
Research Article
Cardioprotective Effect of Selective Estrogen Receptor
Modulator Raloxifene Are Mediated by Heme Oxygenase in
Estrogen-Deficient Rat

Anikó Posa,1 Renáta Szabó,1 Krisztina Kupai,1 Anikó Magyariné Berkó,1 Médea Veszelka,1

Gergő Szűcs,1 Denise Börzsei,1 Mariann Gyöngyösi,2 Imre Pávó,1 Zoltán Deim,1

Zoltán Szilvássy,3 Béla Juhász,3 and Csaba Varga1

1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
2Department of Cardiology, Medical University of Vienna, Vienna, Austria
3Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Correspondence should be addressed to Anikó Posa; paniko@bio.u-szeged.hu

Received 30 March 2017; Revised 17 May 2017; Accepted 25 May 2017; Published 9 July 2017

Academic Editor: Márcio Carocho

Copyright © 2017 Anikó Posa et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Estrogens and raloxifene (RAL) have beneficial effects on certain cardiovascular indices in postmenopausal women characterized
by estrogen deficiency. Heme oxygenase (HO) activity is increased by 17β-estradiol (E2) and RAL in estrogen-deficient rat
resulting in vasorelaxation mediated by carbon monoxide. We determined the expressions of HO in cardiac and aortic tissues
after ovariectomy (OVX) and subsequent RAL or E2 treatment. We investigated the effects of pharmacological inhibition of HO
enzyme on the arginine vasopressin- (AVP-) induced blood pressure in vivo, the epinephrine- and phentolamine-induced
electrocardiogram ST segment changes in vivo, and the myeloperoxidase (MPO) enzyme activity. When compared with intact
females, OVX decreased the HO-1 and HO-2 expression, aggravated the electrocardiogram signs of heart ischemia and the
blood pressure response to AVP, and increased the cardiac MPO. E2 and RAL are largely protected against these negative
impacts induced by OVX. The pharmacological inhibition of HO in E2- or RAL-treated OVX animals, however, restored the
cardiovascular status close to that observed in nontreated OVX animals. The decreased expression of HO enzymes and the
changes in blood pressure ischemia susceptibility and inflammatory state in OVX rat can be reverted by the administration of
E2 or RAL partly through its antioxidant and anti-inflammatory roles.

1. Introduction

Although the clinical cardiovascular outcome study results in
postmenopausal women are inconsistent and disappointing
so far [1], estrogens demonstrated cardiovascular protective
effects in various conditions and play an important role in
the sex-related differences of hypertension in experimental
models. Estrogen receptor-dependent and independent path-
ways result in favourable changes in plasma lipoproteins,
haemostatic factors, glucose metabolism, and endothelium-
derived factors as well as in the inhibition of smooth muscle
cell migration and proliferation. Estrogen reduces both the
myocardial infarct size and the occurrence of ischemia-
reperfusion-induced damage and neutrophil infiltration in

cardiac muscle [2]. In addition to their specific, receptor-
mediated effects, estrogens have antioxidant properties also
related to their aromatic/phenolic chemical structure: ovari-
ectomy results in increased myeloperoxidase (MPO) enzyme
activity [3, 4]. MPO acts as a master enzyme in the generation
of reactive oxygen species (ROS) which promotes endothelial
dysfunction by generating atherogenic-oxidized low-density
lipoprotein OxLDL [5]. Elevated circulating MPO levels have
been found to be associated with the presence of coronary
artery disease (CAD) [6]. Estrogen replacement therapy has
antioxidant properties and attenuates neutrophil infiltration
and myeloperoxidase (MPO) activity in the heart [2].

Numerous studies prove that the cardioprotective effects
of estrogens are mediated by the nitric oxide- (NO-)
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dependent pathway [7]. Similarly to NO, carbon monoxide
(CO) also plays an important role in the estrogen-mediated
cardioprotection. Equimolar amount of CO is generated
during the catabolism of heme by the heme oxygenase
(HO) enzymes. CO activates soluble guanylyl cyclase (sGC)
by a mechanism similar to that for NO leading to smooth
muscle relaxation. Three isoforms of HO have been charac-
terized: HO-1, HO-2, and HO-3. HO-1 is widely expressed
and can be induced by a host of stimuli that produces oxida-
tive stress [8] and confers protection against vascular injury
through its effects on constriction and proliferation against
heart failure [9] and may play an important beneficial role
in conditions such as hypertension and acute renal and lung
injury [10, 11]. HO-2 occurs widely, including neuronal
populations and vascular endothelial cells [12], and it is
induced by glucocorticoids and probably estrogens [13, 14].

