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Despite evidence of cancer immune-surveillance, which plays a key role in tumor rejection,
cancer cells can escape immune recognition through different mechanisms.Thus, evasion
to Natural killer (NK) cell-mediated anti-tumor activity is commonly described and is medi-
ated by various mechanisms, mainly cancer cell-induced down-regulation of NK-activating
receptors (NCRs, NKG2D, DNAM-1, and CD16) as well as up-regulation of inhibitory recep-
tors (killer-cell immunoglobulin-like receptors, KIRs, NKG2A). Alterations of NK cells lead
to an impaired recognition of tumor cells as well as a decreased ability to interact with
immune cells. Alternatively, cancer cells downregulate expression of ligands for NK cell-
activating receptors and up-regulate expression of the ligands for inhibitory receptors. A
better knowledge of the extent and the mechanisms of these defects will allow developing
pharmacological strategies to restore NK cell ability to recognize and lyse tumor cells. Com-
bining conventional chemotherapy and immune modulation is a promising approach likely
to improve clinical outcome in diverse neoplastic malignancies. Here, we overview experi-
mental approaches as well as strategies already available in the clinics that restore NK cell
functionality.Yet successful cancer therapies based on the manipulation of NK cell already
have shown efficacy in the context of hematologic malignancies. Additionally, the ability
of cytotoxic agents to increase susceptibility of tumors to NK cell lysis has been studied
and may require improvement to maximize this effect. More recently, new strategies were
developed to specifically restore NK cell phenotype or to stimulate NK cell functions. Over-
all, pharmacological immune modulation trends to be integrated in therapeutic strategies
and should improve anti-tumor effects of conventional cancer therapy.

Keywords: cancer, immune escape, NK cell, NCR, NKG2D, KIR, immunotherapy

INTRODUCTION
Natural killer (NK) cells are key components of the innate immu-
nity and substantially contribute to anti-tumor immune responses
(1–3). The role of NK cells in immune surveillance is linked to
many aspects of the NK cell biology. First, NK cells directly recog-
nize and lyse cancer cells. Besides this direct effect, NK cells are also
able to initiate anti-tumor immune responses via the secretion of
various cytokines such as IFN-γ and TNF-α (1, 4).

Triggering of effector functions of NK cells is the result of
a balance between activating and inhibitory signals provided
by a large set of activating or inhibitory receptors. The most
commonly described activating receptors involved in anti-tumor
immunity are NKG2D, DNAM-1, and the natural cytotoxic
receptors (NCR), NKp30, NKp44, and NKp46. Hence, NCR are
NK-activating receptors of primary importance in immune sur-
veillance and response in the context of cancer (5–7). NKp30,

NKp46 are expressed by all NK cells, whereas NKp44 is only
expressed by activated NK cells (8–11). The acquisition of NCR
during NK cell maturation correlates with the acquisition of
cytolytic activity against tumor target cells (12). NKG2D is an
activating receptor also expressed by, but not restricted to, all
NK cells. Ligands for NKG2D include proteins related to non-
classical HLA-I such as MICA, MICB, or the structurally related
ULBP1–6 (13, 14). Inhibitory receptors belong to the killer-
cell immunoglobulin-like receptors (KIRs) or to the C-type
lectin CD94/NKG2A heterodimer (15). These receptors recog-
nize HLA-I and the non-classical HLA-E and inhibit NK cell
activation.

The fundamental role of NK cells in oncology has been widely
demonstrated in both hematologic and solid neoplasms. The
relevance of this concept is illustrated by many examples in
clinical practice, such as the success of hematopoietic stem cell
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transplantation in hematologic malignancies (16–19), poor NK
cell functions associated with increased incidence of cancer (20),
the importance of NK cells for the response to chemotherapy and
radiotherapy (21, 22), or the use of parameters related to NK cell
functions as prognostic biomarkers (23–25). Thus, NK cells can
be used as prognostic biomarkers, as well as therapeutic targets or
therapeutic agents.

However, although NK cells can kill target cells spontaneously
without prior stimulation, a delicate balance between inhibitory
and activating signals tightly regulates their activation (1, 26). In
the context of cancer, this balance is often deregulated through
various mechanisms (27). First of all, cancer cells are able to
induce a down-regulation of activating receptors (notably NCR
and NKG2D,) as well as an up-regulation of the NK cell inhibitory
receptors (23, 24, 28, 29). Then, tumor cells usually poorly express
ligands for activating receptors, and/or overexpress ligands for
inhibitory receptors (30–32). Finally, the release of various fac-
tors such as cytokines or reactive oxygen species (ROS) within the
tumor microenvironment impairs the crosstalk between NK cells
and dendritic cells (DCs), enhancing the phenomenon of tumor
escape (33–35).

Many efforts have been developed in the past few years to restore
NK cell functionality in cancer patients. In this review, we focus on
NK cells as a cornerstone to restore or improve anti-tumor immu-
nity. We overview different pharmacological strategies aiming at
counteracting the effect of tumor cells on NK cell functionality
(Figure 1). Taking into account the crucial importance of NK cells
for maintenance of a prolonged response to treatment, therapeutic
strategies improving or restoring NK cell functions in combina-
tion with standard treatment regimens are expected to broadly
impact patients’ clinical outcome.

