore,
chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region
of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription
in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in
PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy.
We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting
CSCs for the treatment of PDAC.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies,
with a 5-year survival rate of approximately 11%, and PDAC is the 3rd leading cause of
cancer-related deaths in the USA and the 4th leading in Japan [1]. Surgery is the only
treatment option; however, 80% of PDAC patients are at an advanced stage of cancer
at diagnosis [2]. Even in patients who undergo surgery, local recurrence of cancer and
development of distant metastases frequently occur [3]. In the USA, PDAC is expected to be
the second leading cause of cancer-related deaths by 2030 [4]. Recent studies have shown
that heterogeneous cancer cells, including a small number of cancer stem cells (CSCs),
form cancerous tumors [5–7]. CSCs contribute to tumor initiation, growth, and metastasis
and are resistant to chemotherapy or radiotherapy. Based on the concept that CSCs are
responsible for tumor self-renewal, the elimination of CSCs could lead to the disappearance
of cancer cells [8].

Signal transducer and activator of transcription 3 (STAT3) signaling pathways have
been suggested to play a key role in tumorigenesis, progression, and drug resistance in sev-
eral human malignancies, including leukemia, lymphomas, hepatocellular carcinoma, and
esophageal, lung, prostate, bladder, and breast cancers [9,10]. STAT3 is an important regu-
lator of stem cell self-renewal and cancer cell survival in the animal model of PDAC [11,12].
In human breast tumors, phosphorylation of STAT3 enhances the transcription of down-
stream target genes that promote angiogenesis, invasion, and epithelial-mesenchymal
transition (EMT) [13]. Targeted inhibition of STAT3 is considered to be an effective thera-
peutic strategy for PDAC. A recent study has shown that a new small-molecule inhibitor of
STAT3 suppresses tumor growth and metastasis and significantly prolongs the survival of
tumor-bearing mice in animal models of PDAC [14]. STAT3 signaling is activated by the
binding of various IL-6 family cytokines, such as interleukin-6 (IL-6) or leukemia inhibitory
factor (LIF), to their cell surface receptors, including glycoprotein 130 (gp130) (a common
subunit of the receptor complexes), thus leading to the phosphorylation of STAT3 [15].
While individual IL-6 family members also regulate AKT and ERK signaling through gp130,
besides STAT3, the relative strength of activation of specific pathways can differ depending
on the cytokine, cell type, and physiological context [16–18]. For example, oncostatin M
(OSM), but not IL-6 or LIF, induces the tyrosine phosphorylation of the Shc isoforms p52
and p66 and their association with Grb2, resulting in a stronger activation of ERK signaling
in hepatoma cells [19]. The LIF/gp130/STAT3 signaling pathway is well recognized to
contribute to the maintenance of stemness in mouse embryonic stem cells [20,21]. In CSCs,
the IL-6/gp130/STAT3 signaling pathway has been demonstrated to be involved in the reg-
ulation of CSC properties such as self-renewal, stemness marker expression, and tumor cell
growth in prostate cancer [22], glioma [23], endometrial cancer [24], and breast cancer [25].
Blocking the gp130/STAT3 signaling pathway may eliminate CSCs and help prevent cancer,
due to the important role that this pathway plays in maintaining CSC properties such as
self-renewal abilities in carcinogenesis.

Long non-coding RNAs (lncRNAs) are mRNA-like transcripts that contain more than
200 ribonucleotides [26]. LncRNAs regulate gene expression levels by participating in
epigenetic modification and control of transcription, RNA processing, translation, and
post-translational modification [26]. LncRNAs play important roles in carcinogenesis,
proliferation, and metastasis in various types of cancers [27–30]. The human H19 gene is
located on chromosome 11p15.5 and encodes an imprinted lncRNA [31]. Recent studies
have shown that H19 enhances invasion and metastasis in several malignancies, includ-
ing bladder cancer [32,33], glioma [34], osteosarcoma [35], acute myeloid leukemia [36],
breast cancer [37,38], non-small cell lung cancer [39], gastric cancer [40], and pancreatic
cancer [41] while suppressing the aggressiveness of hepatocellular carcinoma [42] and
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prostate cancer [43]. We have recently reported that H19 was the most highly expressed
(82.4-fold) ncRNA in a lung metastasis-derived human PDAC cell line, compared to the
parental PDAC cell line PANC-1, and that H19 inhibition decreased lung and liver metas-
tases in immunodeficient NOG mice [44]; thus, H19 is expected to be a novel therapeutic
target for pancreatic cancer metastasis. Therefore, it is important to clarify the mechanisms
underlying H19 regulation. To date, the signaling pathways and/or transcription factors
that directly control the expression of H19 have not been clarified. We previously reported
that H19 is increased in PDAC sphere cells in which CSCs are enriched [45]. Therefore, we
speculated that stemness-related signaling might be involved in the expression of H19.

Previous reports indicate that CSCs are enriched in these spheres and play an im-
portant role in the biological aggressiveness of PDAC [46–48]. Sphere cells formed under
3D-culture conditions have been characterized as CSC-like cells and have been used for
CSC research. Previously, we demonstrated that serum-containing media yielded the most
rapid formation of large spheres (including CSCs) in PDAC cells [49,50]. To date, it has
not been clarified whether IL-6 or LIF/gp130/STAT3 signaling pathways contribute to
the maintenance of CSCs in PDAC. Furthermore, there have been no reports regarding
stemness-related signaling of H19. In the present study, we investigated the correlation
between the involvement of IL-6 or LIF/gp130/STAT3 signaling in PDAC CSC-like cells
and H19 expression.

2. Materials and Methods
2.1. Cell Culture

The human PDAC cell lines PK-1, PANC-1, and PK-59 were obtained from the Cell
Resource Center for Biomedical Research, Institute of Development, Aging, and Cancer,
Tohoku University (Sendai, Japan). The PK-8 human PDAC cell line was provided by
RIKEN BRC through the National Bio-Resource Project of MEXT, Japan. Cells were grown
in a growth medium (RPMI 1640 medium containing 10% fetal bovine serum) at 37 ◦C under
a humidified 5% CO2 atmosphere. For sphere formation by 3D culture, cells in the growth
medium were plated at 1.0 × 104 cells/well or 3.0 × 103 cells/well into 24-well ultra-low
attachment plates (Corning Inc., Kennebunk, ME, USA) or 96-well ultra-low attachment
plates (Thermo Fisher Scientific, Waltham, MA, USA). The spheres were aspirated after
seven days using micropipettes and placed in microcentrifuge tubes for use in further
experiments. To inhibit gp130 ligand-triggered signaling, the cells were treated with SC144
(Selleck Chemicals, Houston, TX, USA) or DMSO as a vehicle control. The size (area) of
spheres was quantified using ImageJ software (National Institutes of Health, Bethesda,
MD, USA).

