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Abstract

Cryo-electron microscopy (cryo-EM), the subject of the 2017 Nobel Prize in Chemistry, is a 

technology for obtaining 3-D reconstructions of macromolecules from many noisy 2-D projections 

of instances of these macromolecules, whose orientations and positions are unknown. These 

molecules are not rigid objects, but flexible objects involved in dynamical processes. The different 

conformations are exhibited by different instances of the macromolecule observed in a cryo-EM 

experiment, each of which is recorded as a particle image. The range of conformations and the 

conformation of each particle are not known a priori; one of the great promises of cryo-EM 

is to map this conformation space. Remarkable progress has been made in reconstructing rigid 

molecules based on homogeneous samples of molecules in spite of the unknown orientation of 

each particle image and significant progress has been made in recovering a few distinct states 

from mixtures of rather distinct conformations, but more complex heterogeneous samples remain a 

major challenge.

We introduce the “hyper-molecule” theoretical framework for modeling structures across different 

states of heterogeneous molecules, including continuums of states. The key idea behind this 

framework is representing heterogeneous macromolecules as high-dimensional objects, with the 

additional dimensions representing the conformation space. This idea is then refined to model 

properties such as localized heterogeneity. In addition, we introduce an algorithmic framework for 

reconstructing such heterogeneous objects from experimental data using a Bayesian formulation 

of the problem and Markov chain Monte Carlo (MCMC) algorithms to address the computational 

challenges in recovering these high dimensional hyper-molecules. We demonstrate these ideas in a 

preliminary prototype implementation, applied to synthetic data.
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1. Introduction

Cryo-electron microscopy (cryo-EM) is joining X-ray crystallography and nuclear magnetic 

resonance (NMR) as a technology for recovering high-resolution reconstructions of 

biological molecules [1, 2, 3, 4, 5]. A typical study produces hundreds of thousands of 

extremely noisy images of individual particles where the orientation of each individual 

particle is unknown, giving rise to a massive computational and statistical challenge. Current 

algorithms (e.g., [6, 7, 8, 9, 10, 11]) have been successful in recovering remarkably high-

resolution reconstructions of static macromolecules in homogeneous samples with little 

variability, and have also been rather successful in recovering molecules from heterogeneous 

samples consisting of a small number of distinct different molecular conformations (referred 

to as discrete heterogeneity). Even in homogeneous cases, there is ongoing work on 

improving resolution, and there are several open questions about validating the results and 

estimating the uncertainty in the solutions.

Structural variations are intrinsic to the function of many macromolecules. Molecular 

motors, ion pumps, receptors, ion channels, polymerases, ribosomes, and spliceosomes are 

some of the molecular machines for which conformational fluctuations are essential to 

their function. As just one example, the reaction cycle of the molecular motor kinesin is 

seen to involve a combination of discrete states (i.e., bound kinesin monomers in different 

stages of ATP hydrolysis) and also a continuous motion in which one monomer “strides” 

ahead while it is tethered by a linker to its microtubule-bound companion [12]. As another 

example, fluctuations in the conformation of ligand-binding domains drive the response of 

neuronal glutamate receptors [13]. While technologies like X-ray crystallography and NMR 

measure ensembles of particles, cryo-EM produces images of individual particles, and one 

of the great promises of cryo-EM is that these noisy images, depicting individual particles at 

unknown states viewed from unknown directions, could potentially be compiled into maps 

of the dynamical processes in which these macromolecules participate [14, 15]. This, in turn, 

would help uncover the functionality of these molecular machines.

Due to the difficulties in the analysis of heterogeneous samples, researchers attempt 

to purify homogeneous samples; in doing so they lose information about other states/

conformations. Alternatively, they model the macromolecules observed in heterogeneous 

samples as a small number of distinct macromolecules (e.g., [16]); this approach overlooks 

relationships between states (e.g., similarity between different conformations of the 

molecule) and leads to an impractical number of distinct objects when the variability is 

complex or when there is a continuum of states rather than distinct independent states. 

Currently, the analysis of heterogeneous macromolecules often misses states, achieves 

limited resolution, or yields remarkably high-resolution reconstructions of static regions, 

from which hang “blurry” heterogeneous pieces that cannot be accurately recovered. The 
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study of heterogeneity is considered an open problem without a well-established solution 

(see the recent survey [17]); existing approaches often rely on assumptions such as small 

modes of perturbation or piece-wise rigidity. In other cases, they require a reliable alignment 

of images before the heterogeneity can be addressed.

In some ways, the heterogeneity problem in cryo-EM is an extreme case of related problems 

that appear in the analysis of other systems that exhibit some intrinsic variability, such as the 

imaging of the body of a patient in computed tomography (CT) while the patient breathes 

[18] (in this case, the viewing directions are known, and there are some indications for the 

state in the breathing cycle).

We introduce a new mathematical framework with a Bayesian formulation for describing 

and mapping continuous heterogeneity in macromolecules and an algorithmic approach for 

computing these heterogeneous reconstructions which addresses some of the computational 

and statistical challenges. We present a preliminary implementation and experimental 

results. Ultimately, the goal of this line of work is to produce scalable computational 

tools for analyzing complex heterogeneity in macromolecules. One of the goals in this 

design is to allow the use of a wide range of models and solvers that would enable the 

user to encode prior knowledge about the specific macromolecule being studied. For the 

implementation of these ideas, we envision software for modeling of complex heterogeneous 

molecules in computer code (or simpler interfaces for common templates) as differentiable 

components, analogous to deep neural network models. The prototype presented in this 

paper to demonstrate these ideas is more modest in its capabilities and scalability.

We start with the question: What does it mean to recover a heterogeneous macromolecule 

compared to a homogeneous/rigid macromolecule? We propose that this boils down to the 

question of representing a heterogeneous macromolecule in all its states; in other words, 

a “solution” would allow us to view the macromolecule at any state in a user interface 

that would provide us with “knobs” that we could turn to observe the molecule transition 

between states through a continuum of states. Often, it is useful to have statistics of how 

populated the states are, along with the map of states. We recall the representation of 

molecules as 3-D functions using a linear combination of 3-D basis functions:

V(r) = ∑
k

αkψk(r),

(1)

with spatial coordinates r. We generalize this representation to describe a heterogeneous 

macromolecule in all its states. This generalization, which we refer to as a “hypermolecule,” 

is described as follows. In Section 3.2, we propose a generic generalization of (1). We 

represent hyper-molecules as linear combinations of higher-dimensional basis functions ψq:

V(r, τ) = ∑
q

aqψq(r, τ),

(2)
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where the new dimensions capture heterogeneity, so that τ identifies a conformation, or a 

location in the map of states, and the macromolecule at state/conformation τ is the 3-D 

density function obtained by fixing τ in V( ⋅ , τ). In other words, we generalize the classic 

problem of “estimating a homogeneous macromolecule” to the problem of “estimating 

a heterogeneous hyper-molecule,” a single high-dimensional object that encodes all the 

conformations of the macromolecule together. The (possibly high-dimensional) variable τ
represents the map of states, or the “knobs” which a user would turn in order to transition 

between states. Furthermore, we argue that hyper-molecules are not merely a way to express 

the solution of some computation: the representation through a finite set of basis functions 

serves as a regularizer in the computational problem, much like band-limit assumptions 

in many inverse problems, including the homogeneous case of cryo-EM. In particular, 

the high-dimensional basis functions, each supported on multiple states, impose relations 

between states and define a continuum of states. This property distinguishes between hyper-

molecules and a small set of independent macromolecules. This mathematical model of 

heterogeneous macromolecules is accompanied by a Bayesian formulation for recovering 

hyper-molecules from data, which is a generalization of the Bayesian formulation of cryo-

EM that allows a continuum of states and addresses the relationships between states.

Increasingly complex heterogeneity is formulated using increasingly higher-dimensional 

hyper-molecules. However, in Section 3.4 we find that these hyper-molecules can be 

“too generic”: the natural generalization of traditional algorithms to recover very high-

dimensional hyper-molecules requires impractically large datasets and computational 

resources. We address these problems in the remaining subsections of Section 3 and in 

Section 4.

First, in Section 3.5, we introduce “composite hyper-molecules,” a generalization of hyper-

molecules that capture additional properties of macromolecules often known to scientists or 

readily identifiable. Specifically, a macromolecule can often be modeled as a sum of M rigid 

and heterogeneous components Vm, each with its own state τm. The state determines not 

only the shape of the component but also its position with respect to the other components 

through a function denoted by fm:

V(r, τ1, τ2, …, τM) = ∑
m = 1

M
Vm(fm(r, τm), τm) .

(3)

In this case, “recovering the heterogeneous macromolecule” means recovering the 

coefficients that describe each individual component Vm of V and recovering the 

coefficients that describe the trajectory fm of each component.

Next, in Section 3.6, we note that the Bayesian formulation of hyper-molecule does not rely 

on a specific representation of the hyper-molecule and it interacts with the model of the 

hyper-molecule mainly through the comparison of particle images with the hyper-molecule 

at certain viewing directions and states, and through priors on the hyper-molecule structure. 
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Therefore, we may replace our proposed hyper-molecules and composite hyper-molecules 

with other models, having coefficients θ. We would then have an algorithm which accesses 

a black-box function V[θ](r, τ) and a prior P (θ), and updates the coefficients θ, the viewing 

directions, state variables and so on without explicit knowledge of the detailed model of 

V. This formulation, which separates the model and prior of the hyper-molecule from the 

algorithm allows users to define more elaborate models as needed in their application.

The high-dimensional nature of hyper-molecules leads to a computational challenge. 

Specifically, the main computational challenge in current software packages, such as 

RELION [6, 19, 20] and cryoSPARC [7], is that each iteration of the algorithms involves 

a comparison of each particle image to the current estimate of the molecule as viewed 

from any possible direction (despite modifications that significantly reduce the number 

of comparisons required in practice). In hyper-molecules, we add the high-dimensional 

state variable τ, so that the natural generalization of current algorithms would require 

comparison of each particle image to each possible molecule (i.e., the hyper-molecule 

at any possible state) at each possible viewing direction, increasing the computational 

complexity exponentially with the increase in dimensionality. The variability in the nature 

of the heterogeneity and models makes it more challenging to develop generic solutions 

for reducing the number of comparisons. In Section 4 we propose a framework based on 

Markov chain Monte Carlo (MCMC) algorithms to address some of the computational 

complexity. This framework would allow complex, flexible, programmable black-box 

models and bypasses the need for exhaustive searches in each iteration.

In Section 5, we present a Matlab prototype which implements a subset of the proposed 

hyper-molecules and MCMC frameworks. This prototype demonstrates the applicability of 

hyper-molecules, composite hyper-molecules and MCMC to the mapping of continuous 

heterogeneity. We note that the current prototype is slow, requires manual configuration and 

it does not scale well to high resolution and large datasets. Therefore, in this paper, we 

present experiments with synthetic data and defer the discussion of preliminary results with 

experimental data to future work. We are currently developing the next version, which will 

be scalable, faster and more accessible, this version will also allow more general models 

of hyper-molecules. The implementation of generalized prolate spheroidal functions, a new 

numerical tool used in this work that had not been publicly available previously, but which is 

not the main topic of this paper, has been rewritten and made publicly available in [21] and 

https://github.com/lederman/Prol; the remaining functionality will be made available when 

the new Python version is ready.