INDUCING NATURAL CYTOTOXIC RECEPTORS EXPRESSION
Natural cytotoxic receptors expression is classically downregulated
during cancer progression, regardless of the type of cancer (23, 24,
28, 29). The mechanisms involved in NCR down-regulation still
need to be further defined. Restoring NCR expression may ren-
der NK cells more efficient against tumor cells. So far, clinical
strategies aiming at restoring NCR expression remain to be pro-
posed. However, taking into account the strong prognostic value
of NCR expression, therapeutic strategies aiming at inducing their
expression is expected to improve clinical outcome. Therefore,
targeting events interfering with the expression of these receptors
is certainly a relevant therapeutic option (23, 25). Among possi-
ble mechanisms, Transforming Growth Factor beta 1 (TGF-β1)
downregulates NKp30 and NKG2D expression on NK cells, lead-
ing to a decreased ability of NK cells to kill target cells (23, 36–38).
The release of TGF-β1 is done either by the tumor cell or by reg-
ulatory T cells (Tregs). Other tumor-released soluble factors are
involved in NCR down-regulation, such as Activin-A, indoleamine
dioxygenase (IDO), or prostaglandin E2 (PGE2) (34, 39, 40).
Similarly to other activating receptors defect, the down modu-
lation of NCR is somehow dependent on the pressure exerted by
tumor cells, which reflects a pathway for tumor evasion. Hence,
in acute myeloid leukemia (AML) patients, the low NCR expres-
sion acquired during leukemia development is restored in patients
achieving complete remission (23). Some recently published data

suggest that NCR down-regulation is consecutive to NK activa-
tion in the tumor, leading to an exhaustion of the NK cells and a
subsequent down-regulation of the NCRs (41).

CYTOKINES
Amongst the efficient ways to improve NCR expression on NK
cells, the use of cytokines, mainly IL-2, IL-15, and IL-21, may
be promising. NK cell differentiation is cytokine-dependent (29).
High baseline levels of circulating IL-2 constitute an independent
prognostic factor for head and neck cancer patients (42).

IL-2
IL-2 is FDA-approved for cancer indications, which is not the case
for IL-15 and IL-21. Most clinical trials using cytokines alone or in
combination with chemotherapy or radiotherapy are set with IL-
2. Conclusions of clinical trials report modest anti-tumor activity
when used in monotherapy. Among its diverse immunostimula-
tory potentials, IL-2 is able to induce expression of NKG2D and
NKp46 on NK cells (43, 44). However, following IL-2 stimulation,
the NK cytolytic functions do not seem to reach normal cytolytic
activity when compared to healthy volunteers (44). Moreover, IL-2
fails to induce NK cell proliferation compared to healthy volun-
teers, and increases the rate of apoptotic NK cells (44). Some
authors evidenced the critical role of IL-2 for the development
and peripheral expansion of regulatory T cells (45), which is not
the case for IL-15 and IL-21. Noteworthy, the use of IL-2, especially
at high doses, might be limited to ex vivo expansion of NK cells
for problems of in vivo toxicity (46).

IL-15
IL-15 plays a major role in the proliferation, differentiation, sur-
vival, and functions of T and NK cells (29, 47). Exposure of NK
cells to low doses of IL-15 significantly improved NKp30, NKp46,
NKG2D, and NKG2C surface expression. Accordingly, this increase
of receptor expression was correlated with an increase of natural
cytotoxicity against autologous AML blasts (29, 48). In addition,
in hematologic malignancies, low levels of circulating IL-15 after
bone marrow transplantation were predictive of risk of relapse
(49). In line, NK cell recovery in stem cell transplantation is
strongly correlated with plasmatic concentrations of IL-15 (48).

IL-15 serum concentration increases dramatically following
administration of cytotoxic agents (29, 49). For some authors,
this elevation of serum IL-15 could be related to the depletion
of lymphoid populations that normally consume circulating IL-
15 or to inflammation induced by chemotherapy (48). In vivo,
injections of the IL-15/IL-15Rα heterodimer result in significant
expansion of γδ, CD8+ T, and NK cells (47). Recently, this cytokine
has become available for use in early phase clinical trials as an alter-
native to IL-2 (29, 47). IL-15 is currently assessed as a therapy for
various solid tumors including refractory metastatic melanoma,
metastatic renal cell cancer. IL-15 is also assessed as an adjuvant of
chemotherapy and vaccines strategies or prior to stem cell therapy
and NK cells infusion.

IL-21
IL-21 shares significant structural homology with IL-2 and IL-
15 (50). In phase I trials, this cytokine shows a favorable safety

Frontiers in Immunology | NK Cell Biology March 2014 | Volume 5 | Article 122 | 2

http://www.frontiersin.org/NK_Cell_Biology
http://www.frontiersin.org/NK_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chretien et al. Strategies to reverse cancer-induced NK alterations

FIGURE 1 | Pharmacological strategies aiming at improving NK anti-tumor functions. Various options have been developed to restore NK cell functionality
in cancer: induction of NK triggering receptors, induction of NK ligands expression on the target cells, blockade of inhibitory signals, as well as stimulation of
NK/DC crosstalk. In addition, increasing NK number and improving ADCC can enhance this effect. NKL, natural killer ligand; NKR, natural killer receptor.

profile and signs of clinical activity (51). Although some reports
demonstrated a deleterious effect of IL-21 by reducing activat-
ing receptor expression (NKG2D, NKp44), its main effect is to
enhance NK cell functions. Hence, IL-21 is capable of inducing
NK cell maturation and NKp46 and NKp30 expression (12, 52,
53). Ex vivo, IL-21 stimulates the production of IFN-γ and cyto-
toxic properties of NK cells (53). Several clinical trials reported the

effect of IL-21 therapy on immune system after administration in
patients with metastatic melanoma and renal cell carcinoma (51).
Although NK and T-cell numbers were temporarily decreased dur-
ing administration of IL-21, the cells had higher expression of
CXCR3, HMMR, IFN-γ, perforin, and granzymes at the mRNA
level. Evidence of NK cell activation was further confirmed by
enhanced ability of NK cells from patients to lyse K562 target cells
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(51). These results were confirmed in a phase II trial for metastatic
melanoma (54).