2.2. Transfection of Short Interfering RNA (siRNA) Targeting IL-6 or LIF

The cells were plated at a density of 2 × 105 cells into 35-mm dishes and transfected
24 h later with 5 nM siRNAs targeting IL-6 (5-GAA CGA AUU GAC AAA CAA ATT-3),
LIF (5-UGC CUC UAC UUG UCC CUU UTT-3), or Silencer negative control siRNA (siCont)
using Lipofectamine™ RNAiMAX Transfection Reagent (Thermo Fisher Scientific) accord-
ing to the manufacturer’s protocol.

2.3. Generation of Stable H19-Overexpressing Cells

The H19 full-length cDNA (2.3 kb) cloned into pcDNA3.1(−) vector (a generous gift
from Dr. Eric Adriaenssens, Science and Technology, Lille 1 University, France) and empty
vector were transfected into PANC-1 cells using FuGENE HD transfection reagent (Roche
Diagnostics, Mannheim, Germany) according to the manufacturer’s instructions. Briefly,
2 × 105 cells/mL were transfected with 2 µg of DNA using FuGENE HD, and the cells were
passaged and cultured with 1 mg/mL of geneticin (Sigma-Aldrich Corporation, St. Louis,
MO, USA) [44,45].
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2.4. Fluorescence-Activated Cell Sorting (FACS) Analysis

Cells were harvested, and dissociated single cells were incubated on ice for 30 min with
PE-conjugated anti-human IL-6 receptor α (IL-6Rα) antibody (BioLegend, San Diego, CA),
PE-conjugated anti-human LIF receptor (LIFR) antibody (Becton Dickinson, Franklin Lakes,
NJ, USA), PE-conjugated anti-human gp130 antibody (BioLegend), or PE-conjugated iso-
type control (Becton Dickinson) diluted in FACS buffer (0.5% (w/v) BSA and 0.1% (w/v)
sodium azide in PBS). After washing, the cells were analyzed using a FACSAria™ cell sorter
(Becton Dickinson). The mean fluorescence intensity (MFI) was calculated by subtracting
the intensity of the control.

2.5. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Total RNA was isolated from the cells using the RNeasy Plus Mini Kit (QIAGEN,
Hilden, Germany) and subsequently reverse-transcribed using the ReverTra Ace® qPCR
RT Kit (Toyobo, Osaka, Japan) according to the manufacturer’s instructions. Real-time
qPCR was performed using the Power SYBR ® Green kit (Applied Biosystems, Foster
City, CA, USA) and StepOnePlus™ real-time PCR system (Applied Biosystems, Foster
City, CA, USA). β-Actin was used as an internal control. The primer sets used for qPCR
are listed in Table S1. Real-time qPCR analysis for H19 was performed using TaqMan
Fast Universal PCR Master Mix (Life Technologies Corporation, Carlsbad, CA, USA) and
TaqMan Gene Expression Assays (Life Technologies Corporation), with 18S rRNA serving
as an internal control.

2.6. Sphered Cell Proliferation Assay

Cells were cultured in a growth medium at a density of 3 × 103 cells/well in 96-well
ultra-low attachment plates and incubated for 7 days. Adenosine triphosphate (ATP) assays
were used to examine proliferation using the CellTiter-Glo® 2.0 assay (Promega, Madison,
WI, USA) according to the manufacturer’s protocol.

2.7. Immunoblotting

Cells were lysed with lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1.5 mM
MgCl2, 5 mM EDTA, and 1% Triton™ X-100) containing protease and phosphatase in-
hibitor cocktails. The samples prepared as described above were separated by SDS-PAGE
and then transferred onto PVDF membranes (Merck Millipore, Billerica, MA, USA). After
blocking, the membranes were incubated with the primary antibodies. All antibodies
used in this study are listed in Table S2. Membranes were then incubated with the appro-
priate peroxidase-conjugated secondary antibodies (Cell Signaling Technology, Danvers,
MA, USA), washed, and developed using ECL Prime reagents (GE Healthcare, Piscataway,
NJ, USA). Image densitometry was performed using the ImageJ software (National Insti-
tutes of Health, Bethesda, MD, USA). Full-blot images with molecular weight markers are
shown in Figure S7.

2.8. Anti-Drug Resistance Assay

Cells (3.0 × 103 cells/well) were plated in 96-well ultra-low attachment plates with
a growth medium with or without SC144. Each anticancer drug was administered at the
indicated concentration after 7 days of culture, and cell growth rates were measured by ATP
assays 4 days after treatment with the anticancer drug. Cell viability was calculated as the
percentage of luminescence in drug-treated cells relative to that in untreated control cells.

2.9. Invasion Assay

Invasion assays were performed using Corning Matrigel invasion chambers (pore
size: 8 µm; Discovery Labware Inc., Bedford, MA, USA). Cells were plated at a density of
1 × 105 cells/500 µL onto the upper surface of the inserts, and 24 h later, cells that migrated
through the membrane to the lower surface of the filter were fixed and stained with a
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Diff-Quick staining kit (Polysciences, Inc., Warrington, PA, USA) and then counted under a
light microscope.

2.10. 3D Invasion Assay

Cells (3.0 × 103 cells/well) in the growth medium were plated into 96-well ultra-low
attachment plates. After incubation for 7 days, the growth medium was gently removed
from the spheroid-containing plates and 100 µL of Matrigel solution in PBS was gently
dispensed into the U-bottom wells. The plates were incubated at 37 ◦C to allow the Matrigel
solution to solidify, and 100 µL of growth medium was then gently added to each well. The
spheres were photographed using a phase-contrast microscope (Nikon, Tokyo, Japan) at an
appropriate incubation time. We then calculated the area of the sphere at each experimental
time point compared to the areas at 0 h to evaluate the invasion ability.