Some of the preliminary work leading to this paper is available in an earlier technical report 

[22].

2. Preliminaries

The purpose of this section is to briefly review some of the technical tools used in this paper. 

In addition, we present the cryo-EM problem and related work on the problem, and we 

formulate the mathematical and statistical models which we will generalize in the remainder 

of the paper.
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2.1. Representation of Functions

A function such as f :X ℝ can be represented in many ways. In this discussion, we 

assume a default representation which is a linear combination of a finite set of basis 

functions ψk:

V(r) = ∑
k

akψk(r) .

(4)

Such representations (often accompanied by some penalties on large coefficients ak) imply 

regularity of the objects; the specific type of regularity is determined by the choice of basis 

functions. Typical examples of such functions would be low-frequency (band-limited) sine 

and cosine functions, and low-order polynomials. The key properties of these representations 

are that once the model is formulated (i.e., once the basis functions are chosen), the function 

V is completely determined by the coefficients ak, and that the choice of basis functions 

imposes constraints or regularizes the function (a sum of low-frequency sines cannot yield a 

higher-frequency sine).

In cryo-EM, the functions are sometimes described, loosely speaking, as “band-limited” and 

“compactly supported.” Often, these functions are defined through samples on a 3-D grid, 

with different interpolations in different implementations. We represent functions with these 

properties in this work using generalized prolate spheroidal functions (see [21] and Section 

5), however, the particular choice of basis functions is not the main topic of this paper, and 

the discussion applies to various representations of functions.

A linear combination of basis functions is not the only way to represent functions. In 

particular, a Gaussian mixture model (GMM) has been proposed in [23] for low-resolution 

representation of molecules in cryo-EM; in this representation, the function is a sum 

of Gaussian masses. In this case, the coefficients determine the amplitude, centers, and 

covariances of the masses. The discussion in this paper also applies to representations like 

these, with some modifications. In Sections 3.5 and 3.6 we extend the discussion to more 

general forms.

Remark 1 (Terminology: “representation”) Our use of the term “representation” in the 

context of this paper is different from the context in which we use the term in [24]. 

However, we have not found a better term that would avoid this confusion. In this paper 

“representation” is a way of expressing a function or a problem, typically an expansion of 

a function in some basis, whereas in [24] it is a technical representation theory term. These 

two works are independent; the conceptual relation between the two is the motivation to treat 

heterogeneity as “just another variable,” analogous to the viewing direction variable.

2.2. Cryo-EM and the Forward Model

The purpose of this section is to formulate the standard cryo-EM problem in the 

homogeneous case. We review the main characteristics of the cryo-EM imaging process 

and the forward model briefly, and discuss the Bayesian formulation of the problem of 
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mapping a macromolecule. One of the goals of this paper is to introduce an idea of a flexible 

framework where components can be exchanged for others to reflect slightly different 

models, therefore, we restrict the discussion in this section to the general formulation and 

highlight the key difficulties. While it is certainly tempting to delve into the mathematical 

and numerical properties of the forward operator and the different parameters associated 

with it, the finer details are beyond the scope of this section. A broader discussion of 

the imaging model and challenges can be found in many surveys such as [25, 26, 27, 

28, 29], and further discussions of a Bayesian framework for cryo-EM — in the context 

of a maximum a posteriori (MAP) formulation — can be found in [16, 6]. We diverge 

slightly from the standard numerical representation of the homogeneous case in our use 

of generalized prolate spheroidal functions as natural basis functions for the problem (see 

Section 5), but otherwise make use of a standard imaging model.

Electron microscopy is an important tool for 3-D reconstruction of molecules. Of particular 

interest in the context of this paper is single particle reconstruction (SPR), and, more 

specifically, cryo-EM, where multiple 2-D projections, ideally of identical particles viewed 

from different directions, are used in order to reconstruct a 3-D object representing 

the molecule. Compared to other imaging problems, the cryo-EM inverse problem is 

characterized by low SNR and the unknown orientation of each particle image.

The following formula is a simplified noiseless imaging model of SPR for obtaining the 

noiseless particle image I(i) from a function V (representing the molecule’s density or a 

potential):

I(i)(rx, ry) = ai∫ Hi(rx − rx
′ , ry − ry

′) ∫
ℝ

V(Ri
−1r′ + si)drz

′ drx
′ dry

′ ,

(5)

where r′ = (rx
′ , ry

′, rz
′)⊺, Hi is a 2-D contrast transfer function (CTF) convolved with each 

2-D projection of a particle, Ri is the rotation that determines the direction from which 

the molecule is viewed, si is the in-plane shift, and ai is a positive real valued contrast 

(amplitude). The viewing direction Ri and the in-plane shift si are typically unknown. The 

parameters of the CTF are not all known; for simplicity, we will assume in this simplified 

model that they are known or estimated by other means.

A Fourier transform of both sides of Equation (5) reveals that, in the Fourier domain, the 

Fourier transform of the image I (i) is related to the 3-D Fourier transform V of the density 

V by the formula

I (i)(ω1, ω2) = aiHi(ω1, ω2)S[si](ω1, ω2)V(Ri
−1ω),

(6)

where ω = (ω1, ω2, 0)⊺, S[si] is the shift operator in the Fourier domain (which is a pointwise 

multiplication in the Fourier domain), and Hi is the Fourier transform of the CTF. In 
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other words, in the Fourier domain, this imaging model reduces to an evaluation of the 

Fourier transform V in the plane perpendicular to the viewing direction, and to pointwise 

multiplications to compute the effects of CTF, shift and contrast.

In practice, the particle image Y (i) obtained in experiments is discrete (composed of pixels) 

and noisy. We will study Y (i) through its discrete Fourier transform (as implemented by the 

FFT) Y (i) of Y (i), evaluated at regular grid points {(ω1(k), ω2(k))} in the Fourier domain. First, 

with a minor abuse of notation, we define the discrete noiseless particle image I (i)[ ⋅ ] by 

sampling I (i)( ⋅ ) at the points {(ω1(k), ω2(k))} in the Fourier domain:

I (i)[k] = I (i)(ω1(k), ω2(k)) .

(7)

We note that I (i)(ω1(k), ω2(k)) = I (i)( − ω1(k), − ω2(k)) and I (i)(0, 0) is real-valued, because I(i)

is real-valued by definition.

For brevity and generality, we absorb the various imaging parameters such as the in-plane 

shift si and contrast ai (as well as noise and CTF variables where applicable) of each particle 

image into an imaging variable which we denote by qi. For the purposes of this discussion, 

we denote the forward model operator by A(Ri, qi). The noiseless imaging model is then 

summarized by the formula

I(i) = A(Ri, qi)V .

(8)

The map A(Ri, qi) is typically linear.

Next, we model the noise in a simplified imaging model for Y (i):

Y (i)[k] = I (i)[k] + σkηi, k = (A(Ri, qi)V) [k] + σkηi, k,

(9)

where Re(ηi, k) ∼ N(0, 1 ∕ 2) and Im(ηi, k) ∼ N(0, 1 ∕ 2) are i.i.d, except for ηi, k = ηi, k′ if 

(ω1(k), ω2(k)) = ( − ω1(k′), − ω2(k′)) since the noisy image is real valued in the spatial domain. 

The sample at ω = 0 has no imaginary component for the same reason. The noise variance 

σk depends on the frequency; in this simplified model, we assume that the noise variance is 

known and is similar for all particle images; in practice it can be one of the model variables.

These simplified models neglect several aspects of the physical model, numerical 

computation, and experimental setup. For example, in practice, the images of individual 

particles must first be extracted from a larger image (micrograph). As we noted above, the 

parameters determining the CTF and noise profile are sometimes added to the model. To 
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allow a more general formulation, we add the variable μ which encodes latent variables of 

the experiment that are not particle-specific (e.g., the noise standard deviation σk).

Given this model, the likelihood P (Y (i) ∣ Ri, qi, V) of a particle image Y (i) given the object V
and particle-specific variables Ri and qi is given by

P (Y (i) ∣ Ri, qi, μ, V) ∝ exp ∑
k

Y (i)[k] − (A(Ri, qi)V)[k]
2

2σi, k
2 .

(10)

This leads to a Bayesian description of the problem, with a probability density for an object, 

image parameters and observed images given by:

P {Y (i), Ri, qi}i, μ, V = P ({Ri, qi}i, μ, V)∏
i

P (Y (i) ∣ Ri, qi, μ, V),

(11)

where P ({Ri, qi}i, μ, V) is a prior for the molecule and the particle-specific variables such as 

the viewing direction. The posterior distribution of the variables given the data is therefore 

proportional to the right-hand side of this equation:

P ({Ri, qi}i, μ, V ∣ {Y (i)}i) ∝ P ({Ri, qi}i, μ, V)∏
i

P (Y (i) ∣ Ri, qi, μ, V) .

(12)

The variables {Ri, qi}i are particle image specific latent variables, while the object itself, 

represented by V, is the variable of interest. In other words, the distribution that we are 

interested in is

P (V ∣ {Y (i)}) = ∫ P ({Ri, qi}i, μ, V ∣ {Y (i)}) dR1dR2…dRndq1dq2…dqndμ

(13)

This model is often simplified by setting a uniform prior for the viewing directions and 

adding the assumption that the viewing directions and particle-specific variables Ri and qi of 

each particle are sampled independently from those of other particles. In this case, we obtain 

the posterior

P ({Ri, qi}i, V ∣ {Y (i)}) ∝ P (V) P (μ)∏
i

P (Y (i) ∣ Ri, qi, μV)P (qi),

(14)
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where P (V) is a prior for molecules (e.g., weighted norms of coefficients representing the 

molecule), and P (qi) is a prior for the random variables controlling each individual image, 

such as in-plane shifts.

While this general framework is sufficient for the purpose of this paper, we note that in the 

very influential work of [16, 6], a Bayesian framework was used to formulate the problem of 

recovering a molecule V as a MAP estimation problem, implemented using an expectation-

maximization algorithm. We choose a slightly different formulation and different algorithms 

for our purpose due to several technical and computational considerations discussed below. 

Different algorithms use slightly different models and may absorb different components of 

the model into different latent variables.

2.3. Heterogeneity in Cryo-EM

The description of the cryo-EM problem in Section 2.2 assumes that all the particles in 

all the projection images are identical (but viewed from different directions). However, 

the particles in a sample are often not identical. In some cases, several different types of 

macromolecules or different conformations of the same macromolecule are mixed together, 

and sometimes the macromolecule itself is flexible, a property which is manifested as a 

continuum of slightly different versions of the molecule. The first case of distinct classes 

of macromolecules is called discrete heterogeneity and the second case is called continuous 
heterogeneity. In this paper we focus on continuous heterogeneity, although much of the 

discussion applies to discrete heterogeneity with small modifications.

A primary goal of this paper is to generalize the mathematical formulation in Section 2.2 to 

the continuously heterogeneous case.