To overcome the adverse proliferative effects of estrogens
on breast and endometrial tissues in the clinical practice,
selective estrogen receptor modulators (SERMs) have been
developed. Preclinical and clinical studies with RAL, a
second-generation SERM, used for the prevention and treat-
ment of postmenopausal osteoporosis, indicate its estrogen-
like effects on the cardiovascular system. RAL improves
the endothelial function in ovariectomized (OVX), aged, or
hypertensive rats, ameliorates the hypertension-induced
endothelial dysfunction by reducing the production of reac-
tive oxygen species, and enhances endothelial nitric oxide-
(NO-) dependent vasodilatation in vitro. Moreover, RAL
causes direct vasodilatation [15]. It reduces the increased
cardiovascular risk in patients with osteoporosis, although
the outcomes of the RUTH trial showed that RAL did not
affect the overall risk of coronary heart disease in elderly
women. However, the incidence of coronary events was
significantly lower in women< 60 years assigned to RAL
compared with placebo. Measurements of cardiometabolic
risk factors show that women assigned to RAL had greater
increases in HDL cholesterol and greater reductions in LDL
cholesterol, non-HDL lipoprotein levels, and the ratio of
cholesterol to HDL, and fibrinogen levels. Moreover, a
meta-analysis recently confirmed the beneficial effect of
RAL administration on Lp(a) level [16].

The aim of this current study was to verify the extensive
estrogen-agonist properties of RAL in cardiovascular system
with analyzing of HO-1 and HO-2 isoforms. Therefore, we
determined the effects of E2 and RAL treatments on the
changes of blood pressure in vivo and ischemia susceptibility
of the heart in adrenalin and phentolamine models. With
pharmacological inhibition of HO, we evaluated its mediat-
ing role on these cardiac outcomes.

Epidemiological and clinical studies have shown a strong
relationship between inflammatory markers and risk of
future cardiovascular events. To examine how E2 replace-
ment and RAL treatment change the inflammatory status of
OVX rats, MPO activity was measured in myocardial tissue.

2. Materials and Methods

2.1. Examined Groups. 4-month-old female Wistar rats
(Laboratory Animals Producing Institute, Gödöllő, Hungary)

were anesthetized and subjected to ovariectomy surgery
(OVX). During OVX, the ovaries were clamped bilaterally
and removed. After a 6-week resting period to verify the
surgically induced menopause, the estrogen levels were
checked by enzyme-linked immunosorbent assay according
to the manufacturer’s directions (Quantikine rat Estrogen
ELISA kit, R&D Systems Inc.) [4]. Moreover, Giemsa stain-
ing was used to ensure that all animals were killed at the
proestrus stage of the estrus phase. In separate groups of
OVX animals, estrogen (estrofem, E2, 0.10mg/kg/day, orally,
once daily) or RAL (RAL 0.33: 0.33mg/kg/day, RAL 1:
1.0mg/kg/day, orally, once daily) replacement therapy was
used for a 2-week period. HO activity was inhibited by tin
protoporphyrin IX (SnPP, 30.0μg/kg, pH7.4, s.c., 24 h and
1h pretreatment). Each group consisted of at least 10
animals. All experimental procedures were performed in
accordance with the standards of the European Commu-
nity guidelines on the care and use of laboratory animals
and had been approved by the Institutional Ethics Com-
mittee. The experimental design of the study is presented
in Figure 1.