2.11. Chromatin Immunoprecipitation (ChIP) Analysis

ChIP was performed according to the protocol published by Agilent Technologies
(Santa Clara, CA, USA) with some modifications. Briefly, the cells were fixed with an 11%
formaldehyde solution for 10 min. After harvesting the fixed cells, they were lysed in lysis
buffer and sonicated using a Misonix XL2020 sonicator (MISONIX Inc., Farmingdale, NY,
USA, http://misonix.com, accessed on 18 January 2022) until the DNA fragments were
200–600 bp in length. Aliquots of 3.0% of the total volume were stored as input at −20 ◦C
until use. Immunoprecipitation was performed at 4 ◦C overnight with anti-trimethylation
of histone H3 Lys 4 (H3K4me3) (ab8580; Abcam, Cambridge, UK), histone H3 acetyl Lys27
(H3K27Ac) (ab4729; Abcam), and p-STAT3 (Tyr705) (#9131; Cell Signaling Technology).
DNA/beads were washed with a low salt buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl,
2 mM EDTA, 0.1% sodium dodecyl sulfate [SDS], and 1% Triton X-100) once and then
further washed with a high-salt buffer (20 mM Tris-HCl pH 7.4, 400 mM NaCl, 2 mM
EDTA, 0.1% SDS, and 1% Triton X-100) once before washing with RIPA buffer (50 mM
HEPES-KOH, pH 7.6, 500 mM LiCl, 1 mM EDTA, 1% NP-40, and 0.7% Na-deoxycholate).
Immune complexes were disrupted with direct elution buffer (50 mM Tris-HCl pH8.0,
10 mM EDTA, and 1% SDS), and the covalent links between immunoprecipitates and
input chromatin were disrupted by incubation at 65 ◦C overnight. The DNA was further
incubated with RNase A and proteinase K (Nacalai Tesque, Kyoto, Japan), purified by
phenol extraction, and precipitated with ethanol. The DNA pellets were dissolved in Tris-
EDTA buffer (10 mM Tris-HCl and 1 mM EDTA pH8.0). Co-immunoprecipitated DNA was
detected by quantitative PCR using primers specific to the H19 promoter region (Table S3).
Two independent experiments were conducted.

2.12. Gene Correlation Analysis

The online database Gene Expression Profiling Interactive Analysis (GEPIA) (http:
//gepia.cancer-pku.cn/index.html, accessed on 18 January 2022) was used to analyze
the correlation of the expression of gp130/STAT3 pathway-related factors with overall
survival and H19 expression correlated with gp130/STAT3 pathway-related factors in
patients with PDAC. Gene expression correlation analysis was performed for the given sets
of TCGA expression data by using GEPIA. The Spearman method was used to determine
the correlation coefficients. H19 was used as the x-axis, and other genes of interest are
represented on the y-axis.

2.13. Statistical Analysis

Results are presented as mean ± SD, and the data between the two groups were
compared using Student’s t-test or Welch’s t-test. One-way ANOVAs were performed to
compare multiple pairing groups. Statistical analyses were performed using Microsoft
Excel for Mac statistical analysis, version 3.0. Statistical significance was set at p < 0.05.

http://misonix.com
http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html
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3. Results
3.1. Active gp130/STAT3 Pathway in PDAC Sphere Cells

First, we compared the expression of gp130/STAT3 pathway-related factors, such as IL-
6, LIF, IL-6R, LIFR, and gp130, between 2D (adherent) and 3D (sphere) cultured PDAC cell
lines. Real-time qPCR analysis demonstrated that all examined factors were significantly
upregulated in PANC-1 sphere cells (Figure 1A) and that almost all factors were upregulated
in PK-1 sphere cells (Figure S1A). Cell surface expression of IL-6, LIFR, and gp130, as
assessed by FACS analysis, revealed that all of these factors were expressed at higher levels
in sphere cells of PANC-1 and PK-1 cells (Figures 1B,C and S1B). Next, we examined the
activation of the gp130/STAT3 pathway by immunoblotting. As presented in Figure 1D
and Figure S1C, the phosphorylation of gp130 and STAT3 was increased in the sphere
cells of PANC-1 and PK-1 cells. These results indicated that the gp130/STAT3 pathway is
functional in certain PDAC cell lines, including PANC-1 and PK-1 cells. Therefore, most of
the subsequent experiments with PDAC cell lines were performed using PANC-1 and PK-1
cells.
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Figure 1. Active gp130/STAT3 pathway in PANC-1 sphere cells. (A) Real-time qPCR analysis of
IL-6, LIF, IL-6R, LIFR, and gp130 in PANC-1 cells cultured in 2D (adherent) or 3D (sphere) conditions.
The results presented are normalized to values obtained for adherent cells (value = 1). Results are
presented as means ± SD from three independent experiments. (B) FACS analysis of IL-6R, LIFR, and
gp130 expression in PANC-1 cells cultured in 2D (adherent) or 3D (sphere) conditions. Controls are
indicated by thin lines with gray color. (C) Cell surface levels of IL-6R, LIFR, and gp130 expression
in PANC-1 cells cultured in 2D (adherent) or 3D (sphere) conditions. Mean fluorescence intensities
(MFIs) relative to those of adherent cells are presented. Results are presented as means ± SD from
three independent experiments. (D) Western blot analysis of p-gp130, gp130, p-STAT3, and STAT3
was performed in PANC-1 cells cultured in 2D (adherent) or 3D (sphere) conditions. Relative band
intensity is provided. ** p < 0.01.
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3.2. Dose-Dependent Growth Inhibition via gp130 Inhibitor in PDAC Sphere Cells

The effect of the gp130 inhibitor, SC144, on PDAC sphere cell proliferation was in-
vestigated in PANC-1 and PK-1 cells. To investigate sphere cell proliferation, PDAC cells
were cultured under 3D-culture conditions with varying concentrations of SC144 for 7 days.
In both PANC-1 and PK-1 cells, cell viability was decreased significantly at an SC144
concentration of 1.23 µM (Figure 2A). The 50% inhibitory concentration (IC50) of SC144
was calculated from the cell survival curves of both cells. The IC50 values for the two cell
lines were 1.93 µM (PANC-1) and 5.20 µM (PK-1) (Figure 2B).
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Figure 2. Dose-dependent growth inhibition via gp130 inhibitor treatment in PDAC sphere cells.
(A) PANC-1 and PK-1 cells were treated with SC144 at the indicated concentrations in triplicate for
7 days in 3D-culture conditions, and the ATP assay was performed to analyze the growth of sphere
cells (* p < 0.05, ** p < 0.01 vs. control). (B) IC50 values were measured for each cell line following
7 days under 3D-culture conditions with various concentrations of SC144.