IMMUNOMODULATORY DRUGS
Immunomodulatory drugs (IMiDs) present another therapeutic
option to increase activating receptors expression. Two molecules
are currently developed in oncology: lenalidomide, FDA-approved
in hematologic malignancies, and pomalidomide. These drugs
present anti-angiogenic and anti-proliferative activity, and their
effect on the immune system, particularly on NK cells, is probably
part of their mechanism of action. For instance, immunomoni-
toring of patients treated with immunomodulatory drugs, IMiDs
have been associated with an increased expression of NKp44 and
NKp46, in multiple myeloma (MM), myelodysplastic syndrome
but also in solid tumors (55, 56). Interestingly, this effect of
lenalidomide may not be a direct effect on NK cells because this
effect was not observed in vitro on purified NK cells (57). In this
study, IMiDs-treated NK cells displayed a lower NKp46 expres-
sion, although this had no functional consequences on cytolytic
functions of NK cells.

HISTAMINE
Blocking phenomenon responsible for NCR down-regulation is
another potential strategy to induce indirect NCR expression.
Thus, ROS, PGE2, and IDO, which are present in the tumor
microenvironment, appear to be relevant targets (33–35). Romero
et al. demonstrated that histamine was able to prevent NKp46 and
NKG2D down-regulation mediated by mononuclear and poly-
morphonuclear phagocytes ROS production (35). Moreover, hist-
amine maintains the cytolytic activity of NK cells toward leukemic
cells despite the presence of phagocytes. A phase III clinical trial
assessed the efficacy of post-consolidation immunotherapy with
IL-2 and histamine dihydrochloride for patients with AML in com-
plete remission. This treatment was shown to significantly improve
leukemia-free survival, with mild to moderate side effects (33).

INDUCING NKG2D EXPRESSION
NKG2D down-regulation on circulating NK cells in cancer
patients compared to healthy volunteers was described in vari-
ous cancer types, including breast cancer, glioma, melanoma, and
lung cancer (58–62).

CYTOKINES
Few pharmacological agents are able to directly increase the
expression of NK-activating receptors. Until now, the only
described possibility to directly induce NKG2D expression on NK
cells is the use of immunostimulatory cytokines. Ex vivo, IL-15
was shown to be able to induce a dramatic increase of NKG2D
expression (63, 64). Although the use of IL-15 is still restricted to
phase I and II clinical trials, conventional chemotherapies are able
to induce a huge increase of the circulating IL-15 (29).

TGF-β PATHWAY
A second strategy allowing NKG2D restoration in the cancer con-
text is indirect up-regulation by blocking the agents responsible
for NKG2D down-regulation. For instance, stroma-derived factors
in the tumor microenvironment, in particular TGF-β, display an

immunosuppressive activity on most anti-tumor immune effec-
tors, and an indirect immunosuppressive effect via the inhibition
of MICA transcription (38, 65). Besides immune suppression,
stroma-derived factors also present direct effects on the tumor cell
since TGF-β promotes tumorigenesis and epithelial–mesenchymal
transition (66). In vitro, TGF-β inhibits the expression of NKp30
and NKG2D (37) and blood concentration of TGF-β1 was shown
to inversely correlate with NKG2D expression at the surface of
NK cells of cancer patients and has been linked with impaired NK
cytotoxicity (58, 60). TGF-β antagonizes the IL-15-induced pro-
liferation and gene expression associated with NK cell activation,
inhibiting the expression of NK cell activation receptor molecules
(67). Moreover, ex vivo addition of neutralizing anti-TGF-β mon-
oclonal antibodies completely restores surface NKG2D expression
at the surface of NK cells and partially restores NKp30 expression
(60, 67). In addition, blocking TGF-β completely restores IFN-γ
production by tumor-associated NK cells (67).

Some approaches aiming at decreasing circulating TGF-β in
patients are currently under investigation (68). These early stage
clinical trials currently assess several approaches, mainly the use
of anti-TGF-β monoclonal antibodies and antisense oligonu-
cleotides. For example, fresolimumab (GC-1008), a fully human-
ized pan-neutralizing antibody directed against all the three iso-
forms of TGF-β, has been assessed in renal cell carcinoma and
in metastatic melanoma (68, 69). In this phase I/II trial, fresoli-
mumab was safe and well-tolerated with no dose-limiting toxicities
and displayed encouraging results.

The impact of TGF-β blockade on immune parameters was
recently assessed in patients with malignant pleural mesothe-
lioma treated with fresolimumab (70). Fresolimumab had no effect
in the expression of NK, CD4+, or CD8+ T-cell-activating and
inhibitory markers, other than a decrease in the expression of 2B4
and DNAM-1 on NK cells, although TGF-β serum concentrations
were markedly decreased. The authors conclude that acute changes
in serum TGF-β concentration are not associated with the set of
biomarker changes that were predicted based on animal models.
No effect was detected on the expression of NKG2D nor NKp30,
and the effect on DNAM-1 expression, although significant, was
minor (70).