2.4. Existing Methods in Cryo-EM and Related Work

Many of the existing algorithms for cryo-EM try to estimate the maximum-likelihood or 

the MAP molecule V from models formulated roughly like the model in Section 2.2 (see, 

for example, [30, 31, 16]). One of the popular methods for this is a family of expectation-

maximization algorithms, implemented in software such as RELION [6, 19, 20]. Another is 

based in part on stochastic gradient descent (SGD), implemented in cryoSPARC [7]. These 

algorithms alternate between estimating the viewing direction (or conditional distribution of 

viewing directions) for each particle image given the current estimate of the macromolecule 

and updating the estimate of the macromolecule given the estimated viewing direction for 

each particle image (or its distribution). In these updates, the algorithm must compare each 

particle image to the estimated macromolecule as viewed from each (discretized) viewing 

direction, at each value of the other variables (most notably, the in-plane shifts). Naturally, 

this comparison is expensive. In recent years, several algorithms have been very successful 

in solving the homogeneous case (no heterogeneity). Clever algorithms and heuristics which 

reduce the number of comparisons significantly, and efficient use of hardware components 

such as GPUs have made the recent implementation of these algorithms rather fast [6, 19, 

32, 7]. In addition to the expectation-maximization algorithms, an MCMC algorithm which 

models rigid molecules as a sum of Gaussians has been proposed in [33]. Other approaches 
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to the cryo-EM problem rely on similarity between images to align the images before 

reconstructing the molecule [34, 35, 36, 37].

In addition to homogeneous reconstruction, many of the methods mentioned above also 

accommodate discrete heterogeneity through a 3-D classification framework, where each 

particle image is assigned to a separate 3-D reconstruction by maximizing a similarity 

measure. Expectation-maximization algorithms, such as those implemented in RELION 

[6], generalize to discrete heterogeneity by estimating conditional joint distributions of 

orientations and discrete class assignment. While this approach has led to impressive results, 

it requires significant human intervention in a process of successive refinement of the 

datasets to achieve a more homogeneous sample, and components and conformations that 

are not well represented in the data tend to be lost [26].

A few approaches have emerged to treat the continuous heterogeneity problem. The 

remainder of this section briefly surveys some of the main approaches that are guided 

directly by cryo-EM images; a broader discussion is available in the recent survey [17]. 

The method proposed in [38, 39, 40] first groups images by viewing direction then 

attempts to learn the manifold formed by the set of images for each of those directions. 

Following this, the various direction-specific manifolds are registered with one another, and 

a global manifold is obtained. A 3-D model may then be constructed for each point on that 

manifold, providing the user with a description of the continuous varying reconstruction. 

This method requires a consistent assignment of viewing directions across all states, and 

relies on a delicate metric for comparing noisy images to which different filters have 

been applied. The method assumes that certain properties of the manifold are conserved 

across the different viewing directions and requires a successful and globally consistent 

registration of the manifolds observed in different directions, which is not always possible. 

Furthermore, complex heterogeneity with more degrees of freedom results in manifolds that 

are intrinsically high-dimensional; such high-dimensional manifolds are difficult to estimate 

without exponential increase in the number of samples, and become more difficult to align. 

This method has been demonstrated in the mapping of the continuous heterogeneity of the 

ribosome.

More recently, the RELION framework has been extended to include multi-body refinement 

[41] (also see [4, 42, 43, 43, 44, 45]). In this approach, the user selects different rigid 

3-D models that are to be refined separately from the main, or consensus, model. Each 

separate sub-model is then refined separately, with its own viewing direction and translation, 

allowing it to move with respect to the consensus model in a rigid-body fashion. This 

method is limited to rigid-body variability in a few sub-volumes, and cannot handle non-

rigid deformations or other types of variability. In particular, the region at the interface 

between the sub-models is likely to vary as their relative positions vary, and it is therefore 

lost in this method.

The covariance estimation approach proposed in [46] does not rely on a particular model 

for heterogeneity, be it discrete or continuous. Indeed, the authors present a method for 

characterizing continuous variability in synthetic data. However, the covariance approach is 

adapted to a linear model of variability and is therefore not well-suited for continuous and 
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non-linear variability. Furthermore, the limited resolution of the reconstruction precludes the 

study of heterogeneity at higher level of detail. Another approach has been to study the 

normal modes of perturbation of a macromolecule [47, 48]. Some of the recent work on 

these directions has been used to study separate domains in the molecule [49].

2.5. Markov Chain Monte Carlo (MCMC)

MCMC is a collection of methods which have been used in statistical computing for 

decades. The full extent of these methods is beyond the scope of this paper. The purpose 

of this section is to briefly mention a few properties of some MCMC methods that will 

be useful in our discussion, while inevitably omitting some technical details. A review of 

MCMC can be found in many textbooks, such as [50].

MCMC algorithms are designed to sample from a probability distribution by constructing a 

Markov chain (i.e., a model of transitions between states at certain probabilities), such that 

the desired distribution is the equilibrium distribution of the Markov chain. Often, like in 

this paper, the desired probability from which we wish to sample is the posterior distribution 

P (X ∣ Y ) of a variable X, given a statistical model and data Y . Very often, we have access 

only to an unnormalized density ℎ(X ∣ Y ) ∝ P (X ∣ Y ), so that we can compute the ratio 

ℎ(X ∣ Y ) ∕ ℎ(X ∣ Y ) between densities at two states X and X, but not P (X ∣ Y ) and P (X ∣ Y )
directly.

The Metropolis-Hastings (MH) algorithm, which is the basis for many MCMC algorithms, 

is based on the following Metropolis-Hastings Update:

• Given the state X(n) at step n, propose a new state X(n + 1) with conditional 

probability given the current state X(n). The probability of proposing X(n + 1)

given the current state X(n) is denoted by q(X(n), X(n + 1) ∣ Y ). MH can be 

implemented in different ways, with different methods for proposing a new state, 

each method has a different function q associated with it.

• Compute the Hastings ratio:

r(X(n), X(n + 1)) = ℎ(X(n + 1) ∣ Y )q(X(n + 1), X(n) ∣ Y )
ℎ(X(n) ∣ Y )q(X(n), X(n + 1) ∣ Y )

.

(15)

• Approve the transition to the new state (i.e., X(n + 1) = X(n + 1)) with probability

a(X(n), X(n + 1)) = min(1, r(X(n), X(n + 1))) .

(16)

If the proposed state is rejected, the previous state is retained with X(n + 1) = X(n).
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Over time, under some conditions, MCMC samples states X(n) from the equilibrium 

distribution, which is designed in MH to be P (X ∣ Y ).

Remark 2 The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm, 

with the transition probability chosen such that q(X, X) = q(X, X).

Remark 3 MCMC allows a composition of update rules in different steps. For example, at 

each step, a subset of variables can be updated separately given the other variables.

Remark 4 Gibbs sampling is a version of MCMC where at each step the algorithm samples 

some of the variables conditioned on other variables. It is used when the joint distribution 

of all the variables is difficult to compute, but it is computationally feasible to sample some 

of the variables at each step while holding other variables fixed. Formally, this is a special 

case of MH. We mention this important variant here for completeness, but the algorithms 

described in this paper do not rely on this version of MCMC, which is often not trivial to 

compute for all variables.

We reiterate that this brief discussion of MCMC is not a comprehensive overview. The 

purpose of this discussion is to emphasize that MCMC can, in principle, be used to sample 

from a complicated posterior distribution even when the normalization of this distribution is 

unknown, and that various update strategies can be mixed together in MCMC algorithms. 

Samples from the posterior produced by MCMC can be used to approximate an expected 

value of a variable, but also to study the uncertainty.

2.6. Metropolis-Adjusted Langevin Algorithm (MALA)

MALA is a MH algorithm where the update proposal is given by the formula

X(n + 1) = X(n) + σ2
2 ∇ log P (X(n) ∣ Y ) + σW (n + 1),

(17)

where

W (n + 1) ∼ N (0, Id) .

(18)

Here, ∇ log P (X(n) ∣ Y ) is the gradient of the log-likelihood with respect to the variables. Note 

that the unnormalized ℎ(X ∣ Y ) is sufficient for computing the MALA steps. The parameter σ
is set by the user.

A positive definite preconditioner matrix A can be added without changing the equilibrium 

distribution:

X(n + 1) = X(n) + σ2
2 A∇ log P (X(n) ∣ Y ) + σ AW (n + 1) .
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(19)

MALA is just an update rule for which the Hastings ratio can be computed as usual, 

making it a standard Metropolis Hastings update. The MALA algorithm is motivated by 

the Langevin stochastic differential equation. Loosely speaking, the Langevin stochastic 

differential equation describes a stochastic process which is analogous to Equation (17), 

with infinitesimally small updates (small σ); the equilibrium distribution of this stochastic 

process is P (X ∣ Y ).

Works such as [51] find relations between the Langevin equation and SGD, a key algorithm 

in the area of deep learning, which has also been applied to cryo-EM by cryoSPARC [7].

2.7. Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo (HMC) is a another MCMC algorithm, which does not use the 

MH propose-accept-reject algorithm. HMC does not require sampling from a conditional 

distribution (required in Gibbs updates), but rather uses the gradient of the log-likelihood 

(like MALA) for a combination of deterministic steps (unlike MALA) and randomized 

steps. Due to the limited scope of this paper, and the complexity of ideas behind HMC, we 

refer the reader to one of the many resources about MCMC and HMC, such as [50], for 

additional information. In the context of this discussion, the key property of HMC is its use 

of the gradient, which we discuss in the context of MALA; however, HMC often has more 

advantageous mixing properties compared to MALA.

3. Hyper-Molecules

3.1. Toy Examples

The purpose of this section is to introduce synthetic examples which we will use to illustrate 

some of the ideas and in numerical experiments.

3.1.1. The “Cat”: To illustrate the problem, we constructed the “cat,” an object 

composed of Gaussian elements in real space, where each Gaussian follows a continuous 

trajectory as a function of the parameter t, so that we have a continuous space of objects 

corresponding to an object with extensive large-scale heterogeneity. The heterogeneity is 

one-dimensional, where the state corresponds to the direction in which the cat’s “head” is 

turned. Examples of synthetic 3-D object instances and the 2-D projections are presented in 

Figure 1 (rows 1-3).

3.1.2. The “Pretzel”: To illustrate continuous heterogeneity with more structure, we 

constructed the “pretzel,” which is composed of three parts: a rigid “base” and two 

independent “arms.” The two heterogeneous regions are highlighted in the green and blue 

balls in Figure 2. In Figure 3(top) we present different conformations of the pretzel. In our 

simulations, each arm can take any state independently of the other, but for the purpose of 

illustration in Figure 3, we hold one of the arms in a fixed state and sample different states of 

the other arm.
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This is a simplified illustrative mock-up of a typical experiment where one part of the 

macromolecule is rigid and others are heterogeneous and deforming. A dataset and a 

simulation using this model are described in Section 5.

3.2. Generalizing Molecules: Hyper-Molecules

Hyper-molecules generalize 3-D density functions V(r) to higher-dimensional functions 

V(r, τ) with the new state variable τ. For a fixed conformation or state τ, the 3-D density 

function V( ⋅ , τ) represents the molecule at that given conformation.

