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Abstract

We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-
state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of
reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined
to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was
found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number
of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human
umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and
steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-
series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that
cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of
genomics experiments for gene regulatory network inference and show that network inference can be improved by
incorporating steady-state measurements with time-series data.
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Introduction

Determining gene regulatory network structure from gene

expression data is one of the most challenging problems in

molecular systems biology. Microarray technologies, as well as

other newer approaches such as RNA-seq, have been widely used

to generate quantitative gene expression data. Typically, experi-

ments measure gene expression following perturbation of target

genes (for example following RNAi-mediated gene knock-down or

gene deletion), following treatment of cells with a drug or other

molecule, or following a change to the cellular environment.

Measurements of gene expression are typically conducted at a

single time-point, or during successive time-points, after some

perturbation. These data are termed steady-state data, and time-

series data, respectively. Both types have been used for network

inference. Steady-state and time-series data can both provide

valuable information about the topology, or ‘wiring diagram’, and

dynamics of the gene regulatory network. Compared with steady-

state data, time-series data are thought to be more useful for

revealing directional interactions to indicate the cause-and-effect

relationships among genes [1].

A wide variety of computational algorithms and approaches

have been brought to bear on the inference problem from steady-

state data, including Bayesian networks [2–5], and inference

algorithms based on a mutual information (MI) theoretic

formalism [6]. Many of these approaches have variants which

are adapted for inference from time-series data sets, including

dynamic Bayesian network inference [7,8] and time-dependent MI

[9]. For a recent review and discussion of some alternative

techniques see [10].

In this work we focus on regression algorithms, in which gene

networks are modelled using ordinary differential equations

(ODEs) [11]. Some of the earliest work adopting ODEs for

temporal expression data was by D’Haeseleer et al. [12]. Many

groups have introduced regression algorithms for network

inference from time-series data [13–18]. ODEs can also be used
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for regression inference of gene networks from steady-state data.

Gardner et al. [19] were amongst the first to demonstrate that

steady-state measurements could be used to infer network

structure using their network identification by multiple regression

(NIR) algorithm. They considered a data set which used plasmids

to over-express specific genes in a bacterial model, with

measurements taken when the gene expression levels reached

new steady state values. Several other groups have also developed

similar approaches [20–22]. More recently, this approach has

been suggested for transcriptomic datasets comprising a set of

siRNA knock-down experiments [1]. However, few attempts have

been made to infer gene networks for dynamical systems models

using steady-state and temporal measurements simultaneously.

In this study we present a regression-based algorithm in which

steady-state and time-series datasets can be combined for gene

network inference. We base our algorithm on the MIKANA

algorithm, which uses a model selection approach for inference of

biochemical network models. MIKANA has previously been

shown to successfully infer network structures from steady-state

and temporal data sets. Comparisons with other gene network

inference methods were performed by Hurley et al. [1]. Wild-

enhain and Crampin [21] used a linear version of the algorithm to

reconstruct gene regulatory interactions from simulated steady-

state (knock-down) gene expression data. In a separate study,

Srividhya et al. [14] used a time-dependent version of the

algorithm to identify interactions among reacting components of a

biochemical pathway from time-series data. In this work we

reformulate these approaches to develop a generalized algorithm

for identifying gene regulatory interactions from combinations of

both time-series and steady-state gene expression data. We further

develop the algorithm to take account of nonlinearities inherent in

the regulation of gene expression. We assess the performance of

MIKANA for network inference from steady-state data, time-

series data and the combined datasets respectively. Performance

on different types of data is assessed using synthetic datasets

simulated from gene networks under different noise levels and

sampling rates. We then apply the algorithm to a human umbilical

vein endothelial cell (HUVEC) dataset which combines time-series

data following perturbation with the pro-inflammatory growth

factor TNF and a steady-state data set comprising response of the

cells to knockdown using siRNAs targeting 400 different

transcription factors and signalling molecules [1]. Finally we

determine whether an efficient experimental design strategy can

be determined to improve network inference by combining steady-

state and time-series data.

Results

In this study we compare the performance of three different

versions of MIKANA, a regression-based ODE model for gene

regulatory network inference. Steady-state MIKANA (ssMI-

KANA) infers networks from steady-state gene expression data

sets. Time-series MIKANA (tsMIKANA) infers networks from

temporal gene expression data. A new algorithm, called combined

MIKANA (cMIKANA), is developed here to infer gene networks

from combined time-series and steady-state data sets. These

algorithms and the development of cMIKANA are discussed in the

Materials and Methods section.