Another possibility to decrease TGF-β in the tumor milieu is
the use of antisense oligonucleotides. Some of these compounds
are currently in clinical evaluation. Belagenpumatucel-L, a thera-
peutic vaccine comprised of four TGF-β2 antisense gene-modified
allogeneic NSCLC cell lines was assessed in grade III/IV NSCLC
patients. In a phase II study, positive clinical outcomes were cor-
related with immune response to the vaccine and induction of
immune enhancement of tumor antigen, but the effect on NK
cells was not assessed (65). This compound is still currently inves-
tigated in non-small cell lung carcinoma in phases II and III
trials.

Alternatively, SD-208, a TGF-β receptor I kinase inhibitors,
restores the lytic activity of polyclonal NK cells against glioma cells
in the presence of recombinant TGF-β or of TGF-β-containing
glioma cell supernatant (71). This molecule is able to restore
NKG2D expression on NK cells, whose expression was altered
in vitro by cancer cell lines supernatants or direct inhibition with
recombinant TGF-β (72).
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To conclude, NKG2D expression has never been shown to
present a prognostic value unlike NKG2D ligands expression, thus
suggesting that the best strategy to target the NKG2D/NKG2D lig-
and system might be to induce ligands expression rather than the
receptor itself.

INDUCING LIGANDS EXPRESSION FOR NK-ACTIVATING
RECEPTORS
The main ligands for NKG2D are the MHC class I chain-
related molecules MICA and MICB and the ULBP1–4. These
ligands have been extensively studied in various malignan-
cies. Ligands of DNAM-1 are CD112 (Nectin-2) and CD155
(Poliovirus receptor, PVR). Ligands of NCRs have been elu-
sive for many years and although pathogen-related ligands have
been suggested (hemagglutinins, heparate sulfates), only ligands
for NKp30 have been identified. B7-H6, an Ig molecule from
the family of B7 molecules has been identified as NKp30 lig-
and (73). B7-H6 is expressed by several cell lines and by pri-
mary tumors (74). Mechanisms of induction of B7-H6 expres-
sion have been described in non-transformed cells with TLR
agonists as well as the pro-inflammatory cytokines TNFα and
IL-1β (75). In primary tumors, recent experimental data sug-
gest that B7-H6 expression is regulated by HDACs, in particular
HDAC3 (74). In addition, BAG6/BAT3, a nuclear protein local-
ized at the plasma membrane or on exosomes of tumor cells,
has also been assigned as an NKp30 ligand (76). The impor-
tance of ligands expression for tumor cell recognition by NK cells
is a key factor for anti-tumor immune response, as illustrated
by the strong prognostic value of MICA/MICB, RAET1G, and
ULBP2 expression in colorectal cancer and breast cancer (30–32).
Tumor cells poorly express ligands for NK-activating receptors,
and tumor ligands expression is inversely correlated with clinical
stage (77).

HISTONE DEACETYLASE INHIBITORS
Histone deacetylase inhibitors were successfully introduced as
anti-cancer agents for their ability to block gene transcription
and promote cell differentiation. These molecules induce cell cycle
arrest and induce apoptosis of tumor cells, with minimal effects
on normal tissue (78). Unexpectedly, their effect on anti-tumor
immunity is part of their mechanism of action.

The main impact of these molecules on immunity is mediated
through up-regulation of tumor antigens, in particular NKG2D
ligands (79). HDACi-mediated immune modulation is also linked
to the ability of these molecules to enhance immune recognition
and lysis of the tumor cells by T cells and NK cells (79). To date,
two molecules, romidepsin and vorinostat, have received approval
from the FDA for the treatment of cutaneous T-cell lymphoma.
In vitro, romidepsin, vorinostat, and sodium valproate were shown
to increase MICA/B and ULBPs expression on various cancer cell
lines and primary tumor cells, and render the target cells more
sensitive to NK cell lysis (80–84). Depending on the authors, this
mechanism was found to be GSK3- or ERK-dependent (81, 83).

Induction of MICA and MICB expression was associated
with a shedding of the soluble forms of these NKG2D ligands,
sMICA and sMICB (82). This raises the question of the potential
counterbalancing of the clinical benefits in this particular case,

since increase of the serum concentrations of sMICA and sMICB
are responsible for NKG2D endocytosis and degradation, and rep-
resents a mode of T-cell silencing and immune escape (62, 82).
Thus, Poggi et al. monitored NKG2D ligands shedding follow-
ing treatment of AML patients treated with valproic acid. In this
study, MICA, ULBP2, and ULBP3 expression on blasts was sig-
nificantly increased after treatment with valproic acid. No ligand
shedding was detected despite a strong up-regulation of the lig-
ands on leukemic cells. Consequently, leukemic cells from patients
treated with valproic acid, become able to trigger lytic granule
exocytosis by autologous CD8+ T and NK cells (85).

However, some studies evidenced that HDACi down-regulate
ligands for other NK cells-activating receptors, such as B7-H6,
a ligand for NKp30, and impair tumor cell recognition by NK
cells. These results were obtained with first and second generation
HDACi (vorinostat, trichostatin A, valproic acid, and apicidin)
on various cancer cell lines (74). Moreover, treatment of human
NK cells with trichostatin A, valproic acid, or sodium butyrate
affects the functional response of human NK cells, evidenced by
a strong inhibition of IFN-γ secretion and a decreased ability to
lyse target cells (86). Furthermore, the authors evidenced a down-
regulation of activating receptors NKG2D and NCRs on resting
and cytokine-stimulated NK cells.