3.3. Active gp130/STAT3 Pathway Is Involved in Stemness and Invasion of PDAC Sphere Cells

To clarify the correlation between the gp130/STAT3 pathway and stemness in PDAC
sphere cells, we examined stemness features including sphere-forming ability, stemness
marker expression, anticancer drug resistance, and invasion ability. Immunoblotting re-
vealed that SC144 treatment inhibited the phosphorylation of STAT3 in PANC-1 sphere cells
(Figure 3A), indicating that the gp130/STAT3 pathway is attenuated by SC144 treatment.
Sphere formation was attenuated in SC144-treated PANC-1 (Figure 3B,C) and PK-1 sphere
cells (Figure S2A). Real-time qPCR analysis demonstrated that all examined stemness
markers were expressed at lower levels in SC144-treated PANC-1 sphere cells than in
control sphere cells (Figure 3D). In contrast, two of the six markers (Nanog and Nestin) were
expressed at lower levels in SC144-treated PK-1 cells (Figure S2B). These results suggest
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that the gp130/STAT3 pathway is involved in the expression of stemness markers in PDAC
cells. To assess anticancer drug resistance in sphere cells, we used three anti-pancreatic
cancer drugs, gemcitabine, 5-FU, and nab-paclitaxel. Only nab-paclitaxel was cytotoxically
effective in PANC-1 sphere cells, and cell survival rates following the addition of nab-
paclitaxel (100 µM) were approximately 50% (Figure 3E), an observation that was consistent
with our previous report [51]; however, the survival rates were not significantly different in
SC144-treated PANC-1 sphere cells following incubation with the above anticancer drugs
at either 10 or 100 µM (Figure 3E). Furthermore, we examined the expression levels of four
potential anticancer drug transporters. Real-time qPCR analysis revealed that the expres-
sion of ABCG2, ABCB1, and ABCC1 was not significantly different between the control and
SC144-treated PANC-1 sphere cells (Figure 3F). In contrast, ABCC2 expression was reduced
in SC144-treated PANC-1 cells (Figure 3F); thus, the gp130/STAT3 pathway is involved
in regulating the expression of ABCC2 among the four anticancer drug transporters, but
is not involved in the resistance to the anticancer drugs in PANC-1 sphere cells. Next, we
examined the invasion ability of the cells. Invasion assays revealed that the number of
invading cells was significantly reduced in SC144-treated PANC-1 and PK-1 sphere cells
compared to that in control cells (Figures 3G and S2C, respectively), indicating that the
gp130/STAT3 pathway promotes cellular invasion. A key feature of invasion is increased
production of matrix metalloproteinases (MMPs) [52,53]; MMP2 and MT1-MMP are known
to be expressed in PDAC cells [54]. Therefore, we hypothesized that the gp130/STAT3
pathway promotes MMP expression and activity. Real-time qPCR revealed that MT1-MMP
mRNA levels were significantly upregulated in PANC-1 and PK-1 sphere cells compared to
those in adherent cells and were reduced in SC144-treated sphere cells (Figures 3H and S2D,
respectively). Furthermore, western blot analysis demonstrated that the protein levels of
MT1-MMP were significantly reduced in SC144-treated PANC-1 cells (Figure 3I).

3.4. Autocrine/Paracrine IL-6 or LIF/gp130/STAT3 Pathway Involved in Stemness and Invasion of
PDAC Sphere Cells

Next, we examined whether the gp130/STAT3 pathway in PDAC sphere cells is
activated by the autocrine/paracrine action of IL-6 or LIF. Knockdown of IL-6 or LIF by
siRNA transfection was confirmed by real-time qPCR analysis of PANC-1 cells (Figure 4A).
Furthermore, immunoblotting revealed that phosphorylation of STAT3 in sphere cells was
inhibited in IL-6 or LIF knockdown PANC-1 sphere cells (Figure 4B), indicating that the
gp130/STAT3 pathway is activated in PANC-1 sphere cells by the autocrine/paracrine
action of IL-6 or LIF. Real-time qPCR analysis demonstrated that the expression levels of
stemness markers other than CD24 were reduced in IL-6 or LIF knockdown PANC-1 sphere
cells compared to those in control sphere cells (Figure 4C). Invasion assays revealed that
the number of invading cells was significantly reduced in IL-6 or LIF knockdown PANC-1
sphere cells compared to that in the control cells (Figure 4D). Real-time qPCR and western
blot analyses demonstrated that MT1-MMP expression levels were significantly reduced
in IL-6 or LIF knockdown PANC-1 sphere cells (Figure 4E,F). These results indicate that
the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathways are involved in stemness and
invasion of PANC-1 sphere cells.



Cancers 2022, 14, 2055 9 of 23Cancers 2022, 14, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 3. Active gp130/STAT3 pathway involved in stemness and invasion of PANC-1 sphere cells. 
PANC-1 cells were cultured for 7 days in 2D (adherent) or 3D (sphere) conditions with or without 
1 μM SC144. The cells were harvested for use in the described experiments. In (E), as described in 
Materials and Methods, each anticancer drug was added to 7-day-cultured sphere cells, and the cells 
were further cultured for 4 days. (A) Western blot analysis of p-STAT3 and STAT3. Relative band 
intensity is presented. (B) Phase-contrast image of PANC-1 sphere cells in 96-well ultra-low attach-
ment plates at day 7. The histograms show the relative sizes of spheres (control = 100). Results are 
presented as means ± SD from four sphere images. Scale bar: 5 μm. (C) ATP assay for growth rate 
of PANC-1 sphere cells. (D) Real-time qPCR analysis of stemness markers. Results are normalized 
to values obtained for adherent cells (value = 1). Results are presented as means ± SD from three 
independent experiments. (E) Anticancer drugs (gemcitabine, 5-FU, or nab-paclitaxel) resistance as-
say in PANC-1 sphere cells. The dose-response (10 or 100 μM) of PANC-1 sphere cells to each drug 
was determined using the ATP assay. (F) Real-time qPCR analysis of transporters. Results are nor-
malized to values obtained for adherent cells (value = 1). Results are presented as means ± SD from 
three independent experiments. (G) Matrigel invasion assays were performed in PANC-1 sphere 
cells. Representative results from measurements of 12 fields are presented. Scale bar: 100 μm. (H) 
Real-time qPCR analysis of MT1-MMP and MMP2. Results are normalized to values obtained for 
adherent cells (value = 1). Results are presented as means ± SD from three independent experiments. 
(I) Western blot analysis of MT1-MMP and β-ACTIN. Relative band intensity is presented. * p < 0.05; 
** p < 0.01, n.s.: not significant. 