To illustrate the idea, we consider the cat example in Section 3.1.1. A natural way to 

view this cat is to produce a 3-D movie of the cat, where we would see a different 

conformation of the cat in each frame of the movie. In other words, each frame would 

present V( ⋅ , τ) for a different value of τ. Since the deformation of the cat is continuous, 

we could sample it at any arbitrary value of τ; a viewer may expect the movie to show a 

continuous transformation, with the cat not changing considerably as we move from one 

frame to the next. In other words, the movie would be expected to be relatively smooth (with 

several possible definitions of smoothness). This property of the movie reflects relations 

between different conformations. Hyper-molecules enforce such relations in the modeling of 

V( ⋅ , τ).

We recall that density functions in cryo-EM are often assumed to be band-limited, 

effectively making them smooth in the spatial domain. This regularity is enforced by the 

representation defined in (1) where the basis functions ψk are approximately band-limited. 

Hyper-molecules enforce regularity in the state space through the definition in (2) by 

choosing ψk that have a similar regularity property in the state variable. For example, in 

the case of 1-D state space in the cat example, with the state variable representing the 

direction in which the cat is looking, a natural generalization of the representation in (1) 

generates 4-D basis functions ψk, q(r, t) from products ψk, q(r, t) = ψk(r)Pq(t) of 3-D functions ψk

and low-degree orthogonal polynomials Pq (e.g., Chebyshev polynomials) such that

V(r, τ) = ∑
k, q

ak, qψk(r)Pq(t) .

(20)

More generally, when there are d degrees of freedom of flexible motion, the manifold of 

conformations is of dimension d and the time variable t in Equation (20) is replaced by 

manifold coordinates τ ∈ T . The polynomials Pq are replaced by a truncated set of basis 

functions over the manifold, denoted Pq(τ), with a minor abuse of notation:

V(r, τ) = ∑
k, q

ak, qψk(r)Pq(τ) .

(21)

For example, the basis function Pq(τ) can be the product of polynomials in multiple 

variables.
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The model in Section 2.2 then generalizes naturally, such that Equation (5) is generalized to

I(i)(x1, x2) = aiHi ∗ ∫
ℝ

V(Ri
−1r + si, τi)dx3,

(22)

the corresponding operator A(Ri, qi) to A(Ri, τi, qi), and the posterior (12) to

P ({Ri, τi, qi}i, μ, V ∣ {Y (i)}i) ∝ P ({Ri, τi, qi}i, μ, V)∏
i

P (Y (i) ∣ Ri, τi, qi, μ, V) .

(23)

In other words, we use the formulation of the continuously heterogeneous molecules as 

hyper-molecules to generalize the Bayesian formulation of the cryo-EM problem from a 

problem of recovering a 3-D molecule from 2-D projections in unknown viewing directions 

to a problem of recovering a higher dimensional hyper-molecule from 2-D projections. The 

key to this formulation, compared to a formulation as a collection of independent molecules 

(e.g., [9, 6]), is that hyper-molecules encode relations between states, with the related 

property that they encode a smoothly varying continuum of states.

3.3. Enforcing Structure

We note that there exists an equivalent scheme using appropriate samples in the state 

space, which would be numerically equivalent to our use of polynomials in the state 

variable. However, hyper-molecules are different from independent molecules because they 

provide relations between states. This regularity in the relation between states can be further 

reinforced by generalizing other ideas implemented for 3-D molecules such as priors that 

favor smaller coefficients for basis functions with high-frequency components in the state 

variable. Furthermore, the interpolation allows us to assign to each particle image any state 

in the continuum, rather than only the sampled states.

The basis functions presented above are not the only way to define such relations between 

states; for example, one can use a discretized state space and use linear interpolation 

between sorted discretized states (equivalent to a basis of triangles in the state space) to 

obtain a continuum of states. In order to enforce further smoothness, one can also penalize 

for large differences between adjacent states using a term of the form

L(V) = ∑
t = 1

T − 1∫ ∣ V(r, t) − V(r, t + 1) ∣ 2dr .

(24)

In fact, smoothness and continuity are crude proxies for properties that we would expect to 

find in the state space of molecules. For example, often, we would expect to observe a flow 

of mass as we move between states. This would be captured better through a Wasserstein 

distance between states; additional physical properties are discussed in the remainder of the 
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paper and in a technical report [22]. In the Bayesian formulation, it is natural to add explicit 

priors for hyper-molecules.

3.4. A Curse of Dimensionality

Building upon the success of the maximum likelihood and MAP frameworks in cryo-EM 

(see discussion in Section 2.4), it is natural to consider their application to the hyper-

volume reconstruction problem. The expectation-maximization algorithms are iterative 

refinement algorithms which attempt to recover the maximum-likelihood or MAP solution 

by alternating between updating the distributions of variables such as the viewing direction 

Ri and updating the estimate of the molecule V (i.e., coefficients in the representation of 

the object as defined in Equation (1)). Generating the projections for all viewing directions 

and comparing them to all particle images are computationally intensive operations in the 

implementation.

In the case of hyper-molecules, expectation-maximization would be generalized to 

alternating between updating the joint distribution over viewing directions Ri and (possibly 

high-dimensional) state variables τi (compared to a small number of discrete conformations 

in current algorithms) and updating the hyper-molecule (21). In other words, one would have 

to project the hyper-molecule in every possible state in every possible viewing direction 

and compare each particle image with each of these projections, rapidly increasing the 

number of comparisons in this already expensive procedure. More complex models of hyper-

molecules, introduced later in this paper, would make it more difficult to design specialized 

algorithms and heuristics to optimize this procedure.

In addition, we note that the number of coefficients required to represent a molecule as 

a linear combination of basis functions in Equation (1), at a resolution corresponding to 

about N × N × N voxels, is O(N3). Similarly, adding d-dimensional heterogeneity at “state 

space resolution” corresponding to Q state coefficients requires O(N3Qd) coefficients. High-

dimensional heterogeneity, arising, for example, in molecules that have several independent 

heterogeneous regions, results in a large number coefficients which could exceed the total 

number of pixels in all particle images of an experiment. Indeed, since hyper-molecules 

have the capacity to represent very generic molecules, it is natural to expect that a lot of 

data would be required to estimate them; in particular, if the number of possible states (in 

some discretization) grows exponentially fast with the dimension d, it is natural to expect 

the required number of particle images to grow as fast, if not faster. Given infinite data and 

infinite computational resources, it is tempting to model very little and allow the data and 

algorithm to map and reconstruct a heterogeneous macromolecule. Unfortunately, despite 

the rapid growth in cryo-EM throughput and computational resources, they are far from 

“infinite.” The natural question to ask is if we can use prior knowledge and assumptions to 

reduce the amount of data that we need, even in the case of high-dimensional heterogeneity.

In the remainder of this paper, we address some of these challenges.
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3.5. Finer Structures I: Composite Hyper-Molecules

In the previous section, we found that recovering a hyper-molecule which describes 

very generic, and potentially complicated, dynamics of a macromolecule requires massive 

amounts of data. Often, researchers have prior knowledge about the structure and dynamics 

of the macromolecule that they study. For example, many macromolecules are composed of 

a static component to which smaller flexible heterogeneous components are attached (for 

an illustrative toy example, see the pretzel example in Section 3.1.2). Often, practitioners 

are able to use traditional cryo-EM algorithms to recover the static component at high 

resolution, but the regions of the flexible components are blurry. In these cases, researchers 

are often able to hypothesize where each component is located, which components are 

static, and which components are heterogeneous. Tools for estimation of local variance and 

resolution help researchers in identifying these regions (see, for example, [52, 53, 54, 55, 56, 

57, 46]).

We introduce composite hyper-molecules, a model which is the sum of M components Vm, 

each of which is a hyper-molecule. The following formula describes a simple version of a 

composite hyper-molecule:

V(r, τ1, τ2, . . . . , τM) = ∑
m = 1

M
Vm(r, τm) .

(25)

Each component is constrained to a certain region of space where it is assumed to be 

supported (the regions may overlap). Each component has its own set of state variables and 

coefficients that describe it. In our pretzel example, the yellow region in Figure 2 is modeled 

as a rigid static “body,” and the green and blue regions represent regions of space where two 

one-dimensional heterogeneous components are supported. As can be seen in this example, 

the regions may overlap and do not have to be tight around the actual component.

In some cases, the different components could be roughly described as moving one with 

respect to the other, in addition to more subtle deformations (for example, at the interface 

between the components). Indeed, heterogeneous macromolecule have been modeled as 

a superposition of several rigid objects in somewhat arbitrary relative positions in work 

such as [41, 4, 42, 43, 43, 44, 45]. We observe that hyper-molecules and the composite 

hyper-molecules in Equation (25) are generic enough to describe the relative motion of 

these components, but if such dynamics can be assumed, capturing them in the model is 

advantageous for computational and statistical reasons. Therefore, a more complete version 

of composite hyper-objects allows both motion and heterogeneity in each component

V(r, τ1, state, τ2, state, . . . . , τM, state, τ1, position, τ2, position, . . . . , τM, position) =

∑
m = 1

M
Vm(fm(r, τm, position), τm, state)

(26)
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where fm(r, τm, position) is a function that describes the trajectory of the mth component, so 

that the component is in heterogeneity state τm, state and its location along the “trajectory” is 

determined by the position variable τm, position. For example, a simple affine fm can take the 

form

fm(r, τm, position) =
τm, stateθx, 1

m, position + θx, 0
m, position + rx

τm, stateθy, 1
m, position + θy, 0

m, position + ry

τi
m, stateθz, 1

m, position + θz, 0
m, position + rz

,

(27)

where r = (rx, ry, rz)⊺. The variables θm, position, which determine the trajectory, are part of the 

variables describing the hyper-molecule, much like the coefficients in Equation (25). Actual 

trajectory functions would presumably be more complex and could involve rotations and 

deformations.

The variables for the position τm, position and state τm, state can be closely related (the position 

can be related to the heterogeneity state variable for that component); for brevity, we use τm

as a state variable that encapsulates both τm, position and τm, state.

Compared to previous work like [41, 4, 42, 43, 43, 44, 45], the composite hyper-molecule 

formulation models components that are inherently non-rigid, and, in particular, models the 

flexible interface between components. Furthermore, composite hyper-molecules model the 

set of possible relative positions (trajectories) of the different components with respect to 

each other (as opposed to more arbitrary possible relative positions), which are parametrized 

and fitted using data.

Remark 5 In some cases, there are relations between the different regions that can be 

captured in the description of the composite hyper-molecule. For example, our pretzel has 

two identical arms (shifted and rotated with respect to each other). While each arm can 

appear in a different state independently from the other arm, they have the same fundamental 

structure (i.e., they are the same hyperobject, at a different state and position). A similar 

phenomenon is observed in some macromolecules that have certain symmetries. We capture 

this fact in our model in the particular example in Section 5 by defining the hyper-objects 

representing the two arms so that they share coefficients in their representation. This is 

analogous to “weight sharing” in deep neural networks.