Another study assessed the effect of vorinostat and valproic acid
on NK cells. At therapeutic concentration, these drugs induced
the down-regulation of NKp30 and NKp46, and inhibited IL-2
activation of NK cells, thus suppressing their cytolytic activity
toward leukemic cell lines. This effect seems to be mediated by
the inhibition of NFκB. In addition, the authors showed that
vorinostat was toxic to NK cells in the range of therapeutic
concentrations (87).

DEMETHYLATING AGENTS
The hypomethylating drugs decitabine and azacytidine are epige-
netic drugs that are currently used in treatment of hematological
malignancies (88). Besides their direct effect on the tumor cell,
these drugs probably act through their impact on innate immu-
nity. In vitro, both drugs induce ULBP1 and MICB on cell lines
and primary tumor cells when incubated with either decitabine or
5-azacytidine (89, 90). This effect was related to promoter DNA
methylation and DNA damage and correlates with enhanced NK
cytotoxicity (90, 91).

However, DNA methylation is an important regulator of KIR
expression by NK cells, potentially impacting on NK cell functions
(92, 93). Hence, 5-azacytidine induces an increase in the percent-
age of KIR+ NK cells upon treatment with clinically relevant con-
centrations of 5-azacytidine, which correlated with an impaired
granzyme B and perforin release, IFN-γ production, and decreased
cytotoxicity (91, 94). However, this effect seems to be restricted to
5-azacytidine, since decitabine increases NK cell cytotoxicity and
enhances IFN-γ production, in a dose-dependent manner (91).
These results were confirmed in recent studies in different set-
tings. Recently, Cerdeira et al. tested the effect of 5-azacytidine in
hypoxic conditions with addition of TGF-β. Although the authors
confirmed the impact of this drug on KIR expression, however, the
cytotoxicity of NK cells cultured in these specific conditions was
not affected (92).

www.frontiersin.org March 2014 | Volume 5 | Article 122 | 5

http://www.frontiersin.org
http://www.frontiersin.org/NK_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chretien et al. Strategies to reverse cancer-induced NK alterations

For some authors, the results obtained in vitro in such set-
tings are debatable. Indeed, since 5-azacytidine and decitabine are
nucleoside analogs, these molecules require DNA replication to be
incorporated into the DNA strand. In vitro studies using resting
NK cells are therefore more likely to reflect the direct mRNA effect
of such drugs than the effect of hypomethylation (88). Thus, Kopp
et al. studied the effect of decitabine on proliferating NK cells.
The authors show that decitabine negatively affects NK cell viabil-
ity and proliferation in a dose-dependent manner. Simultaneous
increase in KIR and NKp44 expression and decrease in NKG2D
expression was evidenced. However, the impact on NK function-
ality in terms of toxicity was biphasic, with decreased toxicity at
low doses and increased toxicity at high doses. Since the target cells
used in these experiments lack class I HLA, this effect is indepen-
dent of KIR up-regulation. Whether this increased cytotoxicity is
maintained in the presence of HLA-positive targets remains to be
determinate (88).

To conclude, further investigation is required to determine
whether epigenetic drugs adversely affect NK cell survival, pro-
liferation, or functions when administrated to patients.

DNA-DAMAGING AGENTS
Some conventional chemotherapeutic agents can induce immuno-
genic cell death, e.g., tumor cell apoptosis and stress signals that
lead to the surface expression of ligands for NKG2D and DNAM-1
(95, 96). This DNA damage pathway can be activated by several
mechanisms, during the course of chemotherapy with DNA-
damaging agents such as doxorubicin, mitoxantrone, cisplatin,
and oxaliplatin (8, 95–99). This particular mode of cell death
displays damage-associated molecular patterns, e.g., exposure of
calreticulin endoplasmic reticulum proteins at the surface of the
pre-apoptotic cell, as well as secretion of ATP (100).

The oncogenic stress induced by these DNA-damaging agents
stimulates various aspects of anti-cancer immunity, including acti-
vation of NK cells via ULBP1, MICA/B, and PVR expression
at the surface of the cancer cell in an ATM (ataxia telangiec-
tasia, mutated), ATR (ATM- and Rad3-related) protein kinases,
and/or P53-dependent manner (8, 96–99). Other agents are able
to induce stress conditions, leading to the expression of ligands for
NKG2D and DNAM-1, such as IMiDs and proteasome inhibitors
(22). These results await clinical confirmation with immunomon-
itoring studies of patients undergoing DNA-damaging agent
therapy.

TARGETING SOLUBLE LIGANDS FOR ACTIVATING
RECEPTORS
The expression of NKR ligands at the surface of cancer cells appears
to be a good prognostic factor. However, the shedding of soluble
ligands in the circulation strongly impairs NK cell functions and
has been linked with tumorigenesis and tumor progression (101)
and high serum concentration of ULBP2 presents a strong prog-
nostic value in breast cancer, colorectal cancer, and melanoma
(30–32). Noteworthy, the discovery of B7-H6 and BAG6, ligands
for NKp30, included the detection of soluble forms, which may
compete for cell–cell interaction with membrane-bound ligands,
although only soluble/exosome-bound BAG6 has been detected in
a cancer situation (75, 102).