Simulation of Microarray gene expression data
To determine whether combining steady-state and time-series

data can provide better prediction of gene regulatory interactions,

we assessed the performance of network inference with steady-

state, time-series and combined datasets by comparing candidate

networks inferred from 100-gene simulated datasets against the

synthetic networks used to simulate the data. In this work, the in

silico experiments for simulating gene expression data were

designed to mimic the microarray experiments performed

previously [1] in generating the steady-state siRNA disruptant

(knock-down) data set and TNF perturbation time-series data set

for HUVECs analysed below (see Materials and Methods). Steady-

state gene expression data were simulated by measuring steady

state gene expression levels of other genes while holding the

expression level of a target gene at a fixed, reduced level. Time-

series data were simulated by sampling the changes in gene

expression levels in response to perturbing the initial conditions of

the entire network at fixed intervals. This simulates experiments in

which multiple genes respond directly to perturbation of the cells,

such as action of a compound with multiple targets, or change of

environment of the cells. The simulation experiments were

repeated several times to generate experimental replicates and

the sampling rate for time-series measurements varied, using same

network but different initial conditions. Additive noise was added

to both steady-state and time-series gene expression data at various

levels between 0 and 20% of signal. Full details of the methods

used to simulate the gene expression data are described in the

Material and Methods.

Combining steady-state with temporal gene expression
data improves network inference performance from
time-series data

In Figure 1 we compare the performance of networks inferred

from steady-state, time-series and combined data sets. Inferred

networks were scored on an edge-by-edge basis to estimate the

sensitivity (Sn; true positive rate) and false discovery rate (FDR).

ssMIKANA models were reconstructed from steady-state data

only, tsMIKANA models were reconstructed from time-series data

only, and cMIKANA models were reconstructed from the

combination of the steady-state and time-series data. Each method

was assessed using 50 datasets from independent simulations, and

in response to varying noise level.

Figure 1 shows that at low noise levels, networks inferred from

steady-state data using ssMIKANA have higher sensitivity but also

higher FDR than in networks derived using time-series datasets.

The performance of ssMIKANA is relatively insensitive to noise

compared with tsMIKANA and cMIKANA. This is because

ssMIKANA identifies gene interactions from the relative differ-

ence between the steady state after perturbation and the initial

state (reference level), whereas time-series methods (tsMIKANA

and cMIKANA) compare sequential expression levels to calculate

the rate of change of expression. As the noise level increases,

sensitivity decreases for all of the data types; however, the FDR

remains low for time-series data networks.

Although both tsMIKANA and cMIKANA were sensitive to

noise, cMIKANA demonstrated better performance compared

with tsMIKANA in terms of higher sensitivity while retaining low

FDR. We note that at very high noise levels (.20%) FDR

increases dramatically for time-series data methods. We have not

included any smoothing step in the tsMIKANA or cMIKANA

algorithms, and therefore at very high noise levels the differences-

based calculation of time derivatives suffers significantly. This may

be improved in a straightforward manner by including a data-

smoothing step for time-series data.

Combining Data for Gene Network Inference
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A combination of steady-state and time-series gene
expression data gives improved network inference over
multiple time-series experiments

Next we compared networks inferred from multiple time-series

data sets with networks generated from a single time-series

combined with steady-state data sets, with the same overall

number of experimental measurements (120, 60, 30 and 15

samples, respectively). In Figure 2 we compare sensitivity and

FDR for inferred network models from data generated with 10%

noise from 100-gene networks. At each of four different sampling

rates for the temporal data, the combination with steady-state data

rather than use of multiple replicates of the time series

measurements is shown to give higher sensitivity and lower

FDR. We note that tsMIKANA reaches a maximum sensitivity for

4 or more experimental replicates [23], so increasing the number

of replicates will not improve the network reconstruction.

Overall, these results show that steady-state and time-series data

sets can be combined for network inference and that combining

steady-state data and time-series data can raise the sensitivity score

for networks identified from time-series data (more true positive

edges are identified), while not penalizing the networks by raising

the false discovery rate.

Combining steady-state and time-series data sets does
not impair detection of edge directionality

ODE-based network inference approaches assign directional

edges from either steady-state data or time-series measurements

(unlike most mutual information based approaches for example,

which assign non-directional edges irrespective of data type).

However, assignment of correct edge direction is thought to be

improved using temporal information. We next sought to

determine what effect combining steady-state data with temporal

data might have on correct assignment of edge direction.