3.6. Finer Structures II: Priors and “Black-Box Hyper-Molecules”

The purpose of this section is to add a layer of abstraction to the modeling of hyper-

molecules, where the model can be implemented as a “black box” provided to an algorithm 

designed to recover hyper-molecules; the algorithms themselves are discussed in later 

sections, while this section focuses on the formal modeling of these components. These 

black-box models will allow users with different levels of technical expertise to define 

more elaborate models and priors which reflect assumptions and prior knowledge about 

the experiment, to the extent that such assumptions are necessary given the amount of 
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data, model complexity and available computational resources. While the implementation 

presented in this paper treats simpler models, this section provides context for goals of this 

line of work, and additional motivation for algorithms guided by gradients (MALA and 

HMC) and for the work on MCMC algorithms. We envision a set of different “black boxes” 

that scientists can choose from, reflecting their prior knowledge and constraints imposed by 

the amount of data and computational resources available to them.

We revisit the formulation of the hyper-molecule V as a sum of basis functions in Equation 

(21). We denote the coefficients of these basis functions by θ. Similarly, in the formulation in 

Equation (26), the coefficients of the basis functions in all components and the coefficients 

of the trajectories are denoted collectively by θ. We write this fact explicitly using the 

notation V[θ](r, τ). We revisit Equation (23), and add this explicit notation:

P ({Ri, τi, qi}i, μ, V[θ] ∣ {Y (i)}i) ∝ P ({Ri, τi, qi}i, μ, θ)∏
i

P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) .

(28)

In particular, it is compelling to factorize (28) into simpler components and formulate a 

more specific structure:

P ({Ri, τi, qi}i, μ, V[θ] ∣ {Y (i)}i) ∝
P (θ) P (μ)∏

i
P (Y (i) ∣ Ri, τi, qi, μ, V[θ])P (Ri, τi, qi ∣ μ) .

(29)

where P (θ) is a black-box prior for the hyper-molecule, P (μ) is a black-box prior for 

imaging variables and latent variables (e.g., noise parameters and CTF parameters for 

micrographs), P (Ri, τi, qi ∣ μ) is a prior for the variables of each particle image (e.g., 

shift from center, contrast parameters), and P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) is the relation to the 

measurements.

In this formulation, V can be replaced by an arbitrary black-box function that produces a 

consistent notion of a hyper-molecule; this black-box formulation decouples the specifics of 

the model from the algorithm, giving the scientist more flexibility in defining their model. 

The key components in this formulation are the model V[θ] which defines the density (or 

its Fourier transform) at any position and state as a function of the coefficients θ, and a 

prior P (θ). These two components encode the scientist’s assumptions, prior knowledge and 

physical constraints. Another key component is P (Y (i) ∣ Ri, τi, qi, μ, V[θ]), which encapsulates 

the imaging model. The components P (Ri, τi, qi ∣ μ) and P (Ri, τi, qi ∣ μ) give some additional 

flexibility in modeling.

Having defined the models, we turn to the discussion of the algorithms. The general black-

box form of the models presented in Section 3.6 above provides some of the motivation for 

algorithms that are compatible with such generic model.
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4. Algorithms

In this section we discuss the role of MCMC algorithms in a framework for recovering 

hyper-molecules.

4.1. MCMC, MALA and HMC

We consider the Bayesian formulation of hyper-molecules in Equation (29). The difficulty 

with expectation-maximization algorithms is that they compute P (Ri, τi, qi ∣ Y (i), μ, V[θ]) as 

a function of all possible combinations of viewing directions Ri, states τi, and some of 

the other particle-image specific variable qi (e.g., in-plane shift) at every iteration (the 

update of θ involves another computationally expensive operation for similar reasons). 

This involves some discretization of these variables and a large number of comparisons 

which are computationally expensive at every iteration. This is a computational challenge 

in the homogeneous case and in the case of discrete heterogeneity when there is a 

small number of conformations; the natural generalization to high-dimensional continuous 

heterogeneity increases the computational complexity exponentially in the dimensionality of 

the heterogeneity. Indeed, algorithms and heuristics have been developed for reducing the 

number of comparisons in existing software, but it is a challenge to generalize them to apply 

to high-dimensional hyper-molecules and generic black-box models whose specific form is 

defined by a user and is not available when the software is written.

We propose an MCMC framework for sampling from the posterior in Equation (29); some 

of the main features of MCMC are reviewed briefly in Section 2.5. We note that MCMC is 

not a single algorithm, but a collection of algorithms that can be used together.

Equation (29) and the analogy to expectation-maximization suggests that different variables 

in the MCMC formulation can be treated separately, mixing strategies for updating a 

subset of variables while holding the others constant. In particular, the particle-image 

variables Ri, τi and qi can be evaluated separately and in parallel because they are 

independent conditioned on μ and V[θ]. MCMC algorithms such as a simple MH 

(with a simple update strategy) do not require the computation of the distribution 

P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) for every value of Ri, τi and qi, but rather require only the ratio 

P (Ri, τi, qi ∣ Y (i), μ, V[θ]) ∕ P (Ri, τi, q i ∣ Y (i), μ, V[θ]) between the likelihoods of different values 

of the variables. In other words, at every iteration, this version of MCMC requires the 

computation of P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) only at two sample points (two sets of values of 

Ri, τi and qi). Furthermore, since we are computing a ratio, P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) does 

not need to be normalized such that the probability would integrate to 1; computing this 

normalization factor would have typically involved evaluating P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) at 

many points. Other strategies, such as MALA and HMC, require the gradient of the log-

likelihood with respect to the different variables (again, implying that the probability does 

not need to be normalized to integrate to 1). Similar considerations apply to the update 

of other variables. We note that MCMC is not a “magic solution” to the computational 

challenge, because it may require more steps than expectation-maximization, but each step 

is computationally tractable and different strategies and tools can easily be combined to 
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improve performance; where expectation-maximization is feasible, analogous MCMC steps 

can be applied.

MCMC yields a sample of the variables and latent variable; we can restrict our attention to 

variables such as θ which are sampled hyper-molecules, and we can consider the statistics 

of τ if we wish to study the statistics of states’ occupancy. Most often, in practice, θ or V
can be averaged over all the samples to produce an “expected” hyper-molecule, although 

this averaging can introduce some technical difficulties due to ambiguities which we will 

discuss briefly later; these technical issues are not uncommon in this type of problems, 

and in practice they are rarely a problem since the mixing over symmetries, such as global 

rotation of the entire molecule, is slow. A similar problem happens the maximum-likelihood 

and MAP approaches, since there are several equivalent solutions. There too, this is not a 

problem in practice. The advantage of having multiple samples from the posterior, however, 

is that they allow us to study the uncertainty in the solution by studying the variability of V.

4.2. A Remark about Black-Box Hyper-Molecules

In this section, we revisit the Bayesian formulation of Equation (29) and discuss some 

aspects of the formulation of generalized hyper-molecules that are related to the algorithms 

and implementation. In principle, it is sufficient to define black-box functions which would 

evaluate the prior P (θ) and the density V[θ](r, τ) at any spatial (or frequency) location r, and 

any state τ (and possibly provide the interface for computing gradients over the difference 

variables); the algorithm would use these functions to compute P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) using 

its imaging model.

We note that the explicit evaluation of V[θ] is not required in Equation (29). Instead, 

V is considered implicitly in the prior P (θ) and in the comparisons to images in 

P (Y (i) ∣ Ri, τi, qi, μ, V[θ]). The way that V[θ] is used in P (Y (i) ∣ Ri, τi, qi, μ, V[θ]) implies that 

the algorithm would use the black-box V to evaluate the hyper-molecule at some points 

in order to produce an image using the algorithm’s own imaging models. In fact, this 

can be numerically inaccurate and computationally expensive without certain assumptions 

on the structure of V. It is therefore useful to implement efficient functions that produce 

projections of the hyper-molecule that are consistent with the model implemented internally 

in the black box V. In addition, algorithms such as MALA and HMC benefit from models 

that can be differentiated, such that the gradients of the log-likelihood with respect to θ and 

other variables such as Ri and τi are available to the algorithm. In our implementation, such 

a module computes log(P (Y (i) ∣ Ri, τi, qi, μ, V[θ])) (i.e., the comparison to the particle image 

is done internally in the module). Our current implementation computes gradients only with 

respect to θ.

These considerations highlight the fact that complete decoupling of the hyper-molecule 

model from other components may present a trade-off between generality and efficient 

implementation considerations.
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5. Implementation and Numerical Results

In this section we discuss a prototype constructed for the recovery of hyper-molecules based 

on the ideas presented in this paper, and present the results of experiments with synthetic 

data. This implementation extends an early simplified prototype and a simpler model that 

did not take shifts and CTF into account and allowed only 1-D non-localized heterogeneity; 

that prototype was not based on MCMC. The earlier prototype is discussed in more detail in 

an earlier technical report [22]. Examples of objects reconstructed with the earlier prototype 

are presented in Figure 1 (bottom).

The current prototype implements simple composite hyper-molecules (see Section 3.5); 

the user can define the number and positions of heterogeneous components of the hyper-

molecule. Each component can be defined to be rigid, or heterogeneous with a 1-D or 2-D 

state space. Finally, the user can define components that share the same parameters, but not 

the same state; in the pretzel example, the two arms are modeled using the same coefficients 

θ, but in each image each arm can be in a different state. Each object is represented using 

3-D generalized prolate spheroidal functions, which are the optimal basis for representing 

objects that are as concentrated as possible in the spatial domain and in the frequency 

domain (as close as possible to “compactly supported and band-limited”); for more details 

see [21]. These 3-D basis functions are multiplied by 1-D or 2-D cosines and sines to 

produce higher-dimensional components.

The MCMC algorithm implements MALA steps for updating the coefficients θ of the 

hyper-molecule, and simpler MH steps (random perturbation of the variables to propose new 

values) for updating the viewing direction, state, in-plane shift, and contrast of each particle 

image. We are working on implementing MALA and HMC for additional variables. The 

algorithm has a second mode, provided as a crude approximation of MCMC, where in each 

iteration, only a subset of the particle image variables (viewing direction, state, etc.) are 

updated (using a MH step for each particle image); the hyper-molecule is updated using a 

gradient step, based only on the subset of particle images considered in that iteration. The 

prototype was implemented in Matlab.

We generated a dataset of 20,000 synthetic pretzel images (synthetic model described in 

Section 3.1.2), 151 × 151 pixels each, at an SNR of 1/30, and included simulated in-plane 

shifts and CTF. The synthetic pretzel is generated as a sum of Gaussians, each of which has 

a center following a “trajectory” which is a continuous function of the state. The projections 

are computed analytically in the Fourier domain.

The algorithm was provided with the CTF parameters of each particle image, but not with 

the viewing directions, shifts, amplitudes or heterogeneity states. Moreover, the algorithm 

was not provided with an initial molecular structure or a tight “mask.” The algorithm was 

provided with a relatively “loose” prior which penalizes for large L2 norm of the coefficients 

θ in the representation of the hyper-molecule.