The prototypical example of ligand shedding is the release of
soluble MICA/MICB (sMICA/sMICB), typically by A disintegrin
and metalloproteases (ADAMs) (103, 104). These proteases are
overexpressed in malignant tissues compared to normal tissues
(105, 106). As a consequence, serum concentrations of soluble
ligands for NKG2D are elevated in various malignant conditions
(103). The ligation of these soluble ligands induces internalization
of NKG2D and its subsequent degradation, leading to an overall
down-regulation of the receptor at the surface of NK cells. In vari-
ous cancers, high levels of circulating ligands for NK-activating
receptors correlated with a poor prognosis. Direct pharmaco-
logic inhibition of these metalloproteases is still in preclinical
evaluation.

SORAFENIB
Sorafenib is a multi-target tyrosine kinase inhibitor targeting
RAS/RAF/MAPK as well as VEGFR and PDGFR signaling path-
ways, implicated in cell proliferation and angiogenesis. Sorafenib
is indicated in renal cell carcinoma, hepatocellular carcinoma,
thyroid cancer and melanoma. In vitro, this molecule presents
interesting off-target effects on ADAM9 expression as evidenced
by a recent study on the human hepatocellular carcinoma cell
line HepG2. In this study, sorafenib was able to strongly decrease
ADAM9 expression at the proteic and transcriptional level, which
correlated with a decrease of sMICA concentration in the culture
supernatant and enhanced sensitivity to NK cell lysis. In addi-
tion, ADAM9 inhibition increases the expression of membrane-
bound MICA on the tumor cell, enhancing the NK sensitivity of
hepatocellular carcinoma cells (105).

Controversial data were published about effects of sorafenib
on NK cells. NK cell function is inhibited by sorafenib as a con-
sequence of impaired phosphorylation of PI3K and ERK, which
directly control NK cell reactivity (107). Immunomonitoring of
patients with renal cell carcinoma and melanoma treated with
sorafenib failed to evidence modification of pERK1/2 expression
in peripheral-blood NK cells after short-term or long-term admin-
istration (108). In addition, sorafenib may also positively (Th1) or
negatively (DCs) impact other aspects of anti-tumor immunity
(61, 109, 110). Whether this action is positive or negative remains
to be determinated, as well as the overall “immune benefit” of such
antagonistic effects on anti-tumor immunity, besides their direct
pro-apoptotic effect on the tumor cell.

TARGETING INHIBITORY RECEPTORS
Although activating NK receptors are crucial, triggering of NK cell
effector functions is prevented by the expression of the inhibitory
receptors KIR and NKG2A. Although in some examples of solid
cancer, KIR and NKG2A expression is altered, generally expression
is maintained and tumor cells may maintain sufficient amounts of
HLA molecules to ensure inhibition of NK cells and evade killing.
Moreover, some tumors display decreased expression of TCR-
dependent HLA molecules while maintaining a normal expression
of KIR-dependent HLA molecules (111). High HLA-E expression
has been observed in several solid cancers (112, 113) and leukemias
(114). Consequently, as 20–70% of NK cells express NKG2A, HLA-
E expression by tumor cells impairs the anti-tumor activity of a
predominant proportion of NK cells.
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ANTI-KIR MONOCLONAL ANTIBODIES
Among the strategies to improve the recognition of tumor cells
by NK cells, blocking the inhibitory interactions is appealing. The
most advanced therapeutic compound as for today is the anti-KIR
monoclonal antibody, IPH2101. This fully humanized antibody
blocks the interaction of the major KIR expressed by NK cells with
their cognate ligands, i.e., HLA-C. This reagent has been tested
in early phase clinical trials and was shown to be well-tolerated
in patients suffering from AML (115). In some instance, NK cells
from treated patients expressed the activation marker CD69 and
IFN-γ or MIP-1β was detected in the sera of patients. Another
clinical trial in patients with MM has also shown that IPH2101
is safe and also enhances ex vivo NK cell cytotoxicity against MM
cells (116). IPH2101 (and its replacement IPH2102) is therefore
a novel immune-therapeutic agent that may improve anti-tumor
activity of patients. More trials are programed and already neces-
sary but yet this reagent has reached the promises for clinical use
against cancer cells.

SELENITE
As mentioned above, control of NK cell activation is either
achieved by KIR/HLA interactions but also NKG2A/HLA-E inter-
action. In healthy individuals, at steady state, the two systems
compensate for each other to ensure a total control of NK cell
reactivity. Regarding NKG2A-mediated inhibition of NK cells by
HLA-E expressing tumor cells, very few data are available. Inter-
estingly, an FDA-approved reagent, selenium, may be a promising
tool. Supplementation with selenium has been associated with
reduced risk of solid cancer (117). The mechanism of action
of selenium is not entirely known, but it induces apoptosis of
tumor cells by generating an oxidative stress, which may be more
effective on tumor cells compared to healthy cells (118, 119).
Alternatively, selenium blocks the synthesis of HLA-E and con-
sequently increases cytotoxicity mediated by NKG2A-positive NK
cells (120). This effect, combined to the direct toxicity on tumor
cells may result in reduced disease progression and improved sur-
vival. Sodium selenite is currently under investigation in several
clinical trials for the treatment of different cancers.

Altogether, targeting inhibitory NK receptors reflects a novel
orientation taken for innovative therapeutic approaches, as it rep-
resents another way to counteract the immune escape via ligands
for inhibitory receptors. Of note, this strategy relies on the expres-
sion of activating ligands by leukemic cells. Hence, removing of
inhibition will allow NK cells killing their targets provided that
they express the ligands for activating NK receptors.