We generated time-series and steady-state data sets from 50

separate simulations for 100-gene networks. Each of these

networks had the same connectivity. 10% noise was added to

each of data points. We scored the networks inferred using

ssMIKANA, tsMIKANA and cMIKANA algorithms for the

number of directed edges shared with the networks used to

simulate the data. We also scored the number of directed edges

shared for the inferred networks in which the direction of each

edge was reversed. Figure 3 shows that networks inferred from

steady-state data have a lower proportion of edges with correctly

identified directionality than for networks identified from time-

series data. Comparison with inferred networks with reversed edge

direction shows that both data types do however generate a

significant number of edges with the wrong directionality.

Finally, the figure shows that by combining steady-state with

time series data, networks identified using cMIKANA have

approximately the same proportion of correctly identified directed

edges. These results confirm that temporal measurements provide

directional information for identifying cause-and-effect relation-

ships among genes, but that incorporation of steady-state data

does not appear to deteriorate identification of edge directionality.

Application to time-course and steady-state endothelial
datasets

In a study of human umbilical vein endothelial cells (HUVECs),

Hurley et al. [1] generated a siRNA disruptant microarray dataset

(379 probe sets) from siRNA-mediated knockdowns of 400 specific

molecules and transcription factors, and a time-series microarray

dataset (234 probe sets), where samples were harvested at 8 time

points from a population of HUVECs after being treated with

tumour necrosis factor (TNF) (see Methods). To assess the

performance of the three versions of MIKANA on real microarray

experimental datasets, we reconstructed regulatory networks from

these microarray datasets separately and as a combined steady-

state and time-series dataset. To carry out a comparison of edges

Figure 1. Influence of noise level on the performance of ssMIKANA, tsMIKANA and cMIKANA network inference methods. Different
MIKANA network models were inferred from 100-gene scale-free networks. The sensitivity and false discovery rate (FDR) from MIKANA inference
methods with steady-state data only (ssMIKANA), time-series data only (tsMIKANA) and the combination of steady-state and time-series data
(cMIKANA) are compared. Different noise levels, 1%, 3%, 5%, 8%, 10%, 13%, 15%, 18% and 20%, were added to data, respectively.
doi:10.1371/journal.pone.0072103.g001

Combining Data for Gene Network Inference
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between the various inferred networks, we used the subset of

expression data of 50 RNAs that were collected in both the siRNA

disruptant and TNF time course datasets (see Table S1). The

networks generated using ssMIKANA (130 interactions inferred

from the siRNA disruptant data), tsMIKANA (204 interactions

inferred from the TNF time course data) and cMIKANA (738

interactions inferred from the combined dataset) for these 50

RNAs were then compared (these networks are presented in Table

S2, S3 and S4, respectively).

To illustrate the similarities and differences between these three

networks, we performed a RNA-to-RNA edge-wise comparison

between all three networks. Table 1 summarises the number of

directed edges overlapping between each pair of networks, and the

Venn diagram shown in Figure 4 illustrates edge overlap in the

three different networks. 15 edges were found in both the

ssMIKANA (,12% coverage) and the tsMIKANA (,7%

coverage) networks. Respectively, 28 edges in the ssMIKANA

(,22%) and 68 edges in the tsMIKANA (,33%) networks could

be found in the cMIKANA model, in which only 2 edges were

from the overlap of ssMIKANA and tsMIKANA.

To establish whether the network identified using cMIKANA

was simply the addition of the ssMIKANA and tsMIKANA

network models, we compared the cMIKANA network to the

union of the ssMIKANA and tsMIKANA networks. 94 out of 319

interactions (,30% overlap) in the union network were found to

overlap with interactions inferred from the combined data set

using cMIKANA.

‘Hub’ genes in regulatory networks are genes with high out-

degree, which influence the expression of many other genes. To

determine the potential biological significance underlying each of

the inferred network models, we ranked genes by out-degree (i.e.

the number of target genes in the inferred network) from the three

different models. Table 2 summarises the top 10 hub genes

(highest out-degree) for each of the three inferred networks. We

found 3 hubs (ID1, FOS and CFB) overlapping between

ssMIKANA and tsMIKANA network models. These hubs were

highly enriched for the regulation of transcription from the Pol II

promoter (GO: 0006357 with a Bayes factor of 7) according to the

GATHER web tool [24]. Of these, FOS was also a hub in the

cMIKANA network. Moreover, two other hubs IL15 (in the top 10

for ssMIKANA) and HIVEP2 (in the top 10 for tsMIKANA) were

also found in the cMIKANA network.