  

Figure 3. Active gp130/STAT3 pathway involved in stemness and invasion of PANC-1 sphere cells.
PANC-1 cells were cultured for 7 days in 2D (adherent) or 3D (sphere) conditions with or without
1 µM SC144. The cells were harvested for use in the described experiments. In (E), as described
in Materials and Methods, each anticancer drug was added to 7-day-cultured sphere cells, and the
cells were further cultured for 4 days. (A) Western blot analysis of p-STAT3 and STAT3. Relative
band intensity is presented. (B) Phase-contrast image of PANC-1 sphere cells in 96-well ultra-low
attachment plates at day 7. The histograms show the relative sizes of spheres (control = 100). Results
are presented as means ± SD from four sphere images. Scale bar: 5 µm. (C) ATP assay for growth rate
of PANC-1 sphere cells. (D) Real-time qPCR analysis of stemness markers. Results are normalized
to values obtained for adherent cells (value = 1). Results are presented as means ± SD from three
independent experiments. (E) Anticancer drugs (gemcitabine, 5-FU, or nab-paclitaxel) resistance
assay in PANC-1 sphere cells. The dose-response (10 or 100 µM) of PANC-1 sphere cells to each
drug was determined using the ATP assay. (F) Real-time qPCR analysis of transporters. Results are
normalized to values obtained for adherent cells (value = 1). Results are presented as means ± SD
from three independent experiments. (G) Matrigel invasion assays were performed in PANC-1
sphere cells. Representative results from measurements of 12 fields are presented. Scale bar: 100 µm.
(H) Real-time qPCR analysis of MT1-MMP and MMP2. Results are normalized to values obtained for
adherent cells (value = 1). Results are presented as means ± SD from three independent experiments.
(I) Western blot analysis of MT1-MMP and β-ACTIN. Relative band intensity is presented. * p < 0.05;
** p < 0.01, n.s.: not significant.
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Figure 4. Autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathways involved in stemness and inva-
sion of PDAC sphere cells. PANC-1 cells were cultured for 7 days in 2D (adherent) or 3D (sphere)
conditions after siRNA transfection. The cells were harvested and then used in the following exper-
iments. (A) Real-time qPCR analysis of IL-6 or LIF. Results are normalized to values obtained for
adherent cells (value = 1). Results are presented as means ± SD from three independent experiments.
(B) Western blot analysis of p-STAT3 and STAT3. Relative band intensity is presented. (C) Real-time
qPCR analysis of stemness markers. Results are normalized to values obtained for adherent cells
(value = 1). Results are presented as means ± SD from three independent experiments (* p < 0.05,
** p < 0.01 vs. siCont transfected sphere cells). (D) Matrigel invasion assays were performed in
PANC-1 sphere cells. Representative results from measurements of 12 fields are presented (* p < 0.05,
** p < 0.01 vs. siCont transfected sphere cells). Scale bar: 100 µm. (E) Real-time qPCR analysis of
MT1-MMP and MMP2. Results are normalized to values obtained for adherent cells (value = 1).
Results are presented as means ± SD from three independent experiments (* p < 0.05, ** p < 0.01 vs.
siCont transfected sphere cells). (F) Western blot analysis of MT1-MMP and β-ACTIN. Relative band
intensity is presented.

3.5. Correlation between gp130/STAT3 and the TGF/Smad Pathway

Several previous studies have demonstrated a two-way interplay between STAT3 and
TGF-β signaling pathways [55–57]; however, many of these reports are controversial and
the underlying mechanisms have not been fully elucidated. Furthermore, the correlation
between the gp130/STAT3 and TGF/Smad pathways in the context of PDAC spheres (CSC-
like cells) has not yet been clarified. Therefore, we examined whether the gp130/STAT3
pathway modulates activation of the TGF/Smad pathway to facilitate EMT induction in
PDAC CSC-like cells. Western blot analysis revealed reduced phosphorylation of Smad3
in SC144-treated PANC-1 and PK-1 sphere cells, which exhibited reduced p-STAT3 levels
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compared to levels in sphere cells treated only with TGF-β1 (Figures 5A and S3A, respec-
tively), thus suggesting that the gp130/STAT3 pathway positively affects the TGF/Smad
pathway. In SC144-treated PANC-1 and PK-1 sphere cells, TGFβ-RII mRNA and protein
levels were reduced compared to those in sphere cells that were not treated with SC144
(Figures 5B,C and S3B,C). These results suggest that the expression of TGFβ-RII via the
gp130/STAT3 pathway may be required for the activation of the TGF/Smad pathway in
PDAC CSC-like cells. Real-time qPCR analysis of EMT markers demonstrated that the
reduction in E-cadherin and upregulation of N-cadherin, Slug, and vimentin in response
to TGF-β1-treatment was attenuated in SC144-treated PANC-1 sphere cells (Figure 5D).
Furthermore, western blot analysis for N-cadherin, Slug, and vimentin confirmed the
changes observed at the mRNA level (Figure 5E). In contrast, the reduction in E-cadherin
in response to TGF-β1-treatment was only attenuated in SC144-treated PK-1 sphere cells
(Figure S3D). In SC144-treated PANC-1 sphere cells, upregulation of MT1-MMP in response
to TGF-β1-treatment was attenuated at both the mRNA and protein levels (Figure 5F,G).
In PK-1 sphere cells, there were no significant changes in the expression of MT1-MMP
even after TGF-β1-treatment (Figure S3E). Next, we investigated one of the EMT features,
specifically the invasion ability. Invasion assays revealed that the number of invading
cells significantly increased in TGF-β1-treated PANC-1 sphere cells compared with that of
control cells, and this increase was attenuated by SC144 treatment (Figure 5H). Furthermore,
the 3D-invasion assay revealed that the increase in the invasion of TGF-β1-treated PANC-1
and PK-1 sphere cells was significantly inhibited by SC144-treatment (Figures 5I and S3F).
Taken together, these results indicate that the gp130/STAT3 pathway in CSC-like cells
modulates the activation of the TGF/Smad pathway to facilitate EMT induction via regula-
tion of TGFβ-RII expression, ultimately leading to increased invasion after the induction
of EMT.