ALTERNATIVE PATHWAYS TO IMPROVE NK ACTIVITY
INCREASING NK CELL LYSIS CAPACITY WITH IMiDs
Immunomodulatory drugs are capable to enhance monoclonal
antibodies anti-tumor activity. First in vitro, Wu et al. have
shown an enhancement of NK cell-mediated tumor cell ADCC
by lenalidomide for a variety of rituximab-treated NHL (non-
Hodgkin lymphoma), cetuximab-coated CRC (colorectal can-
cer), and trastuzumab-coating breast cancer cell lines (121, 122).
Another team highlighted the enhancement of ADCC by lenalido-
mide in vitro. They have shown an increase of Raji cell apoptosis
mediated by PBMC combination with rituximab by lenalidomide

(123). In the first case, the effect was observed on purified NK
cell but Wu et al. have explained that this mechanism is depen-
dent on the presence of antibody and either interleukin-2 or
interleukin-12. In the second case, Zhu et al. have observed this
effect on PBMC. Finally, the researches of Hayashi et al. have
shown that IMiDs-enhanced NK cell ADCC by triggering IL-2
production from T cells (124). All these works suggest that in vitro
IMiDs-positive effect on NK cell ADCC could be dependent
on IL-2.

In animal models, lenalidomide or pomalidomide in combi-
nation with rituximab improves severe combined immunode-
ficient (SCID) lymphoma-bearing mouse survival compared to
rituximab in monotherapy (125). Three years later, the same
team explained this enhancement of anti-tumor activity by an
expanding, activating, and trafficking of NK cells into the tumor
bed, which facilitate a more efficient ADCC. The IMiDs effect
on NK cells in this model is also associated with DC acti-
vation and production of chemokines and pro-inflammatory
cytokines (126).

In the same way, IMiDs are also capable to enhance natural
cytotoxicity of NK cell against cancer cells. First, Davies et al.
highlighted the potency of thalidomide, lenalidomide, and poma-
lidomide to increase PBMC cytotoxicity toward MM tumor cells
(cell lines and patient cells) in vitro. They presented this effect as an
NK-dependent effect (127). Then, Zhu et al. have shown the simi-
lar effect with lenalidomide and pomalidomide on K562 and PC-3
cell lines (i.e., enhanced PBMC-mediated tumor cell apoptosis).
They have also shown that NK cells are essential in inducing cancer
cell apoptosis (123). In the same manner as ADCC, Hayashi et al.
have explained this IMiDs enhancement of NK cell cytotoxicity
via induction of IL-2 production in T cells (124).

In line with in vitro studies, IMiDs also increased NK cell nat-
ural cytotoxicity in patients suffering from MDS or solid tumors
(56). At last, IMiDs have an important property toward NK cell
numbers. Hence, the number and the localization of NK cells
in cancer patients is often correlated with prognosis (24, 25,
128–130).

Davies et al. observed that thalidomide treatment for MM
patients resulted in an increase of absolute NK cell numbers
(127). This observation was confirmed with lenalidomide in some
metastatic malignant melanoma patients and other advanced can-
cers (131), and in children with solid tumors or MDS (56). This
effect was also highlighted in lenalidomide and pomalidomide
treated mice (lymphoma-bearing SCID mice) at the tumor site.
Reddy et al. have shown in their study an increase of tumor central
infiltration by NK cells in mice treated by lenalidomide or poma-
lidomide compared to DMSO-treated mice. They could explain
that by the IMiDs effects on DCs stimulation and modification of
the cytokine microenvironment (126).

INDUCING TRAIL RECEPTOR EXPRESSION ON TARGET CELLS
Proteasome inhibitors are a class of anti-cancer drugs that are
used in first line of treatment of MM, and that are currently eval-
uated in hematologic and solid malignancies. These molecules
disrupt proteasome activity, resulting in cell growth arrest, apop-
tosis, angiogenesis inhibition, and decreased binding of tumor
cells to stromal cells (132). In vitro, bortezomib was shown
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to sensitize tumor cell lines as well as primary tumor cells to
perforin/granzyme-mediated NK-tumor cytotoxicity. This effect
was found to be dependent on augmentation of tumor caspase-
8 activity as well as on up-regulation of Fas and TNF related
apoptosis-inducing ligand (TRAIL) receptor on tumor cells, thus
inducing target apoptosis by NK cells through Fas/FasL and
TRAIL/DR5 interactions (133–135). Other proteasome inhibitors
such as the b-A15 share this property (136). In addition, pro-
teasome inhibitors up-regulate ULBP1 and ULBP2 expression
(137–139). This effect is accompanied by a down-regulation of
HLA class I molecules (140).

In vivo, bortezomib sensitizes tumors to killing by NK cells.
This anti-tumor effect is enhanced upon depletion of Tregs (134,
141). Based on these results, a non-randomized phase I study is
currently ongoing in order to evaluate the safety and the anti-
tumor effects of adoptively infused ex vivo expanded autologous
NK cells against metastatic cancers or hematological malignan-
cies sensitized to NK TRAIL cytotoxicity with bortezomib (134).
However, bortezomib paradoxically renders tumor cells resistant
to killing by tumor-specific T cells, thus potentially counterbalanc-
ing the benefits obtained through the sensitization to killing by NK
cells (136, 142). In addition, in vitro assays evidenced that borte-
zomib presents pro-apoptotic effects on NK cells, and induces a
down-regulation of NKp46 expression with subsequent decrease
in NKp46-mediated activity (143). b-AP15, a new proteasome
inhibitor, appears to overcome this deleterious effect on T cells:
in vitro evaluation of this molecule was shown to sensitize tumor
cell lines to both NK and T cell-mediated killing (136). However,
at equipotent doses, this molecule seems to be more toxic to NK
cells than bortezomib (144).