We assigned initial viewing directions for each particle image uniformly at random, initial 

shift from a normal distribution with standard deviation of about 7 pixels on each axis, and 
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constant initial amplitudes. The state variable of each particle image was chosen uniformly 

at random from the interval [0, 1]. First, we set up a homogeneous model in the algorithm 

(although the dataset is heterogeneous) and set the initial model to zero everywhere (at this 

point, the state variables are still ignored). This run produced a low-resolution initial model, 

presented in Figure 4, which we rotated to fit the axes of the molecule (in this example, we 

recovered an approximate axis of symmetry automatically, which we aligned with the the z
axis).

We proceeded to run the algorithm using a simple hyper-molecule model that allows 

heterogeneity anywhere in the molecule. The algorithm starts with a low-frequency 

representation of hyper-molecule (initialized again to zero), then gradually increases 

the frequencies allowed in the representation; the gradual increase in frequency of the 

representation of 3-D density functions is a common practice in cryo-EM [6, 58, 59], which 

is generalized here to gradual increase in the frequencies allowed in the state variable. 

Two representing states produced by the algorithm are presented in Figure 5. We observed 

that the different “heterogeneity” states are in fact the molecule and its reflection. It is 

well known that 2D projections cannot be used to distinguish between a molecule and 

its reflection, so the two versions are indeed valid molecules. However, it is desirable for 

algorithms to quotient out this symmetry (“choose one of the two versions arbitrarily”). In 

practice, algorithms are often initialized using some low-resolution model that effectively 

chooses the version they would use. In this case, the artifact is a result of the many 

approximate symmetries in this synthetic model at low resolution. We use this example 

to demonstrate a simple method for resolving such artifacts: we reinitialized the hyper-

molecule to a representative state, and reran the algorithm, allowing most of the particle 

images to be aligned with one version of the molecule.

At this point we set up the model depicted in Figure 2, with a rigid object supported 

in the yellow ball, and two heterogeneous regions, each supported in one of the other 

balls. In many cases, the molecules studied have a known form of symmetry. In this 

example, we model a molecule with C2 symmetry. The two heterogeneous regions are 

identical components but each of them can appear in a different state in each particle 

image. These two components can be modeled independently, but since we know that these 

two components are identical “hyper-molecules” at different states, the two models share 

coefficients (shifted and rotated with respect to one another).

In implementations of MCMC algorithms and some optimization algorithms it is common 

to implement procedures that can be broadly interpreted as occasional increase of the 

“temperature.” Such procedures improve the mixing properties of the algorithm and mitigate 

the effects of deep local minima. In the current implementation, we restart the algorithm at 

a lower resolution a few times to achieve an analogous effect; unlike a traditional change of 

temperature, the change in resolution also accelerates the iterations, because the numerical 

implementation of projections is much faster at lower resolution.

The processing requires 14 days, using a server equipped with a E5-2680 CPU and one 

NVIDIA Tesla P100 GPU with 16 GB of RAM (the GPU was used for most of the 

numerical computation). Most of the time was spent on the preliminary assignment of 
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viewing directions, shifts and amplitudes, before the heterogeneity analysis was activated, 

due to limitations in this version. The viewing directions, shifts and amplitude continue to be 

refined together with the state variables during the heterogeneity analysis.

The results presented in Figure 3(bottom) illustrate qualitatively the recovery of the different 

conformations of the synthetic molecule. In addition, we present in Figure 6 the distribution 

of errors in assignment of viewing directions, and in Figure 7 the distribution of the 

assignment of the state variables. Some of the particle images are assigned a wrong 

viewing direction (and subsequently a wrong state variable) – this is attributed to the 

noise and approximate symmetries in the model, as well as inefficiencies in the current 

implementation.

The current Matlab implementation was developed as a proof of concept, but it is very 

inefficient and thus difficult to scale to a larger number of images or high resolution. A 

new implementation in Python is currently in development with the goal of making it more 

accessible and scalable. We plan to release the future version of the new implementation 

when the core functionality and simple user-friendly models are ready.

6. Discussion and Future Work

The main goal of this paper is to introduce the idea of hyper-molecules as high-dimensional 

representations of 3-D molecules at all their conformations; this idea is applicable to other 

inverse problem such as CT. In addition to the generalization of 3-D molecules to hyper-

molecules, we generalize the Bayesian formulation of cryo-EM to a Bayesian formulation of 

continuous heterogeneity in cryo-EM. Compared to existing work on representing molecules 

in a small number of discrete conformations, hyper-molecules provide a way of describing a 

continuum of conformations and the relations between states.

These higher dimensional objects can be represented as generic high-dimensional functions, 

but we discuss statistical and computational motivations to introduce additional models of 

hyper-molecules, that describe more specific objects, when prior knowledge is available. We 

also discuss an MCMC framework which overcomes some of the technical computational 

difficulties in each iteration of current algorithms in the more general settings that we 

propose, and we note additional benefits of this framework in characterizing the uncertainty 

in solutions. Furthermore, we note that the MCMC framework provides a natural connection 

to atomic models and other experimental modalities, demonstrated for example in [60], 

which uses a density map produced from a cryo-EM experiment together with physical 

models and other modalities.

Ultimately, the goal of this line of work is to provide a highly customizable framework 

for encoding prior knowledge about complex molecules and to find a practical trade-off 

between the bias that can be introduced by assumptions and the realistic constraints on 

the amount of data that can be collected. We envision this framework as a combination of 

imaging modules for modeling hyper-molecules adapted to fast computation of projection 

images and to computing gradients with respect to variables such as the viewing direction 

and model coefficients. Such modules will be used in a framework inspired by TensorFlow 
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[61], PyTorch [62] (both designed primarily for deep learning) and Edward [63, 64], which 

allow to construct modules analogous to the black-box modules discussed in this paper, 

with more focus on imaging as in ODL [65]. Ideally, a wide array of general purpose tools 

and algorithms constructed for optimization, Bayesian inference, deep learning and imaging 

could be used together with this framework. However, the large scale of the cryo-EM 

problem and various properties of the problem require a more specialized framework and 

flexibility in solver strategies; for example, the memory management in software designed 

for deep learning is often optimized for small batches, whereas in some implementations 

of imaging algorithms there are computational advantages in working with very large 

batches. Another example is the update of in-plane shift variables, which can be performed 

without recomputing the entire image. Among other things, a speedup may be obtained 

by simultaneously computing cross-correlations for multiple in-plane rotations using the 

recently proposed method of [66]. We demonstrated some of the ideas in this paper in a 

prototype implementation; we are currently building the next prototype, which will be more 

customizable and scalable.

Our reference to tools such as TensorFlow, PyTorch and Edward demonstrates that the 

lines between optimization, stochastic optimization, MCMC and other algorithms are not 

entirely rigid, in the sense that modules used in one framework can be used in some other 

frameworks. We expect to experiment with other algorithms for initialization of MCMC and 

approximation of steps, and to examine additional Bayesian inference algorithms. Indeed, 

we have already experimented with expectation-maximization algorithms to initialize crude 

viewing directions in cryo-EM data and with SGD hybrids for approximating MCMC steps.

In the following sections we briefly comment on some additional aspects of the problem.

6.1. The Homogeneous Case, Discrete Heterogeneity, and Continuous Heterogeneity

In many cases, molecules appear mainly in a discrete set of conformations that are very 

similar to one another. While we mainly discuss continuous heterogeneity in the paper, 

the framework proposed here applies to the discrete case (or mixtures of discrete and 

continuous heterogeneity in different regions) with few changes (for example, the basis 

functions used to capture the variability as a function of the heterogeneity parameter τ
can be replaced by the Haar basis). Hyper-molecules, composite hyper-molecules and the 

algorithms discussed here are advantageous in the discrete case as well: they allow to use the 

similarity between different conformations, and they allow to decompose the heterogeneity 

to local heterogeneity in different regions.

More generally, we hope that a generic Bayesian framework could also be used to study 

more elaborate models for imaging and experiment latent variables even in the homogeneous 

case.

6.2. Ambiguity

We note that even in the classic cryo-EM problem, certain ambiguities emerge in the 

macro-molecules that are recovered: any result has “equivalent” results that are identical up 

to global rotation, shifts and reflection. Naturally, hyper-molecules have similar ambiguities. 
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Since hyper-objects generalize the spatial coordinates and in many ways treat the state 

parameters in the same way as they treat the spatial coordinate, one may expect a 

generalized form of ambiguity to appear. Indeed, there is ambiguity in how the molecules in 

different states are aligned with respect to each other and ambiguity in the parameterization 

of the state space. These ambiguities are reduced by regularization or priors, or when the 

model contains rigid components that align other components.

One such effect can be observed in the cat example in Figure 1, where the recovered cats 

are aligned slightly differently with respect to each other compared to the original cats (the 

change in alignment is continuous, so the “movie of cat” is still continuous). Of course, our 

original alignment was arbitrary, so the algorithm’s choice is no better or worse than ours, 

but it is better suited to the limited degree polynomials we allowed the algorithm to use to 

represent these recovered cats.

6.3. Additional Practical Considerations

The discussion of priors and models in this paper is partly abstract and the priors and models 

implemented in our examples are relatively simple. Indeed, there is room for extensive 

future work on improved priors and models that can be efficiently implemented within this 

framework and on automation of tests.

We note that we do not advocate the use of “strong” priors indiscriminately because they can 

bias the results. We believe that the most useful use cases in the near future would involve 

a gradual process of testing alternative priors, starting with the simplest “loose” priors, and 

verifying the stability of solutions with respect to priors and parameters (even if at a lower 

resolution). Once patterns are identified reliably, they can be encoded into more elaborate 

models and priors (e.g. “there is a rigid component in the middle, and with two identifiable 

regions where something is moving”) and then to finer models (e.g. specific space of 

deformations in the flexible regions) and finer models (e.g. atomic structures). These models 

formulate explicit and implicit models used in other tools. For example, multi-body models 

[41] are a subset of the models proposed in this paper. The specialized implementation of 

this model of multiple rigid components in RELION has been successful but does not fully 

resolve the challenge of continuous heterogeneity.

The Bayesian approach and the sampling of solutions from the posterior in MCMC 

algorithms provide means for evaluating uncertainty in solutions given a model and a 

prior. The ability to choose different models and priors can be used to identify modelling 

artifacts which could either bias the posterior or slow the mixing of states. One of the 

tools for studying possible artifacts is the use of extra degrees of freedom, as demonstrated 

in our experiment where we modeled the rigid molecule as a heterogeneous molecule 

and discovered that our intermediate solution was a superposition of the molecule and its 

reflection.

We reiterate that the MCMC formulation is not a magic solution that resolves all the 

computational problems. Furthermore, our current implementation is limited and slow. 

Specialized algorithms for particular types of heterogeneity may be faster than than a 

general purpose implementation of MCMC. Where there exist efficient methods like 
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multi-body [41] models or study of covariances (e.g. [46, 67]), they be used in the 

construction of models, initialization of the MCMC algorithm, or can be reformulated 

as hyper-molecules. MCMC enjoys theoretical properties and offers tools for quantifying 

the uncertainty in solutions, and a rigorous framework for combining different models, 

priors and update strategies. We believe that a flexible implementation of an MCMC (or 

variational) framework which offers an accessible selection of priors, models and update 

strategies, and which incorporates successful ideas implemented in other tools, will be a tool 

in careful studies of molecular structures which consider different hypotheses. Further work 

on models and automated hypothesis testing would simplify the process and make it more 

robust and reproducible.