2.2. HO-1 and HO-2 Protein Expression. The aorta and
cardiac left ventricle (LV) were homogenized in ice-cold
Tris-mannitol and centrifuged for 20min at 12,000g at 4°C.
Protein content was measured by spectrophotometric assay.
Aliquots of 25.0μg of total cellular protein were denatured
and electrophoresed (100V, 50mA) on 10.0% polyacryl-
amide gel, transferred (100V, 100mA, 2 h) to nitrocellulose
membrane, and then determined by staining the blot with
0.10% Ponceau red in 5.0% acetic acid. Two hours after
blocking, the membranes were incubated with anti-HO-1
mouse monoclonal antibody (final dilution 1 : 1000) or anti-
HO-2 monoclonal antibody (final dilution 1 : 1000) (Stress-
Gen Biotechnologies Corp., Victoria, Canada) for 2 h at room
temperature, washed 3 times with PBS-Tween 20, and then
exposed with horseradish peroxidase-conjugated bovine
anti-mouse antibody (final dilution 1 : 2000; for 1 h at room
temperature). Membranes were developed by using an
enhanced chemiluminescence system and exposed to Hyper-
film. Films were analyzed by using ImageQuant Software
after scanning with GelAnalyst 3.01 Software. The descrip-
tion of homogenization procedure, the content of solutions,
as well as the producers of antibodies and equipment are
detailed previously [17].

2.3. The Response of the Blood Pressure to AVP. Rats were
anesthetized with 30.0% urethane and then pretreated with
phentolamine (P, 10.0mg/kg, i.p). After a stable baseline
measurement, a single bolus injection of arginine vasopressin
(AVP; 0.02, 0.06 or 0.18μg/kg) was infused intravenously to
tail vein of rats. The first step of the procedure was to separate
the right carotid artery, along with the vagus nerve, from the
connective tissue. Then, the right carotid vessel was cannu-
lated and the elevation of blood pressure was measured
[18]. The cannula was connected to the pressor transducer,
which converted the blood pressure into an electrical signal.
To avoid a thrombotic process, the cannula was filled with
10.0% heparin. The changes in blood pressure were analysed
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by HAEMOSYS analysis system and expressed as a percent-
age of the maximal increase relative to basal value. We
followed the methods of Posa et al. [17].

2.4. Experimental Angina Provoked by Epinephrine and
Phentolamine. The standard limb lead II of the surface elec-
trocardiogram (ECG) was recorded to measure the changes
of ST segment by the HAEMOSYS system [19]. The changes
in ST segment were used as the index of angina severity.
During the specific experimental procedure, a single dose
of epinephrine (10.0μg/kg) and 30 s later α-adrenoceptor
antagonist P (15.0mg/kg) were infused intravenously for
2 sec into the tail vein. After the administration of angina-
provoking agents, the ST segment depression was calculated
from the ECG waveform as a change in mV relative to the
baseline level. We followed the methods of Posa et al.
2013 [17].

2.5. Cardiac MPO Activity. The cardiac tissues were homog-
enized in ice-cold PBS (pH6.0), freeze-thawed three times,
and then centrifuged twice at 15000g for 15min at 4°C. The
supernatant was discarded, and a 12μL aliquot was added
to a mixture of 280μL of PBS (pH6) and 0.167mgmL−1 of
O-dianisidine dihydrochloride. The reaction was started with
10μL of 0.03% hydrogen peroxide and assayed spectrophoto-
metrically at 490 nm after 90 s of shaking. Cardiac MPO
activity was expressed as mU/mg protein [20].

2.6. Chemicals. RAL (Eli Lilly and Company USA), AVP
(Organon, The Netherlands), E2 (Novo Nordisc, Denmark),
urethane (Reanal, Hungary), P (Ciba-Geigy, Switzerland),
and SnPP (Frontier Scientific Europe, UK) were the

chemicals used in this study. All compounds not specified
above were derived from Sigma International.

2.7. Statistical Analysis. The results are expressed as means±
S.E.M. Western blots are shown as representative photo-
graphs of 3 independent experiments. Differences between
groups were performed using ANOVA test, and p ≤ 0 05
was taken as significant.

3. Results

3.1. Actions of RAL or E2 Treatment on HO-1 and HO-2
Expression of LV and Aortic Tissues in Ovariectomized Rat.
Ovariectomy was found to lead to significantly decreased
cardiac HO expression (HO-1: 39.86± 4.79%; HO-2: 48.0±
2.76%), and E2 (HO-1: 95.14± 4.11%; HO-2: 100.14± 4.02%)
or RAL (RAL 0.33, HO-1: 79.5± 3.42%; HO-2: 87.55± 3.85%,
RAL 1, HO-1: 90.29± 4.43%; HO-2: 95.86± 4.03%) supple-
mentation in the OVX rats completely restored the HO
expression to the level observed in the heart of the ovary-
intact females. Data are shown in Figures 2(a) and 2(b).