IMPROVING NK/DC CROSSTALK
The relevance of the NK/DC crosstalk has been demonstrated in
various physiopathological settings and alterations of these inter-
actions have been shown to contribute to tumor progression (145).
Imatinib mesylate is a tyrosine kinase inhibitor that inhibits the
tyrosine kinase encoded by the bcr-abl oncogene and tyrosine
kinases encoded by the c-kit and the PDGFR oncogenes. Target-
ing these tyrosine kinases directly induces apoptosis of the cancer
cell, which constitutes the main mechanism of action of imatinib.
Besides this direct anti-proliferative effect, an “off-target” effect,
inducing DC-mediated NK activation was described by Borg et al.
(145). In this study, patients with GIST were assessed for NK cell
functions during the course of treatment with imatinib. Anti-
tumor response correlated with enhanced NK-mediated anti-
tumor response, thus bringing out a new mechanism of action
of this molecule. The authors then defined immunologic respon-
der patients with increased RFS. In a more recent study conducted
in GIST patients, the authors validated the concept, showing a cor-
relation between clinical outcome and NK cell activation induced
by therapy with imatinib (21). Immunomonitoring of NK cell
functions included IFN-γ production and NKG2D expression.
Although IFN-γ production was associated with clinical out-
come, enhanced NKG2D-dependent lysis observed at 1 year of
imatinib therapy did not impact survival (21). Interestingly, this
DC-mediated NK activation seems to occur in lymph nodes where
imatinib promotes the formation of immunologic synapses with

resting or preactivated NK cells as a consequence of the blocking
of KIT signaling in DCs (21, 97).

DEPLETING Tregs
Tregs inhibit antigen-specific immune response both in a cytokine-
dependent and cell contact-dependent manner (146–148). Tregs
alter both T cells and NK cells proliferation and activity through
the down-regulation of NKG2D (147–149). Increased frequency of
Treg cells and low T effector (Teff)–Treg ratios are associated with a
poor clinical outcome and a lack of treatment response (147, 150–
153). Impairment of Treg activity by either specific blockade or
depletion can enhance immune response against tumor-associated
antigens (147, 148). To date, drugs that specifically target Tregs are
not available (153).

Although cyclophosphamide is immunosuppressive at high
doses, this molecule displays particularly interesting immunos-
timulatory properties in metronomic scheduling (iterative admin-
istration of low doses) mainly by its ability to suppress FOXP3+

regulatory T cells (95, 149, 154) and to induce TH2/TH1 to TH17
shifts in cytokine production, induction of TH17, and resetting of
dendritic cell homeostasis (153, 155). In murine models, metro-
nomic cyclophosphamide strongly induces NKp46 expression as
well as perforin and granzymes (156). Importantly, immunomon-
itoring studies evidenced that low-dose cyclophosphamide regi-
men restores patients’ T cells and NK cells functions as evidenced
by killing assays (149, 157). Metronomic cyclophosphamide is cur-
rently tested in combination with anti-cancer vaccines, for its
ability to suppress Tregs in order to facilitate vaccine-induced
tumor rejection (153). Despite metronomic cyclophosphamide
provides promising clinical results, some authors point the absence
of randomization in these trials (158).

CONCLUDING REMARKS
Accumulating evidence based on immunomonitoring analyses
highlights immune parameters as strong prognostic factors, both
in hematopoietic and solid neoplasms. These conclusions provide
a strong rationale for developing therapeutic strategies aiming
at restoring key immune parameters. Among the major mecha-
nisms used by tumor cells to escape immunity, the evasion from
receptor–ligand-mediated anti-tumor activity by NK cells repre-
sents the most prevalent pathway. Hence, the recognition of tumor
cells by NK cells via NCR or NKG2D-activating receptors is often
impaired in various cancers and enhancing NK cell functions
appears as one of the most promising approaches. One important
question remains the ability of a cancer cell to overcome immune
suppression upon exposure to immunostimulating drugs. Recent
studies suggest that NK cells on tumor site exhibit a phenotype of
exhaustion and terminal differentiation. Restoring NK function-
ality in this context could be of limited interest since these cells
may hardly become highly anti-tumoral. This parameter should
be considered to maximize the effects of such approaches.

To conclude, targeting immune evasion mechanisms, in asso-
ciation with conventional chemotherapy, may improve clinical
outcome and is clinically feasible with limited side effects. To
date, clinical application of this concept is mainly limited to
drugs designed to target cancer cells, with off-target effects on
the immune system. The problem of these strategies is that the
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overall benefit on the different immune effectors is sometimes hard
to predict, and can be deleterious on crucial immune effectors,
although restoring other cells. New strategies aiming at specifi-
cally restored immune functions will be potentially more efficient,
and are currently in preclinical and clinical development. Fur-
ther development of these immune therapies urges to associate
clinical trials with translational immunology and immunomon-
itoring. A better knowledge regarding immune evasion mecha-
nisms will definitely provide the absolutely required bases for the
next-generation immune cancer therapies.
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