To determine biological function of these genes, we next used

GATHER web tool to perform a functional enrichment analysis of

the hubs in each network model by comparing the hubs to the

Gene Ontology (GO) database. Table 3 summarises the most

significant biological annotations (from the GATHER report with

Bayes factor .6) of the hubs in the three different networks. Most

of the hubs in the three networks (7 hubs in ssMIKANA, 5 hubs in

tsMIKANA and 5 hubs in cMIKANA networks) were shown to be

highly enriched for immune response (GO: 0006955). This is

consistent with the methods used to generate the data sets: through

the choice of siRNAs used to generate the steady-state disruptant

data set, and through perturbation of the cells using TNF (a

cytokine involved in inflammation) for the temporal data (see [1]

for details).

Discussion

This work has focused on identifying gene regulatory interac-

tions from combinations of steady-state and temporal gene

expression data. In real biological regulatory networks, ‘steady-

Figure 2. The performance of tsMIKANA and cMIKANA inference methods on the same size of data samples for scale-free networks
with 100 genes. The sensitivities and false discovery rates (FDRs) from MIKANA inference methods with time-series data only (tsMIKANA) and with
the combination of steady-state and time-series data (cMIKANA) are compared. We reconstructed tsMIKANA network models from time-series
datasets – each contained 5, 10, 20 and 40 data samples in 3 replicates, providing 15, 30, 60 and 120 data samples, respectively. We also
reconstructed cMIKANA network models from the combined datasets with the same size – containing time-series data sample from 1 temporal
experiment (5, 10, 20 and 40 time-series data samples, respectively) and the remainder samples were collected from several knockdown experiments
(containing 10, 20, 40 and 80 steady-state data samples, respectively). 10% noise was added to both time-series and steady-state data. Being
reconstructed from the same sizes of data, cMIKANA models showed higher sensitivity and relatively lower FDRs compared with tsMIKANA models,
suggesting the prediction of gene regulatory interactions could be improved by incorporating steady-state data.
doi:10.1371/journal.pone.0072103.g002

Combining Data for Gene Network Inference
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state’ data points can be measured either from perturbation

experiments, knock-down ‘disruptant’ data as studied here, or

clinical measurements of patients. The measurement of ‘steady-

state’ is relative to the experimental time scale and temporal

processes that are observed. In reality, however, it is uncertain

whether biological data is ever collected at a genuine steady state

of the system [13,25]. For example, although data from siRNA

treatment of cells in the laboratory is a type of steady-state data,

we recognise that in most cases the siRNA treatments have not

persisted long enough for true steady state equilibrium to be

reached. In addition to uncertainty about the steady state of some

biological data sets, a steady-state experiment does not provide a

dynamic description of the system, and is thus arguably less well

suited for inference of directed gene networks, which seek to reveal

causal regulatory relationships between genes rather than only

correlations between gene expression patterns. In this paper we

suggest that combining these two types of measurements may

improve the prediction of gene regulatory interactions. Unlike

other network inference methods, such as Bayesian approaches

and mutual information, which require different assumptions and

separate formulations for dynamic network inference and steady-

state models, analysis of an ODE regression model provides the

opportunity to take advantage of both steady-state and temporal

data simultaneously. In our study, we implemented a new version

of an existing algorithm, which we call cMIKANA, for the

reconstruction of networks from combinations of steady-state and

time-series data. Our study showed that cMIKANA outperformed

the inference from time-series data alone under moderate noise

level, limited number of data samples or limited number of

experimental replicates.

Combining steady-state and time-series data sets
improves cost-efficiency of microarray experimental
design for network inference

The cost and practical complexity of genomic experiments

typically limits the number of time-series measurements in a given

study to a few time points and a small number of experimental

replicates. This constrains the temporal information available for

identifying regulatory interactions between genes. We have shown

that by combining steady-state data with time-series measurements

for network inference it is possible to increase sensitivity without

raising the false discovery rate. Furthermore we have shown that

Figure 3. Comparison of the directionality of edges in the ssMIKANA, tsMIKANA and cMIKANA network models. Scale-free networks
with 100 genes were generated and related steady-state datasets were simulated. Time-series data were collected at each time point in 10 replicates.
10% noise were added to data. The proportion of edges in the canonical networks found in the forward network models (left column) and in the
reversed network models (right column) were computed.
doi:10.1371/journal.pone.0072103.g003

Combining Data for Gene Network Inference
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addition of this steady-state data does not reduce the ability to

correctly determine edge direction in the inferred network.