7. Conclusions

A mathematical formulation and a Bayesian formulation has been presented for the 

modeling of continuously heterogeneous molecular conformations. This formulation “hyper-

molecules” and its generalizations allow to model generic heterogeneous molecules or to 

encode structural constraints and priors where these are available or required for practical 

reasons.

In addition, we proposed an approach based on MCMC for the recovery of hyper-molecules 

from cryo-EM data. This approach addresses some of the challenges associated with 

generalizing existing popular algorithms to this formulation of the cryo-EM problem. In 

particular, it bypasses the estimation of the conditional distribution of variables such as 

the viewing direction of each particle image at each iteration of expectation-maximization, 

which becomes infeasible if additional state variables are introduced in the case of 

continuous heterogeneity. This approach also offers a natural way to incorporate elaborate 

black-box models that researchers can customize for their needs and a tool for studying the 

uncertainty in solutions.

The ideas presented in this paper have been demonstrated in a preliminary, prototype 

implementation applied to synthetic data. Work on experimental datasets will be discussed 

separately. More scalable implementations are being constructed for more generic models, 

larger datasets, and more efficient computation.

Acknowledgments

The authors would like to thank Fred Sigworth for his help, and the anonymous referees for their valuable 
comments.

A. Singer was partially supported by NIGMS Award Number R01GM090200, AFOSR FA955017-1-0291, Simons 
Investigator Award, the Moore Foundation Data-Driven Discovery Investigator Award, and NSF BIGDATA Award 
IIS-1837992. These awards also partially supported R. R. Lederman at Princeton University. The Flatiron Institute 
is a division of the Simons Foundation.

References

[1]. Kühlbrandt W. The resolution revolution. Science, 343(6178):1443–1444, 2014. [PubMed: 
24675944] 

[2]. Smith Martin TJ and Rubinstein John L. Beyond blob-ology. Science, 345(6197):617–619, 2014. 
[PubMed: 25104368] 

Lederman et al. Page 28

Inverse Probl. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Liao Maofu, Cao Erhu, Julius David, and Cheng Yifan. Structure of the TRPV1 ion 
channel determined by electron cryo-microscopy. Nature, 504(7478):107–112, 2013. [PubMed: 
24305160] 

[4]. Amunts Alexey, Brown Alan, Bai Xiao-Chen, Llácer Jose L., Hussain Tanweer, Emsley Paul, 
Long Fei, Murshudov Garib, Scheres Sjors H. W., and Ramakrishnan V. Structure of the 
yeast mitochondrial large ribosomal subunit. Science, 343(6178):1485–1489, 2014. [PubMed: 
24675956] 

[5]. Bartesaghi Alberto, Merk Alan, Banerjee Soojay, Matthies Doreen, Wu Xiongwu, Milne 
Jacqueline LS, and Subramaniam Sriram. 2.2 Å resolution cryo-EM structure of β-galactosidase 
in complex with a cell-permeant inhibitor. Science, 348(6239):1147–1151, 2015. [PubMed: 
25953817] 

[6]. Scheres S. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. 
J. Struct. Biol, 180(3):519–530, 2012. [PubMed: 23000701] 

[7]. Punjani Ali, Rubinstein John L, Fleet David J, and Brubaker Marcus A. cryoSPARC: algorithms 
for rapid unsupervised cryo-EM structure determination. Nat. Methods, 14(3):290–296, 2017. 
[PubMed: 28165473] 

[8]. Tang Guang, Peng Liwei, Baldwin Philip R, Mann Deepinder S, Jiang Wen, Rees Ian, and Ludtke 
Steven J. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol, 
157(1):38–46, 2007. [PubMed: 16859925] 

[9]. van Heel Marin, Portugal Rodrigo, Rohou A, Linnemayr C, Bebeacua C, Schmidt R, Grant T, and 
Schatz M. Four-dimensional cryo-electron microscopy at quasi-atomic resolution: IMAGIC 4D. 
International Tables for Crystallography, pages 624–628, 2006.

[10]. De la Rosa-Trevín JM, Otón J, Marabini R, Zaldivar A, Vargas J, Carazo JM, and Sorzano COS. 
Xmipp 3.0: an improved software suite for image processing in electron microscopy. J. Struct. 
Biol, 184(2):321–328, 2013. [PubMed: 24075951] 

[11]. Grigorieff Nikolaus. FREALIGN: High-resolution refinement of single particle structures. J. 
Struct. Biol, 157(1):117 – 125, 2007. [PubMed: 16828314] 

[12]. Liu Daifei, Liu Xueqi, Shang Zhiguo, and Sindelar Charles V. Structural basis of cooperativity 
in kinesin revealed by 3D reconstruction of a two-head-bound state on microtubules. eLife, 
6:e24490, 2017. [PubMed: 28504639] 

[13]. Dolino Drew M, Rezaei Adariani Soheila, Shaikh Sana A, Jayaraman Vasanthi, and Sanabria 
Hugo. Conformational selection and submillisecond dynamics of the ligand-binding domain of 
the n-methyl-d-aspartate receptor. Journal of Biological Chemistry, 291(31):16175–16185, 2016. 
[PubMed: 27226581] 

[14]. Nogales Eva. The development of cryo-EM into a mainstream structural biology technique. Nat. 
Methods, 13(1):24–27, 2016. [PubMed: 27110629] 

[15]. Glaeser Robert M. How good can cryo-EM become? Nat. Methods, 13(1):28–32, 2016. 
[PubMed: 26716559] 

[16]. Scheres Sjors HW. A Bayesian view on cryo-EM structure determination. J. Mol. Biol, 
415(2):406–418, 2012. [PubMed: 22100448] 

[17]. Sorzano COS, Jiménez A, Mota J, Vilas JL, Maluenda D, Martínez M, Ramírez-Aportela 
E, Majtner T, Segura J, Sánchez-García R, et al. Survey of the analysis of continuous 
conformational variability of biological macromolecules by electron microscopy. Acta 
Crystallographica Section F: Structural Biology Communications, 75(1):19–32, 2019. [PubMed: 
30605122] 

[18]. Low Daniel A, Nystrom Michelle, Kalinin Eugene, Parikh Parag, Dempsey James F, Bradley 
Jeffrey D, Mutic Sasa, Wahab Sasha H, Islam Tareque, Christensen Gary, et al. A method for 
the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. 
Medical Physics, 30(6):1254–1263, 2003. [PubMed: 12852551] 

[19]. Kimanius Dari, Forsberg Björn O, Scheres Sjors HW, and Lindahl Erik. Accelerated cryo-EM 
structure determination with parallelisation using GPUs in RELION-2. eLife, 5, nov 2016.

[20]. Zivanov Jasenko, Nakane Takanori, Forsberg Björn O, Kimanius Dari, Hagen Wim JH, Lindahl 
Erik, and Scheres Sjors HW. New tools for automated high-resolution cryo-EM structure 
determination in RELION-3. eLife, 7:e42166, 2018. [PubMed: 30412051] 

Lederman et al. Page 29

Inverse Probl. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[21]. Lederman Roy R.. Numerical algorithms for the computation of generalized prolate spheroidal 
functions. arXiv preprint arXiv:1710.02874, 2017.

[22]. Lederman Roy R. and Singer Amit. Continuously heterogeneous hyper-objects in cryo-EM and 
3-D movies of many temporal dimensions. arXiv preprint arXiv:1704.02899, 2017.

[23]. Kawabata Takeshi. Multiple subunit fitting into a low-resolution density map of a 
macromolecular complex using a Gaussian mixture model. Biophysical Journal, 95(10):4643–
4658, 2008. [PubMed: 18708469] 

[24]. Lederman Roy R and Singer Amit. A representation theory perspective on simultaneous 
alignment and classification. Applied and Computational Harmonic Analysis, 2019.

[25]. Frank J. Three-dimensional electron microscopy of macromolecular assemblies. Academic Press, 
2006.

[26]. Sigworth Fred J.. Principles of cryo-EM single-particle image processing. Microscopy, 65(1):57–
67, 12 2015. [PubMed: 26705325] 

[27]. Cheng Yifan, Grigorieff Nikolaus, Penczek Pawel A., and Walz Thomas. A primer to single-
particle cryo-electron microscopy. Cell, 161(3):438–449, 2015. [PubMed: 25910204] 

[28]. Milne Jacqueline LS, Borgnia Mario J, Bartesaghi Alberto, Tran Erin EH, Earl Lesley A, 
Schauder David M, Lengyel Jeffrey, Pierson Jason, Patwardhan Ardan, and Subramaniam 
Sriram. Cryo-electron microscopy–A primer for the non-microscopist. FEBS Journal, 280(1):28–
45, 2013. [PubMed: 23181775] 

[29]. Vinothkumar Kutti R and Henderson Richard. Single particle electron cryomicroscopy: Trends, 
issues and future perspective. Q. Rev. Biophys, 49, 2016.

[30]. Sigworth Fred J.. A maximum-likelihood approach to single-particle image refinement. J. Struct. 
Biol, 122(3):328–339, 1998. [PubMed: 9774537] 

[31]. Sigworth Fred J, Doerschuk Peter C, Carazo Jose-Maria, and Scheres Sjors HW. Chapter ten—
an introduction to maximum-likelihood methods in cryo-EM. Methods Enzymol., 482:263–294, 
2010. [PubMed: 20888965] 

[32]. Punjani Ali, Brubaker Marcus, and Fleet David. Building proteins in a day: Efficient 3D 
molecular structure estimation with electron cryomicroscopy. IEEE Trans. Pattern Anal. Mach. 
Intell, 2016.

[33]. Joubert Paul and Habeck Michael. Bayesian inference of initial models in cryo-electron 
microscopy using pseudo-atoms. Biophysical Journal, 108(5):1165–1175, 2015. [PubMed: 
25762328] 

[34]. Shatsky M, Hall R, Nogales E, Malik J, and Brenner S. Automated multi-model reconstruction 
from single-particle electron microscopy data. J. Struct. Biol, 170(1):98–108, 2010. [PubMed: 
20085819] 

[35]. Singer Amit, Coifman Ronald R, Sigworth Fred J, Chester David W, and Shkolnisky Yoel. 
Detecting consistent common lines in cryo-EM by voting. J. Struct. Biol, 169(3):312–322, 2010. 
[PubMed: 19925867] 

[36]. Shkolnisky Yoel and Singer Amit. Viewing direction estimation in cryo-EM using 
synchronization. SIAM J. Imaging Sci, 5(3):1088–1110, 2012.

[37]. Bandeira Afonso S, Chen Yutong, and Singer Amit. Non-unique games over compact groups and 
orientation estimation in cryo-EM. arXiv preprint arXiv:1505.03840, 2015.