3.6. Autocrine/Paracrine IL-6 or LIF/gp130/STAT3 Pathways Regulate H19 Expression

H19 is a genomic imprinting gene that is regulated by methylation in the imprinting
control region (ICR) of the paternal allele and possesses a promoter/enhancer that induces
transcription of the maternal allele. First, we estimated the promoter region near the
H19 gene in pancreatic cancer using ChIP-atlas (http://chip-atlas.org/, accessed on 18
January 2022) [58], and we identified the H3K4me3/H3K27Ac enrichment region that
displays an active promoter region upstream of the transcriptional start site (TSS) of H19
(Figure 6A). Next, we performed a ChIP assay to examine whether the gp130/STAT3
pathway affects H19 expression under 2D (adherent) or 3D (sphere) culture conditions.
Primer sets were designed at the predicted promoter regions (proximal, middle, and distal),
as indicated by the red bars in the histogram in Figure 6A. The ChIP assay demonstrated
that H3K4me3 and H3K27Ac enrichment in PANC-1 cells was increased in 3D-culture
conditions compared to those in 2D-culture conditions (Figure 6B), thus indicating that
sphere formation induced the active state of the H19 promoter. Furthermore, we observed
that p-STAT3 bound to the promoter only under 3D-culture conditions in PANC-1 and
PK-1 cells (Figures 6B and S4A). These results suggest that activated STAT3 in sphere cells
could access the active promoter region of H19 and contribute to its transcription. Real-time
qPCR analysis demonstrated that H19 expression was upregulated in PANC-1 and PK-1
sphere cells, and this expression was attenuated by SC144 treatment (Figures 6C and S4B).
Furthermore, IL-6 or LIF stimulation of PANC-1 cells in 2D culture conditions did not
upregulate H19 expression, whereas the reduction in IL-6 and LIF also attenuated H19
expression in PANC-1 sphere cells (Figures 6D and S5). Therefore, these results indicate
that autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathways contribute to H19 expression
in PDAC CSC-like cells (Figure 6E).

http://chip-atlas.org/
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Figure 5. Correlation between gp130/STAT3 and the TGF/Smad pathway. PANC-1 cells were
cultured for 4 days in 3D (sphere) conditions with or without 1 µM SC144 and further incubated
for 3 days with or without 10 ng/mL TGF-β1. The cells were harvested and then used in following
experiments. (A) Western blot analysis of p-gp130, gp130, p-STAT3, and STAT3. Relative band
intensity is presented. (B) Real-time qPCR analysis of TGFβ-RI and TGFβ-RII. Results are normalized
to values obtained for control cells (value = 1). Results are presented as means ± SD from three
independent experiments. (C) Western blot analysis of TGFβ-RI, TGFβ-RII and β-ACTIN. Relative
band intensity is presented. (D) Real-time qPCR analysis of EMT markers. Results are normalized
to values obtained for control cells (value = 1). Results are presented as means ± SD from three
independent experiments. (E) Western blot analysis of EMT markers and β-ACTIN (control). The
relative band intensity is presented. (F) Real-time qPCR analysis of MT1-MMP and MMP2. Results
are normalized to values obtained for control cells (value = 1). Results are presented as means ± SD
from three independent experiments. (G) Western blot analysis of MT1-MMP and β-ACTIN. Relative
band intensity is presented. (H) Matrigel invasion assays in PANC-1 sphere cells. Representative
results from measurements of 12 fields are presented. Scale bar: 100 µm. (I) 3D invasion assay. Scale
bar: 5 µm. The histograms indicate the invaded area. Results are presented the as means ± SD from
four sphere images. * p < 0.05; ** p < 0.01, n.s.: not significant.
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Figure 6. Autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathways regulate H19 expression.
(A) Schematic representation of the proximal region of the human H19 gene and RNA (human
genome: hg19 ch12). Histogram images of H3K27me3 and H3K27Ac in PANC-1 cells were obtained
from chromatin immunoprecipitation (ChIP)-atlas (http://chip-atlas.org/, accessed on 18 January
2022). The red line displays the ICR of H19. Three sets of PCR primers designated as Primer 1 (proxi-
mal region), Primer 2 (middle region), and Primer 3 (distal region) on the predicted H19 promoter
region were used for analysis of ChIP. (B) ChIP assays for PANC-1 after sphere formation were
performed using anti-H3K27me3, H3K27Ac, and p-STAT3 antibodies and control IgG, and this was
followed by real-time qPCR using the designed primer sets specific for the H19 promoter. The data
were normalized according to the percent input method. Data are presented as means ± SD from
three independent experiments (* p < 0.05, ** p < 0.01, *** p < 0.005 vs. adherent cells). (C) Real-time
qPCR analysis of H19 in PANC-1 cells cultured for 7 days in 2D (adherent) or 3D (sphere) conditions
with or without 1 µM SC144 for 7 days. Results are normalized to values obtained for adherent cells
(value = 1). Results are presented as means ± SD from three independent experiments. ** p < 0.01
(D) Real-time qPCR analysis of H19 in PANC-1 cells cultured for 7 days in 3D (sphere) conditions
after siRNA transfection. Results are normalized to values obtained for siCont transfected sphere cells
(value = 1). Results are presented as means ± SD from three independent experiments (**p < 0.01 vs.
siCont transfected sphere cells). (E) Schema of epigenetic regulation on the predicted H19 promoter
region during sphere formation of PDAC cells. In the adherent state, the H19 promoter region is
closed and the H19 expression level is low, while in the sphere formation state, this promoter is
activated and p-STAT3 can access this region to facilitate the induction of H19 expression.

3.7. Contribution of H19 to EMT and Invasion in PDAC Sphere Cells

We examined whether H19 expression via the gp130/STAT3 pathway contributes
to the EMT and invasion of PDAC cells. In H19-overexpressed PANC-1 sphere cells, the
expression level of H19 was higher than that in mock-transfected sphere cells even after
SC144-treatment (Figure 7A). Real-time qPCR analysis of EMT markers revealed that the

http://chip-atlas.org/
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reduction of Slug after TGF-β1-treatment was only rescued in H19-overexpressed PANC-1
sphere cells (Figure 7B). The reduction of MT1-MMP was also rescued in H19-overexpressed
sphere cells (Figure 7C). The 3D-invasion assay demonstrated that the reduction in invasion
in SC144-treated mock-transfected PANC-1 sphere cells was partially rescued in H19-
overexpressed sphere cells (Figure 7D). These results indicate that H19, regulated by the
gp130/STAT3 pathway, partially contributes to EMT induction and invasion through
MT1-MMP expression in PDAC CSC-like cells.
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Figure 7. Contribution of H19 to EMT and invasion in PDAC sphere cells. PANC-1 cells stably
transfected with mock or H19 expression vector were cultured for 4 days in 3D (sphere) conditions
with or without 1 µM SC144 and then further incubated for 3 days with or without 10 ng/mL
of TGF-β1. The cells were harvested and then used in the following experiments. (A) Real-time
qPCR analysis of H19. Results are normalized to values obtained for mock-transfected sphere cells
(value = 1). Results are presented as means ± SD from three independent experiments. (B) Real-time
qPCR analysis of EMT markers. Results are normalized to values obtained for mock-transfected
sphere cells (value = 1). Results are presented as means ± SD from three independent experiments.
(C) Real-time qPCR analysis of MT1-MMP and MMP2. Results are normalized to values obtained
for mock-transfected sphere cells (value = 1). Results are presented as means ± SD from three
independent experiments. (D) 3D-invasion assay. Scale bar: 5 µm. The histograms indicate the
invaded area. Results are presented as means ± SD from four sphere images. * p < 0.05; ** p < 0.01,
n.s.: not significant, O/E: overexpression.
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3.8. The Correlation of gp130/STAT3 Pathway-Related Factor Expression with Overall Survival
and H19 Expression Correlated with gp130/STAT3 Pathway-Related Factors in PDAC Patients