Ovariectomy significantly decreased the aortic HO enzyme
expression (HO-1: 49.86±2.59%; HO-2: 53.0±3.76%), and E2
(HO-1: 90.21±7.41%; HO-2: 94.14±5.02%) or RAL (RAL
0.33, HO-1: 72.34±7.45%; HO-2: 77.55±4.85%, RAL 1,
HO-1: 85.31±2.14%; HO-2: 92.46±6.03%) supplementation
in the OVX rats restored the HO expression. Data are shown
in Figures 3(a) and 3(b).

3.2. The Effect of HO Inhibition on Blood Pressure as a
Response to AVP. The arterial blood pressure was mea-
sured in the right carotid artery, and an increase was
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Figure 1: Experimental design of the study. OVX= ovariectomy, E2 = estrogen, RAL= raloxifene, SnPP= tin protoporphyrin IX.
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induced by i.v. administration of AVP (0.02–0.18μg/kg) in
catecholamine-depleted (P, 10.0mg/kg i.p.) female rats.

AVP caused a dose-dependent increase in arterial
blood pressure in both the ovary-intact and the OVX

female rats. In the OVX animals, AVP induced a signifi-
cantly higher elevation in blood pressure (24.30± 1.42 versus
53.60± 3.48%) than in the ovary-intact females (9.30±
1.62 – 24.0± 2.12%). Estrogen replacement (E2, 0.10mg/kg,
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Figure 2: Heme oxygenase-1 and heme oxygenase-2 expression in the cardiac left ventricle. HO-1 (a) and HO-2 (b) expression (expressed
as %) in the cardiac left ventricle (LV) of ovary-intact (black bar), ovariectomized (OVX (white bar)), and estrogen- (E2: (gray bar);
0.10mg/kg/day, 2 weeks orally) or RAL-treated (RAL 0.33 (red bar): 0.33mg/kg/day, RAL 1 (blue bar); 1.0mg/kg/day, 2 weeks, orally)
OVX rats. The diagrams demonstrate the densitometric assessment (means± S.E.M. expressed as %; 100% is the maximal expression).
Data are expressed as means± S.E.M. of the results of a minimum of 10 rats per group. Statistical significance: (A) p < 0 001 as
compared with the ovary-intact group. (B) p < 0 001 as compared with the OVX group without treatment.
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Figure 3: Heme oxygenase-1 and heme oxygenase-2 expression in the aorta. HO-1 (a) and HO-2 (b) expression (expressed as %) in the aortic
tissues of ovary-intact (black bar), ovariectomized (OVX (white bar)), and estrogen-treated (E2: (gray bar); 0.10mg/kg/day, 2 weeks orally), or
RAL-treated (RAL 0.33 (red bar): 0.33mg/kg/day RAL 1 (blue bar); 1.0mg/kg/day, 2 weeks, orally) OVX rats. The diagrams demonstrate the
densitometric assessment (means± S.E.M. expressed as %; 100% is the maximal expression). Data are expressed as means± S.E.M. of the
results on a minimum of 10 rats per group. Statistical significance: (A) p < 0 001 as compared with the ovary-intact group. (B) p < 0 001 as
compared with the OVX group without treatment.
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2 weeks, orally, once daily) (10.20± 2.07 versus 27.60±
2.50%) abolished the increased blood pressure response,
and RAL supplementation (RAL 0.33, 0.33mg/kg, RAL 1;
1.0mg/kg, 2 weeks, orally, once daily) (RAL 0.33: 17.6±
2.41–35.40± 2.30%, RAL 1: 12.10± 1.63–26.80± 3.45%)
resulted in a decrease in the blood pressure enhancement
provoked by AVP in the OVX rats. The inhibition of
HO activity caused significant augmentation in all groups
(ovary-intact: 33.10± 2.23% – 49.50± 2.77%; OVX group:
29.30± 0.56– 66.10± 1.07%; E2-treated group: 22.60± 1.46 –
54.50± 4.50%; RAL-treated group: RAL 0.33: 24.0±3.70%–
49.20±5.78% RAL 1: 23.40±1.60%–55.60±3.45%). Data are
shown in Figure 4(a).