[38]. Dashti Ali, Schwander Peter, Langlois Robert, Fung Russell, Li Wen, Hosseinizadeh Ahmad, 
Liao Hstau Y., Pallesen Jesper, Sharma Gyanesh, Stupina Vera A., Simon Anne E., Dinman 
Jonathan D., Frank Joachim, and Ourmazd Abbas. Trajectories of the ribosome as a Brownian 
nanomachine. Proc. Natl. Acad. Sci. U.S.A, 111(49):17492–17497, 2014. [PubMed: 25422471] 

[39]. Schwander P, Fung R, and Ourmazd A. Conformations of macromolecules and their complexes 
from heterogeneous datasets. Phil. Trans. R. Soc. B, 369(1647):20130567, 2014. [PubMed: 
24914167] 

[40]. Frank Joachim and Ourmazd Abbas. Continuous changes in structure mapped by manifold 
embedding of single-particle data in cryo-EM. Methods, 100:61–67, 2016. [PubMed: 26884261] 

[41]. Nakane Takanori, Kimanius Dari, Lindahl Erik, and Scheres Sjors HW. Characterisation of 
molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife, 
7:e36861, 2018. [PubMed: 29856314] 

Lederman et al. Page 30

Inverse Probl. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[42]. Wong Wilson, Bai Xiao-Chen, Brown Alan, Fernandez Israel S, Hanssen Eric, Condron Melanie, 
Tan Yan Hong, Baum Jake, and Scheres Sjors HW. Cryo-EM structure of the Plasmodium 
falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife, 3:e03080, 2014. 
[PubMed: 24913268] 

[43]. Zhou Qiang, Huang Xuan, Sun Shan, Li Xueming, Wang Hong-Wei, and Sui Sen-Fang. Cryo-
EM structure of SNAP-SNARE assembly in 20S particle. Cell Research, 25(5):551, 2015. 
[PubMed: 25906996] 

[44]. Bai Xiao-Chen, Rajendra Eeson, Yang Guanghui, Shi Yigong, and Scheres Sjors HW. Sampling 
the conformational space of the catalytic subunit of human γ-secretase. eLife, 4:e11182, 2015. 
[PubMed: 26623517] 

[45]. Ilca Serban L, Kotecha Abhay, Sun Xiaoyu, Poranen Minna M, Stuart David I, and 
Huiskonen Juha T. Localized reconstruction of subunits from electron cryomicroscopy images 
of macromolecular complexes. Nat. Commun, 6:8843, 2015. [PubMed: 26534841] 

[46]. Andén Joakim and Singer Amit. Structural Variability from Noisy Tomographic Projections. 
SIAM J. Imaging Sci, 11(2):1441–1492, jan 2018. [PubMed: 30555617] 

[47]. Tama Florence, Wriggers Willy, and Brooks Charles L III. Exploring global distortions of 
biological macromolecules and assemblies from low-resolution structural information and elastic 
network theory. J. Mol. Biol, 321(2):297–305, 2002. [PubMed: 12144786] 

[48]. Jin Qiyu, Sorzano Carlos Oscar S., de la Rosa-Trevín José Miguel, Bilbao-Castro José 
Román, Núñez-Ramírez Rafael, Llorca Oscar, Tama Florence, and Jonić Slavica. Iterative elastic 
3D-to-2D alignment method using normal modes for studying structural dynamics of large 
macromolecular complexes. Structure, 22(3):496–506, 2014. [PubMed: 24508340] 

[49]. Schilbach Sandra, Hantsche Merle, Tegunov Dmitry, Dienemann Christian, Wigge Cristoph, 
Urlaub Henning, and Cramer Patrick. Structures of transcription pre-initiation complex with tfiih 
and mediator. Nature, 551(7679):204, 2017. [PubMed: 29088706] 

[50]. Brooks Steve, Gelman Andrew, Jones Galin, and Meng Xiao-Li. Handbook of Markov chain 
Monte Carlo. CRC press, 2011.

[51]. Welling Max and Teh Yee W.. Bayesian learning via stochastic gradient Langevin dynamics. In 
Proc. ICML, pages 681–688, 2011.

[52]. Liu Weiping and Frank Joachim. Estimation of variance distribution in three-dimensional 
reconstruction. I. Theory. J. Opt. Soc. Am. A, 12(12):2615–2627, Dec 1995.

[53]. Penczek PA. Variance in three-dimensional reconstructions from projections. In Proc. ISBI, pages 
749–752, 2002.

[54]. Penczek Pawel A., Yang Chao, Frank Joachim, and Spahn Christian M.T.. Estimation of variance 
in single-particle reconstruction using the bootstrap technique. J. Struct. Biol, 154(2):168–183, 
2006. [PubMed: 16510296] 

[55]. Liao H and Frank J. Classification by bootstrapping in single particle methods. In Proc. ISBI, 
pages 169–172. IEEE, April 2010.

[56]. Penczek P, Kimmel M, and Spahn C. Identifying conformational states of macromolecules by 
eigen-analysis of resampled cryo-EM images. Structure, 19(11):1582–1590, 2011. [PubMed: 
22078558] 

[57]. Andén J, Katsevich E, and Singer A. Covariance estimation using conjugate gradient for 3D 
classification in cryo-EM. In Proc. ISBI, pages 200–204, April 2015.

[58]. Barnett Alex, Greengard Leslie, Pataki Andras, and Spivak Marina. Rapid solution of the cryo-
EM reconstruction problem by frequency marching. SIAM J. Imaging Sci, 10(3):1170–1195, 
2017.

[59]. Sorzano COS, Vargas J, de la Rosa-Trevín JM, Jiménez A, Maluenda D, Melero R, Martínez 
M, Ramírez-Aportela E, Conesa P, Vilas JL, et al. A new algorithm for high-resolution 
reconstruction of single particles by electron microscopy. Journal of structural biology, 
204(2):329–337, 2018. [PubMed: 30145327] 

[60]. Habeck Michael. Bayesian modeling of biomolecular assemblies with cryo-EM maps. Frontiers 
in Molecular Biosciences, 4:15, 2017. [PubMed: 28382301] 

[61]. Abadi Martín, Agarwal Ashish, Barham Paul, Brevdo Eugene, Chen Zhifeng, Citro Craig, 
Corrado Greg S., Davis Andy, Dean Jeffrey, Devin Matthieu, Ghemawat Sanjay, Goodfellow 

Lederman et al. Page 31

Inverse Probl. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ian, Harp Andrew, Irving Geoffrey, Isard Michael, Jia Yangqing, Jozefowicz Rafal, Kaiser 
Lukasz, Kudlur Manjunath, Levenberg Josh, Mané Dandelion, Monga Rajat, Moore Sherry, 
Murray Derek, Olah Chris, Schuster Mike, Shlens Jonathon, Steiner Benoit, Sutskever Ilya, 
Talwar Kunal, Tucker Paul, Vanhoucke Vincent, Vasudevan Vijay, Viégas Fernanda, Vinyals 
Oriol, Warden Pete, Wattenberg Martin, Wicke Martin, Yu Yuan, and Zheng Xiaoqiang. 
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available 
from tensorflow.org.

[62]. Paszke Adam, Gross Sam, Chintala Soumith, Chanan Gregory, Yang Edward, DeVito Zachary, 
Lin Zeming, Desmaison Alban, Antiga Luca, and Lerer Adam. Automatic differentiation in 
PyTorch. 2017.

[63]. Tran Dustin, Kucukelbir Alp, Dieng Adji B., Rudolph Maja, Liang Dawen, and Blei David 
M.. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint 
arXiv:1610.09787, 2016.

[64]. Tran Dustin, Hoffman Matthew D., Saurous Rif A., Brevdo Eugene, Murphy Kevin, and Blei 
David M.. Deep probabilistic programming. In Proc. ICLR, 2017.

[65]. Adler Jonas, Kohr Holger, and Öktem Ozan. ODL—a Python framework for rapid prototyping in 
inverse problems. Technical report, Royal Institute of Technology, 2017.

[66]. Rangan Aaditya, Spivak Marina, Andén Joakim, and Barnett Alex. Factorization of the 
translation kernel for fast rigid image alignment. Inverse Problems, 2019.

[67]. Moscovich Amit, Halevi Amit, Andén Joakim, and Singer Amit. Cryo-EM reconstruction of 
continuous heterogeneity by laplacian spectral volumes. Inverse Problems, 2019.

Lederman et al. Page 32

Inverse Probl. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://tensorflow.org


Figure 1. 
Sample cats: true 3-D instances (top row), rotated instance and noiseless projection images 

(second row), images with noise as used in the simulation (third row), and the reconstructed 

cat (bottom row, discussed in more detail in an earlier technical report [22])
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Figure 2. 
The anatomy of the pretzel: the green and blue regions identify the heterogeneous “arms.” 

In the analysis in Section 5, the yellow region marked the boundary of the rigid component, 

and the green and blue balls marked the boundaries of the two heterogeneous components. 

The components are allowed to overlap.
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Figure 3. 
The pretzel: samples of true pretzels (top row) and reconstructed pretzels (bottom row, see 

Section 5). The two arms have the same shape and range of motion, but for each instance of 

the synthetic molecule the conformation of each arm is chosen independently from the state 

of the other arm. For the purpose of this illustration, we present various states of one of the 

arms (the arm in the green ball in Figure 2), while holding the other arm (the arm in the blue 

ball in Figure 2) at a fixed state. In the simulation and the recovered object, the arms move 

independently.

The resulting hyper-molecule has two state variables: one state variable encodes the state of 

the “arm” in the green ball (see Figure 2) and the other state variable encodes the state of 

the arm in the blue ball (see Figure 2). The third state variable for the rigid center in the 

yellow ball is ignored in this figure. Again, for illustration purposes, we present one of the 

arms at various states, while holding the other arm fixed. The reconstruction captures the 

conformation found in the synthetic molecule. The reconstruction at a given value of t is 

similar to the true object at that state, but they do not correspond to the exact same state 

(see discussion in Section 5), since the choice of parameterization of states is not unique (see 

discussion in Section 6.2).
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Figure 4. 
The first step recovers a very low resolution object. Since the object has approximate C2 

symmetry, we rotated the crude low resolution result so that it was roughly symmetric 

around the z-axis.
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Figure 5. 
Running the heterogeneity algorithm reveals a technical artifact: the algorithm recovered the 

pretzel and its reflection as two heterogeneity state (green and red, superimposed).
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Figure 6. 
The errors in viewing directions, sorted by error size. The error is defined as the Frobenius 

norm of the difference between the true rotation matrix and the recovered rotation matrix. 

Due to the symmetry, there are two valid “true” rotation matrices, therefore the distance is 

measured to the nearest matrix. About a quarter of the particle images are poorly aligned 

(partly due to noise and approximate symmetries and partly due to technical limitations of 

the current prototype).
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Figure 7. 
The distribution of recovered state parameters vs. true state, aggregated over both arms 

(left). Since some of the particle images are not aligned properly, their state variables 

are meaningless. Therefore, we also present the distribution of recovered states for the 

10,000 particle images with the smallest alignment error (right). The alignment quality 

was determined using the true orientations. Additional experiments with lower noise and 

otherwise similar conditions yield a sharper distribution (not presented here).
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Table 1.

Table of Notation

V three- or higher-dimensional function

V the Fourier transform of V in spatial coordinates

Rr the vector r rotated by R
RV the function V rotated by R, so that (RV) (x) = V(R−1x)

r bold fonts are used to emphasize that a certain variable may be a vector, not just a scalar, when this is not obvious from the context.
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