Figure 2 shows for four different overall numbers of measurements

that the experimental design in which including steady-state data

for the same total number of measurements produces networks

with higher sensitivity and lower false discovery rate than is

obtained by using the same resources to generate replicate time-

series data. This suggests an approach to experimental design for

gene network inference in which a combination of time-series and

single measurement steady state perturbations are used to generate

datasets to optimise network inference. One approach is to

generate a single large knock-down data set for a given cell type,

that can be used to examine a wide range of different cellular

responses by combining with time series data relevant to a specific

cellular process.

Learning biological networks: Application to HUVEC
endothelial datasets

Based on the results we achieved from simulated datasets, we

tested our new approach using a steady-state siRNA disruptant

microarray dataset and a temporal response to perturbation with

TNF microarray dataset from HUVECs [1]. Notably we assumed

that both datasets interrogated the same biological system, since

both experiments focused on extracting information mainly

related to inflammatory processes in endothelial cells. However,

the two datasets were prepared using different procedures: one was

generated to provide as general as possible a network of interaction

in endothelial cells that could then be used in the analysis of drug

and growth factor response experiments and the other was

generated for abstracting interactions related to TNF-regulated

RNAs. It is therefore likely that the pathways activated by these

interventions, and hence the regulatory networks inferred from

these data, described different aspects of the same biological

system. To achieve the most relevant comparison, we focused on

50 RNAs that were present and activated in both the siRNA

disruptant and TNF time course datasets.

Our analyses of the networks inferred from these two datasets

separately and in combination suggest that biologically plausible

hub genes were identified in each of the different networks, even

though there was relatively low overlap between the hubs and

edges identified in the networks determined from the combined

data set with those identified from the time-series and steady-state

data individually. There are several reasons why the overlap may

be low. Using the steady-state formulation of the network

inference model, for networks reconstructed using ssMIKANA a

gene whose expression profile has high variation across samples

and is highly correlated with the expression profile of the

‘regulated’ gene is more likely to be selected as a regulator of

that gene in the network model. An edge in this model implies that

the variation in the abundance of the regulator RNA can explain

(some of) the variance in the abundance of the regulated gene

across the experimental samples. Using the temporal formulation

of the model, however, for networks inferred using tsMIKANA an

edge indicates that the variation in the abundance of a regulating

RNA affects the rate of change in abundance of the regulated

gene. Another potential reason is that regression methods will

select one member of a highly correlated set of genes as a

regulator, but different methods select a different member of the

same set of highly correlated genes. Greater overlap may therefore

be found by preprocessing the data to cluster together gene sets

which are highly correlated across all experimental measurements,

and to use a single representative from each such highly correlated

set for network analysis. Despite these reservations, the inference

from the combination of the two datasets using cMIKANA

recapitulated 33% of interactions in tsMIKANA and 22% of

interactions in ssMIKANA. This suggests that cMIKANA network

does not simply represent the union of the tsMIKANA and

ssMIKANA networks, but may identify regulatory interactions

that were not evident in either the siRNA disruptant network or

TNF time course network alone.

In conclusion, we have developed an ODE regression model for

reverse-engineering, called cMIKANA, to identify gene regulatory

networks from gene perturbation measurements combining steady

state and temporal gene expression data. The combined use of

time-series and steady-state data outperformed the inference from

time-series data only, under moderate noise level. Although

different types of genomics experiment measurements may

describe different aspects of the regulation underlying the system,

our results suggest that combining steady-state and temporal

measurements can improve the prediction of gene regulatory

interactions and may reveal regulatory information that cannot be

observed from either steady-state or time-series data alone. Our

results also suggest a potential cost-efficient approach that

incorporates steady-state measurements to time-series data sets

Figure 4. Venn diagram showing the network edges present in
three inferred models. The edge-wise comparison between the
ssMIKANA, tsMIKANA and cMIKANA models which were reconstructed
from the related endothelial dataset is made.
doi:10.1371/journal.pone.0072103.g004

Table 1. Overlap of edges between all pairs of 50-gene
network models.