Finally, we investigated whether gp130/STAT3 pathway-related factors correlated
with prognosis in patients with PDAC. As presented in Figure 8A,F–J, higher expression
levels of IL-6 and MT1-MMP were significant, and JAK1, STAT3, TGFβ-RII, and H19 were
correlated with poorer overall survival in patients with PDAC. Next, to clarify the relation-
ship between H19 and the gp130/STAT3 pathway in patients with PDAC, we focused on
the correlations between H19 expression and gp130/STAT3 pathway-related factors. Data
from GEPIA revealed significant correlations between H19 and gp130/STAT3 pathway-
related factors, such as IL-6, LIF, gp130, JAK1, STAT3, TGFβ-RII, and MT1-MMP (Figure 8K).
Therefore, these results suggest that autocrine/paracrine IL-6 or the LIF/gp130/STAT3
pathway, including H19 expression, is correlated with poor prognosis in PDAC.
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Figure 8. The correlation of gp130/STAT3 pathway-related factor expression with overall survival
and H19 expression correlated with gp130/STAT3 pathway-related factors in patients with PDAC.
Each survival curve was presented according to the online database GEPIA. (A) IL-6, (B) LIF, (C) IL-6R,
(D) LIFR, (E) gp130 (IL-6ST), (F) JAK1, (G) STAT3, (H) TGFβ-RII (TGFBR2), (I) MT1-MMP (MMP14),
and (J) H19. (K) The correlation of H19 and gp130/STAT3 pathway-related factor expression in
patients with PDAC was assessed using Spearman rank correlation analysis according to the online
database GEPIA.

4. Discussion

The involvement of IL-6 or the LIF/gp130/STAT3 pathway in PDAC pathogenesis
has been demonstrated previously [59]. In PDAC 2D-culture cells, knockdown of IL-6
resulted in apoptosis, growth inhibition, and reduced invasion [60]. In in vivo experi-
ments, the growth of human PDAC cells was significantly reduced by pharmacological
inhibition of IL-6 signaling [61]. Inhibition of LIF signaling by genetic LIFR deletion, LIF
knockdown, or treatment with LIF neutralizing monoclonal antibodies leads to a reduc-
tion in tumor progression in mouse PDAC models and decreases tumor engraftment and
growth in PDAC xenograft models [62,63]. In prostate cancer, glioma, endometrial cancer,
and breast cancer, the IL-6/gp130/STAT3 signaling pathway has been demonstrated to
be involved in the regulation of CSC properties such as self-renewal, stemness marker
expression, and tumor cell growth [22–25]. In the LIF/gp130/STAT3 pathway, the relation-
ship with CSCs has not been directly demonstrated; however, recent evidence indicates
that LIF functions as a growth factor to promote the growth and invasion of osteosar-
coma [64] and that LIF/gp130/STAT3 signaling via autocrine and paracrine mechanisms
is upregulated in tumors [65–67]. In this study (Figures 1–4, Figure S1), we observed that
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the autocrine/paracrine IL-6 or the LIF/gp130/STAT3 pathway is active in PDAC CSCs
that are formed under 3D-culture conditions and that this pathway contributes to CSC
growth, stemness marker expression, and invasion ability in two of four PDAC cell lines
(PANC-1 and PK-1). In contrast, there were no obvious effects on anticancer drug resistance
after inhibition of the gp130/STAT3 pathway by SC144 treatment. It is suggested that
no reduction in transporters other than ABCC2 may affect anti-cancer drug excretion in
SC144-treated cells by inhibiting the gp130/STAT3 pathway. As STAT3 directly controls the
expression of MT1-MMP [68], autocrine/paracrine IL-6, or the LIF/gp130/STAT3 pathway,
regulates MT1-MMP expression, ultimately leading to the invasiveness of PDAC CSCs.
The OSM/gp130/STAT3 pathway is also correlated with cancer malignancy. The binding
of OSM to OSM receptor (OSMR) causes OSMR-gp130 dimerization, which is required to
produce oncogenic signaling cues for prolonged STAT3 activation. Anti-OSMR antibody
inhibited the growth of ovarian cancer cells in vitro and in vivo by suppressing STAT3 acti-
vation [69]. OSM-mediated signaling has also been shown to contribute to the growth and
invasion of triple-negative breast cancer [70]. Moreover, OSM and OSMR are overexpressed
in PDAC compared with their expression in the normal pancreas [71]. OSM-treated PDAC
cells exhibit CSC properties, enhanced tumorigenicity, and increased metastasis through
STAT3 activation [71]. Here, we demonstrate the autocrine/paracrine contribution of IL-6
or LIF to STAT3 activation, leading to the maintenance of CSC properties; however, we
cannot exclude the possible involvement of the autocrine/paracrine OSM/gp130/STAT3
pathway in PDAC CSCs; therefore, further investigation is required.

Several previous studies have demonstrated a relationship between STAT3 and TGF-β
signaling pathways [55–57]; however, many of these studies have yielded controversial
results. Activated STAT3 was found to sequester Smad3 from the Smad nucleoprotein
complex, thus suppressing TGF-β signaling [52]. In our study (Figures 5 and S3), TGF-
β1/Smad signaling, which resulted in EMT, was induced even in STAT3-activated PDAC
CSCs. In addition to the activation of STAT3 through IL-6 or the LIF/gp130 pathway,
STAT3 can be activated by a wide range of ligands that bind to cytokines, growth factors, or
G-protein-coupled receptors [72]. In SC144-treated PDAC CSCs, STAT3 activation was fully
inhibited, suggesting that the gp130/STAT3 pathway primarily contributes to the activation
of STAT3 in PDAC CSCs. If other pathways for STAT3 activation are functionally dependent
on cellular context, TGF-β signaling may be inhibited by activated STAT3. We speculate
that the balance between p-Smad3 levels and sequestration of Smad3 from the Smad
nucleoprotein complex due to STAT3 activation may lead to TGF-β signaling-mediated
EMT induction or growth promotion via the suppression of TGF-β signaling.