3.3. The Effect of Inhibition of HO on Cardiac Ischemia. ST
segment changes were measured in a lead II standard surface
ECG following i.v. injection of epinephrine (10.0μg/kg) and
30 s later phentolamine (15.0mg/kg) in OVX female rats.
The administration of phentolamine 30 s after epinephrine
caused a significant ST segment depression only in the
OVX rats (−0.13± 0.038mV). In the ovary-intact females
and in the E2- (0.10mg/kg, 2 weeks, orally, once daily)
or RAL-treated (1.0mg/kg, 2 weeks, orally, once daily)
OVX groups, an ST segment depression did not develop.
Pretreatment with SnPP (30.0μg/kg, 24 h and 1h prior
to the measurement) caused a ST depression in the intact
(−0.20± 0.03mV) and E2 (−0.16± 0.04mV) or RAL-treated
(RAL 0.33: −0.11± 0.06mV, RAL 1: −0.17± 0.04mV) groups
and augmented the ST depression in the OVX females
(ST segment change: −0.34± 0.045mV). Data are shown
in Figure 4(b).

3.4. Cardiac Activity of MPO. MPO activity was measured
spectrophotometrically using o-dianisidine and hydrogen
peroxide. In the OVX hearts, a significant increase in
MPO activity was observed when compared with the ovary-
intact females (75.0± 8.42–59.0± 4.37mU/mg protein).
Estrogen replacement therapy (E2, 0.10mg/kg, 2 weeks,
orally, once daily) and RAL treatment (RAL 0.33,
0.33mg/kg, RAL 1; 1.0mg/kg, 2 weeks, orally, once daily)
caused a reduction in MPO activity of OVX groups (E2-
treated group: 61.2± 4.69mU/mg protein, RAL-treated
group, RAL 0.33: 58.65± 5.63mU/mg protein, RAL 1:
55.53± 2.64mU/mg protein). Pretreatment with SnPP
(30.0μg/kg, 24 h and 1h prior to the measurement)
significantly increased the MPO activity in the ovary-
intact (59.0± 4.37–73.0± 6.34mU/mg protein), E2-treated
(61.2± 4.69–79.35± 5.86mU/mg protein), and RAL-treated
(RAL 0.33: 58.65± 5.63–82.56± 3.7mU/mg protein, RAL 1:
55.53± 2.64–69.46± 4.24mU/mg protein) groups. Data are
shown in Figure 5.

4. Discussion

We have demonstrated cardiovascular protective features of
E2 and RAL mediated by the HO system in OVX female rats.
Estrogen depletion caused by ovariectomy was accompanied
by a decreased expression of HO-1 and HO-2, elevated blood
pressure, marked a ST segment depression, and increased

MPO activity. These adverse effects could be markedly
reversed by the exogenous administration of the E2 or RAL.
These protections by E2 and RAL were partially offset by a
pharmacological HO inhibitor, suggesting an important role
of HO system in these findings.

Ovariectomy resulted in reduced HO-1 and HO-2
expression both in the LV of the heart and in the aorta. These
data are in line with previous observations on the stimulatory
effects of estradiol on the HO system [21]. E2 treatment
elevated HO-1 protein levels and HO activity in trauma-
hemorrhage male rats, resulting in the prevention of shock-
induced organ damage [22]. Interestingly, in agreement with
the present findings, HO-2, which is considered to be consti-
tutively expressed, was also stimulated by E2 through an
estrogen receptor-dependent mechanism in human endothe-
lial cells [14]. Our results suggest that, together with gluco-
corticoids, E2 and RAL may belong to the few inducers of
HO-2 [13]. Most inducers specifically act on HO-1. For
example, hemin, a potent inducer of HO activity, increased
HO-1, but not HO-2 expression in the mesenteric artery of
young spontaneously hypertensive rats [23]. Similarly,
lipopolysaccharides-induced HO-1, but not HO-2 mRNA
expression in aortic tissues in rats [24]. We have previously
reported that estrogen replacement and RAL treatment cause
an increase in HO activity in OVX rat hearts and aorta [21].
In our recent study, we demonstrated that while estrogen
deficiency reduces, estrogen supplementation restores HO
expression in vivo.