Overlaps of edges ssMIKANA tsMIKANA cMIKANA U(TS,SS)

ssMIKANA 130 15 28 130

tsMIKANA 15 204 68 204

cMIKANA 28 68 738 94

U(TS,SS) 130 204 94 319

We computed the common edges overlapping among MIKANA network
models reconstructed from a siRNA disruptant dataset (ssMIKANA), TNF time
course measurements (tsMIKANA) and the combination of the two (cMIKANA).
In addition, a union network (U(TS, SS)) was constructed by combining the
tsMIKANA and ssMIKANA network models.
doi:10.1371/journal.pone.0072103.t001

Combining Data for Gene Network Inference
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to improve the design of genomics experiments for gene regulatory

network inference.

Materials and Methods

Gene regulatory networks are usually modeled as a graph of

connected nodes, in which nodes represent genes (the expression

level of a gene, or the abundance of the related mRNA) and edges

represent interactions between genes. We use an ODE formula-

tion as a model for reverse engineering the gene regulatory

networks, and as a simulation model to generate synthetic gene

expression data sets with which we test our methods. The network

simulation, synthetic data generation, network inference and

algorithm validation were executed using the computational

framework developed by Hurley et al. [1].

Gene regulatory network inference using MIKANA
MIKANA uses an iterative model selection technique, first

proposed by Judd and Mees [26], in order to infer reaction

mechanisms for biochemical pathways and networks with little

prior information about the underlying pathways. Under different

hypotheses about the underlying systems, the ODE-based

MIKANA approach was adapted to reconstruct networks from

either steady-state or time-series data, and was reformulated to

incorporate both time-series and steady-state data. Earlier

application of this approach considered models constructed from

linear functions of mRNA levels [21]. Here we also introduce a

nonlinear basis function to the MIKANA framework, in order to

capture the nonlinearity underlying the regulation of gene

regulation, as described below. Here we briefly describe the

MIKANA algorithm, its formulation for steady-state and time-

series data sets, and our new formulation cMIKANA which

combines both data types for network inference. General

principles describing this approach to network inference can be

found in Crampin et al. [27,28]. Full details of the development of

MIKANA and the model selection algorithm that it uses are given

in Wildenhain et al. [21], Srividhya et al. [14] and Mourão et

al.[29].

The underlying model for MIKANA uses a set of ODEs, one

for each gene, describing gene regulation as a function of the level

of expression of the other genes in the network, using a linear

summation of weighted basis functions:

dxi

dt
~fi x1 tð Þ, � � � ,xN tð Þð Þ{dixi tð Þzui ð1:1Þ

fi~
XN

j~1

aijwj x1 tð Þ, � � � ,xN tð Þð Þ ð1:2Þ

where xi represents the expression level (transcript abundance) of

gene i. The first term on the right hand side of the equation, fi

represents the transcription rate of gene i, which is determined by

the expression level of the genes in the network via function fi . wj is

model design matrix (MDM), which represents the regulatory

interaction of parent gene j on child gene i. The coefficient aij

represents the regulatory strength of gene j on gene i. The second

term on the right hand side represents the degradation rate of gene

i; this is assumed proportional to its expression level with

proportionality di. The term ui represents the strength of a

perturbation applied to the ith gene, which moves the system away

from its steady state. A model selection approach is used to

determine a set of basis functions which best match the data. Using

an iterative selection scheme proposed by Judd and Mees [26], the

model is established on a gene-by-gene basis by adding the basis

function that would make the largest marginal improvement to the

model and removing the basis functions that would make the least

damage to the approximation. The optimal model size is

determined by minimizing a cost function where a compromise

between model complexity and a goodness-of-fit is achieved – see

[14,21,29] for details.

A nonlinear basis function derived from the Hill activation

function [30] was adopted in this work to capture the nonlinear

regulatory behaviour underlying the data. To simplify computa-

tional complexity, we only considered the independent regulatory

effect of each individual regulatory genejon the target genei, thus

the basis function used in this work is

wj xj

� �
~

2xj

1zxj

{1 ð1:3Þ

Table 2. Top 10 hubs from the ssMIKANA, tsMIKANA and cMIKANA network models respectively, reconstructed from endothelial
datasets.