We recently reported that PDAC cell lines are heterogeneous and that 3D cultures
enhance differences in cell morphology and function [51]. PDAC cell lines include epithelial-
like and quasi-mesenchymal cells [73]. The PANC-1 cells used in this study were classified
into a mesenchymal phenotype expressing low E-cadherin and high vimentin, while PK-1,
PK-59, and PK-8 cells are epithelial cells possessing the opposite expression patterns [74].
As presented in Figure 5D and Figure S3D, there were differences in EMT induction between
PANC-1 and PK-1 cells. It is possible that these genetic and phenotypic differences affected
the differences between the two cell lines. Further research focusing on the differences
between PDAC cell lines is required.

It has been demonstrated that miR-301a suppresses the expression of the suppressor
of cytokine signaling 5 (SOCS5), thus leading to JAK/STAT3 activation and resulting in
increased invasion and metastasis of PDAC cells [75]. Furthermore, H19-derived miR-675-
3p promotes JAK/STAT3 activation by directly targeting SOCS5 [76]. As demonstrated
in this study, elevated H19 expression in PDAC CSCs may promote positive feedback
constitutive activation of the gp130/STAT3 pathway by reducing the expression of SOCS5.
In contrast, inhibition of gp130 may lead to a negative loop in the attenuated gp130/STAT3
pathway by promoting SOCS5 expression through reduced expression of H19-derived
miR-675-3p. In CRC, H19 functions as an miR-22-3p sponge to increase the expression
of MT1-MMP, thus promoting lung metastasis [77]. Therefore, it is possible that the up-
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regulation of MT1-MMP in PDAC CSCs (Figure 3) may be dependent on the reduction in
miR-22-3p availability by H19. In this study, we revealed that TGFβ-RII expression was
regulated by the gp130/STAT3 pathway (Figure 5). A previous study demonstrated that
H19 contributes to TGFβ-RII transcription by regulating transcription factor expression
through miRNA sponges [78]. Further studies are required; however, it is possible that H19
expressed through the gp130/STAT3 pathway functions as an miRNA sponge to facilitate
the upregulation of TGFβ-RII expression in PDAC CSCs. The CSC characteristics of vari-
ous PDAC cell subpopulations correlate with their aggressive and metastatic phenotypes.
CD133+/CXCR4+ PDAC CSCs [79] are tumorigenic. CD133 enhances N-cadherin expres-
sion via the Src/Slug signaling axis to facilitate EMT in PDAC cells [80]. Moreover, CD133
initiates the expression and transcriptional activity of HIF-1α, which promotes PDAC cell
migration and metastasis by inducing EMT gene transcription or autophagy under hypoxic
conditions [81,82]. Furthermore, hypoxia induces a positive feedback loop of constitutive
activation between nestin expression and the TGF-β1/Smad4 pathway [83]. Nestin, a
pancreatic CSC marker, is necessary to drive EMT and promote PDAC cell invasion [84,85].
Therefore, we speculated that H19 expressed in PDAC CSCs via the gp130/STAT3 pathway
contributes to the aggressiveness of PDAC through TGF-β1/Smad-mediated EMT.

As presented in Figure 8, high expression of gp130/STAT3 pathway-related factors
was associated with survival rate, and H19 expression was correlated with the expression
of these factors in PDAC patients. Therefore, the gp130/STAT3 pathway, including H19,
may be a promising target for the treatment of PDAC, including CSCs. From our in vitro
experiments, p-gp130 is considered a new CSC marker in PDAC. We then performed im-
munohistochemical staining for p-gp130 in human PDAC tissues; however, no significant
results were obtained (data not shown). We believe that it may be difficult to detect p-gp130
due to the small population of p-gp130-positive CSCs, and there are few anti-p-gp130
antibodies suitable for tissue staining. In the future, it will be necessary to verify whether
inhibition of the gp130/STAT3 pathway is effective for the attenuation of metastasis or
the prevention of recurrence in pancreatic cancer through in vivo experiments targeting
gp130. We established stable gp130 knockdown PDAC cells, in which reduced expression
of gp130 was confirmed by FACS analysis; however, these cells exhibited promotion of
invasiveness, contrary to our results (Figure S6). The membrane protein gp130 forms a
receptor complex with not only IL-6R and LIFR but also with IL-11 receptor [86], OSMR,
ciliary neurotrophic factor receptor [87], and WSX-1 [88]. The constitutive reduction of
gp130 is suggested to affect the formation of these complexes and may lead to changes in
STAT3 activation, as well as other STAT pathways. Alternatively, gp130 is expressed in lipid
rafts, in which signal receptors and integrins are present; therefore, there is a possibility that
reduced expression of gp130 may affect the expression of these lipid raft-associated pro-
teins, leading to the observed increased invasion ability. This aspect needs to be examined
in the future. Therefore, we believe that gp130 inhibitors such as SC144 are appropriate for
further in vivo experiments. In vivo mouse experiments using SC144 have demonstrated
that oral administration of SC144 delays tumor growth in a mouse xenograft model of
human ovarian cancer, without significant toxicity to normal tissues [89]. Bazedoxifene,
approved by the Food and Drug Administration (FDA) as a selective estrogen modulator
for osteoporosis treatment [90], has been demonstrated to be a new drug that inhibits the
IL-6/gp130/STAT3 pathway [91]. In addition to osteoporosis treatment, in vivo mouse
experiments in breast cancer, blastoma, pancreatic cancer, and cervical cancer have been
conducted, and inhibition of tumor formation has been reported [92–96]. Furthermore,
preliminary tests in patients with pancreatic or gastric cancer treated with bazedoxifene re-
vealed tumor marker reduction, metabolic regression, tumor size reduction, and improved
quality of life [97].

5. Conclusions

In this study, we demonstrated that the autocrine/paracrine IL-6 or LIF/gp130/STAT3
pathways contribute to the maintenance of stemness features and MT1-MMP expression,
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and contribute to TGF-β1/Smad signaling-mediated EMT and invasion by regulating
TGFβ-RII expression in PDAC CSC-like cells (Figure 9). Furthermore, we demonstrated that
p-STAT3 could access the active promoter region of H19 and contribute to its transcription
(Figure 9). Consequently, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathways
in PDAC CSC-like cells, including H19 expression, are considered to eventually lead
to invasion and metastasis, both of which are hallmarks of malignancy. Therefore, the
inhibition of the gp130/STAT3 pathway represents a promising strategy for PDAC therapy.
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