We have found that, similarly to E2, RAL restores the HO
expression in the heart and aorta of OVX rats. RAL induces
HO-1 expression in mouse macrophages, resulting in inhibi-
tion of inducible NO synthase (iNOS) expression and the
subsequent inflammatory reactions. However, these effects
of RAL were not mediated by the estrogen receptor [25].
The inhibitory effect of RAL and estradiol on carrageenan-
induced iNOS and acute inflammation in normal and OVX
rats described earlier could probably also be mediated by
HO induction [26]. Our results are the first demonstration
that RAL also increases HO expression and activity in the
cardiovascular system.

We found that OVX augmented the AVP-induced dose-
dependent increase in blood pressure, as reported previously
[18, 27]. E2 or RAL administration to OVX animals restored
the blood pressure increase as compared with the control
levels, irrespective of the AVP dose. These effects are at least
partially mediated by the increased production of NO due to
the constitutive nitric oxide synthase (cNOS) activity being
elevated close to the pre-OVX level [18, 28]. In addition to
the cNOS stimulation, the elevated HO activity induced by
E2 or RAL also plays a role in the attenuated blood pressure
response to AVP. The pretreatment with SnPP, a HO activity
inhibitor, prevented the reduced blood pressure response by
E2 or RAL. It is possible that the blood pressure responses
in our model result from the interplay between the NOS
and HO systems. Indeed, HO-1 overexpression restored
endothelial NOS (eNOS) activity in endothelial cells under
oxidative stress [29]. A low concentration of CO induced
NO release, while a high concentration inhibited eNOS
activity and NO generation [30]. Moreover, the potential
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nonspecific role of the selective HO inhibitor metallopor-
phyrins in vasoconstriction is also not fully elucidated.
Certain other metalloporphyrins similar to SnPP may pos-
sess nonspecific vasoconstrictor effects in the rat small
cerebral arteries, and SnPP could therefore possibly potenti-
ate the blood pressure increase caused by HO inhibition
[31]. In contrast, the metalloporphyrin, chromium mesopor-
phyrin, has been shown to increase the myogenic tone only of
the small muscular branch of rat femoral arteries and not of
large arterial vessels such as the aorta or the femoral artery
[32]. Thus, the effects of the AVP-induced blood pressure
increase in our experiments may largely represent reduced
HO-1 and HO-2 activities, but we cannot exclude some
additional direct effect by SnPP and the contribution of the
interplay between the HO and NO systems. According to
Ikeno et al., OVX caused significantly increased blood pres-
sure response to AVP [27]. In our study, we found similar
results. The AVP-induced blood pressure response in the
presence of SnPP was also augmented in the sham-operated
control animals. This in vivo finding supports the role of
the basal, constitutive HO activity in the protection against
vascular constriction found ex vivo; HO-1 knockout mice