ssMIKANA tsMIKANA cMIKANA

Hubs # Children Hubs # Children Hubs # Children

ID1 NM_002165.1_PROBE1 10 DUSP1 NM_004417.2_PROBE1 35 HIVEP2 NM_006734.1_PROBE1 43

CXCL10 NM_001565.1_PROBE1 5 ID1 NM_002165.1_PROBE1 30 F3 NM_001993.2_PROBE1 39

FOS 1227212CB1_PROBE1 5 IRF7 NM_004031.1_PROBE1 30 FOS 1227212CB1_PROBE1 37

NFKB1 NM_003998.1_PROBE1 5 FOS 1227212CB1_PROBE1 20 TLR2 NM_003264.1_PROBE1 37

CD69 NM_001781.1_PROBE1 4 NFATC1 8224569CB1_PROBE1 11 HIVEP2 X65644_PROBE1 33

CFB NM_001710.2_PROBE1 4 IL6 NM_000600.1_PROBE1 10 IL15 2469073CB1_PROBE1 26

CXCL3 NM_002090.1_PROBE1 4 PSMB9 NM_002800.1_PROBE1 9 VCAM1 NM_001078.1_PROBE1 26

ETS1 AK001630_PROBE1 4 BCL3 NM_005178.1_PROBE1 8 RELB NM_006509.1_PROBE1 24

IER3 NM_003897.1_PROBE1 4 HIVEP2 X65644_PROBE1 7 MAP3K8 NM_005204.1_PROBE1 23

IL15 2469073CB1_PROBE1 4 CFB NM_001710.2_PROBE1 6 TUBB2B X79535_PROBE1 23

# Children indicates the number of target genes for each hub gene.
doi:10.1371/journal.pone.0072103.t002
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Combining Equations (1.1) and (1.2), the general form of the

ODE-based MIKANA can be obtained:

dxi

dt
~
XN

j~1

aijwj x1 tð Þ, � � � ,xN tð Þð Þ{dixi tð Þzui ð1:4Þ

Following Wildenhain and Crampin [21], the steady-state

regression form of MIKANA (ssMIKANA) is derived as follows:

Writing
dxi

dt
~0 when the system is at steady state and

rearranging Equation (1.4) gives:

{ui~
XN

j~1

aijwj xss
1 , � � � ,xss

N

� �
{dix

ss
i ð1:5Þ

where xss
i is the expression of gene i measured at steady state. In

real microarray experiments it is often difficult to establish the

strength of a perturbation ui applied to the system. Instead of

specifying an arbitrary value for ui, to deal with the situation

where, for example, the knockdown perturbation is not known, in

ssMIKANA the observation of the perturbed is removed from the

regression for that gene.

Following Srividhya et al. [14], we extended the dynamic model

(tsMIKANA) for time-series gene expression data to identify

Table 3. Biological enrichment analysis for the top 10 hubs in the ssMIKANA, tsMIKANA and cMIKANA network models.

ssMIKANA

Gene Ontology
Genes with
Annotation ln(Bayes factor) FE: -ln(p value) FE: -ln(FDR)

GO:0006952: defense response 8 13.02 15.55 11.01

GO:0051244: regulation of cellular physiological process 7 12.56 15.09 11.01

GO:0009607: response to biotic stimulus 8 11.99 14.51 10.84

GO:0006955: immune response 7 10.7 13.22 9.84

GO:0050794: regulation of cellular process 7 10.31 12.83 9.69

GO:0051243: negative regulation of cellular physiological process 5 10.13 12.67 9.69

GO:0050791: regulation of physiological process 10 9.43 11.95 9.12

GO:0050789: regulation of biological process 10 8.34 10.84 8.15

GO:0006954: inflammatory response 4 7.94 10.48 7.97

GO:0043118: negative regulation of physiological process 5 7.92 10.44 7.97

GO:0006366: transcription from Pol II promoter 5 7.79 10.31 7.94

GO:0006916: anti-apoptosis 3 6.82 9.37 7.08

GO:0050896: response to stimulus 8 6.67 9.16 7

GO:0043066: negative regulation of apoptosis 3 6.49 9.03 7

GO:0009611: response to wounding 4 6.48 9 7

GO:0043069: negative regulation of programmed cell death 3 6.46 9 7

TransFac

V$NFKAPPAB65_01: NF-kappaB (p65) 7 9.66 12.19 6.69

V$NFKB_C: NF-kappaB binding site 5 6.88 9.39 4.59

tsMIKANA

Gene Ontology
Genes with
Annotation ln(Bayes factor) FE: -ln(p value) FE: -ln(FDR)

GO:0009607: response to biotic stimulus 6 7.9 10.25 5.32

GO:0050791: regulation of physiological process 8 6.83 9.17 5.28

GO:0006955: immune response 5 6.4 8.74 5.28

TransFac

V$NFKB_C: NF-kappaB binding site 5 8.11 10.47 5.02

cMIKANA

Gene Ontology
Genes with
Annotation ln(Bayes factor) FE: -ln(p value) FE: -ln(FDR)