exhibited an impaired relaxation of the superior mesenteric
arteries and an increased contractility to phenylephrine as
compared with the vessels from wild-type animals [33, 34].
The HO inhibitor chromium mesoporphyrin increased the
blood pressure in young spontaneously hypertensive rats
[23]. Moreover, treatment with lipopolysaccharide induced
the HO-1 and significantly reduced the blood pressure in
rats, whereas pretreatment with the HO inhibitor zinc
protoporphyrin-IX (ZnPP) prevented the fall in blood pres-
sure [24]. Similarly, under stress conditions, while ZnPP
decreased the aortic CO and cGMP levels, the acute vasocon-
strictor effects of either ααHb or NG-nitro-L-arginine methyl
ester were restored in the rat after surgical intervention [35].
Previous studies have also demonstrated that either acute
or chronic administration of various inducers of HO-1 to
spontaneously hypertensive rats led to a normalization of
the blood pressure [36]. In another model, the overexpres-
sion of HO-1 was associated with an increase in HO activity
and a decrease in the blood pressure in spontaneously hyper-
tensive rats [37]. In addition, Vera et al. demonstrated that
induction of HO-1 decreases the blood pressure in
angiotensin-II-dependent hypertension [38, 39].
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Figure 4: (a) The effect of HO inhibition on blood pressure as a response to AVP. The effects of HO inhibition by tin protoporphyrin
IX (SnPP: 30.0μg/kg, pretreatment 24 h and 1 h prior to the measurement) on the increase in arterial blood pressure measured on
administration of arginine vasopressin (0.02, 0.06, or 0.18 μg/kg) in ovary-intact, ovariectomized (OVX), and estrogen- (E2: 0.10mg/
kg/day, 2 weeks orally, once daily) or RAL-treated (RAL 0.33: 0.33mg/kg/day, RAL 1: 1.0mg/kg/day, 2 weeks, orally, once daily) OVX
rats. The intact + SnPP, OVX+ SnPP, E2 + SnPP, RAL 0.33 + SnPP, and RAL 1 + SnPP columns show the actions of SnPP pretreatment
(30 μg/kg 24 h and 1 h prior to the measurement). Results are shown as means± S.E.M. for 10 animals in each group. Statistical
significance: (A) p < 0 05 compared with the ovary-intact group, and (B) p < 0 05 a significant difference between the groups with and
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injection of epinephrine (10.0 μg/kg) and 30 s later phentolamine (15.0mg/kg) in ovary-intact, ovariectomized (OVX), and estrogen-
(E2: 0.10mg/kg/day, 2 weeks orally, once daily) or RAL-treated (RAL 0.33: 0.33mg/kg/day, RAL 1: 1.0mg/kg/day, 2 weeks, orally, once
daily) OVX rats. The intact + SnPP, OVX+ SnPP, E2 + SnPP, RAL 0.33 + SnPP, and RAL 1+ SnPP columns show the actions of SnPP
pretreatment (30 μg/kg 24 h and 1 h prior to the measurement). Results are shown as means± S.E.M. for 10 animals in each group.
Statistical significance: (A) p < 0 05 as compared with the ovary-intact group, and (B) p < 0 05 a significant difference between the groups
with and without SnPP pretreatment.
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In our study, estrogen deficiency increased the level of
MPO. E2 substitution and RAL treatment, on the other hand,
proved effective to attenuate the MPO activity in OVX rats.
The connection between the MPO level and cardiac parame-
ter or tissue HO expression suggests a preventive role of
estrogen therapy in cardiovascular pathological processes.
Similarly to our results, Chung et al. demonstrated that
long-term treatment with RAL significantly decreased the
cardiac activity of MPO in OVX rat [40]. While OVX
increases the inflammation processes, the elevated levels of
inflammatory markers can be decreased with hormone
replacement therapy [41]. Oxidative stress plays a critical
pathophysiological role during aging and after OVX. MPO
is a major component of the oxidative system and displays
potent proatherogenic properties. MPO can oxidize LDL
cholesterol and reduces NO bioavailability, thereby impair-
ing its vasodilatory and anti-inflammatory functions [42].
In our earlier study, we reported that higher levels of MPO
have higher risk of cardiovascular events. The elevated level
of the marker of leukocyte activation MPO correlated nega-
tively with the tissue availability of cNOS and the indices of
microvascular patency [43].

In conclusion, we have demonstrated that E2 supplemen-
tation and RAL treatment in OVX rats present beneficial
effects on cardiovascular system, thereby increasing the
HO-1 and HO-2 enzyme expression, decreasing the AVP-

induced blood pressure, and attenuating the cardiovascular
ischemia susceptibility. Estrogen administration has been
shown to attenuate MPO activity in OVX rats.

Our study has several important limitations. Our experi-
ments were performed in young OVX female rats. While this
is a widely accepted estrogen deficient, “menopausal” rat
model for the investigations of various conditions (hormone
replacement therapies, cardiovascular health, osteoporosis,
and so forth), our findings may not reflect adequately the
situation in aging female rats and their relevance to postmen-
opausal women is even more limited. All cardiovascular
changes and vasoconstrictions investigated in the present
acute experiment reflect short-term alterations.
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