GO:0006955: immune response 5 7.12 9.38 5.1

GO:0006952: defense response 5 6.58 8.83 5.1

The categories in Gene Ontology and TransFac with Bayes factor .6 are summarized and the related number of genes with annotation in the hubs. The Fisher exact p-
value (FE: -ln[p value]) and false discovery rate (FE: -ln[FDR]) are presented.
doi:10.1371/journal.pone.0072103.t003
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dynamic regulatory interactions and to explain the transient

response in gene regulatory mechanisms. The tsMIKANA is

derived as follows:

Given time-series measurements collected at time points

t1,t2, � � � tt, rates of change of expression levels are approximated

using
dxi

dt
~

Dx

Dt
~

xm
i {xm{1

i

tm{tm{1
. The general form for the regression

then becomes:

xm
i {xm{1

i

tm{tm{1
{ui~

XN

j~1

aijwj x1 tmð Þ,:::,xN tmð Þð Þ{dixi tmð Þ ð1:6Þ

For the time-series microarray experiments considered here, the

perturbation is set to zero for tsMIKANA as we assume that the

perturbation is to the initial conditions and is not sustained.

Noticing that the right hand sides of Equations (1.5) and (1.6)

are identical, we can write the regression model in a form such that

steady-state data and time-series measurements can be combined

for model fitting simultaneously. Using the nonlinear basis

function above, we have the regression for cMIKANA:

pi~
XN

j~1,j=i

aij

2xj

1zxj

{1

� �
{dixi ð1:7Þ

where

xi~ x
t1
i � � � xtt

i x
ss1
i � � � x

ssM
i

h i

pi~
x

t1
i {x

t0
i

Dt
� � � xtt

i {x
tt{1
i

Dt
0 � � � 0

� �

Here xi combines the time-series data measured at a series of

time points t0, � � � tt and the steady-state data collected fromM
knockdown experiments, for which xik is the expression of the ith
gene at the kth time point or experiment. pi is the combination of

the left hand side of Equations (1.5) and (1.6).

Simulation of gene regulatory networks
We adapted the simulation environment described by Wild-

enhain and Crampin [21] to generate a gene network, and

synthetic gene expression data were then simulated for this

network. In the simulation model, the size of the network is

defined by the number of genes (nodes) n. The network topology is

defined by the distribution P(k) of the number of interactions for

each gene, the degree k, across the nodes in the network. In this

work, we have assumed a scale-free topology, where the degree

distribution P(k) follows a power-law, P(k),k2r where r is the

degree exponent. Following Barabasi and Albert [31], this

topology is constructed following the preferential attachment rule

pi~
kiPn

j~1

kj

, where pi is the probability of adding a new connection

to node i, and ki is the degree of node i. It is assumed that all

nodes initially have the same attachment probability, which is

randomly generated from a uniform distribution with a range of

[0, 1]. Parent and child nodes a and b are selected at random, and

an edge is assigned from a to b if both pa and pb exceed a

predetermined threshold. This approach iteratively connects

nodes until a specified average degree for kav is achieved for the

network. We also assign positive and negative regulatory

interaction specification to each directed edge in the network,

with the ratio of positive to total interactions determined by a

predefined parameterr. A connection is defined to be positive

(activatory regulation) if a random number generated from the

uniform distribution [0, 1] is larger thanr. Otherwise the

connection is defined to be negative (inhibitory regulation). For

the networks simulated in this work, the average connectivity kav

= 3 and r = 0.65.

Simulation of gene expression data sets
Given a specified network structure, gene regulatory behaviour

can be simulated using the set of ODEs [19] shown in Equation

(1.8).

dxi

dt
~fi x1 tð Þ, � � � ,xN tð Þð Þ{dixi tð Þ ð1:8Þ

The regulatory effects of positive and negative interactions on

gene iare characterised by fi which determines the transcription

rate of gene i and its degradation rate is di. Following the work of

Wildenhain and Crampin [21], we used Equation (1.9) to

represent the influence of regulator genes acting on gene i

fi~vi P
j

1z
Aj

KajzAj

� �
P
k

Kik

KikzIk

� �
ð1:9Þ

where vi is the basal rate of expression for gene i, Aj represents the

expression level of activator gene j (positive interactions) while Ik is

the expression level of inhibitor gene k (negative interactions)

acting on gene i in the network. Kaj and Kik are the saturation

constants.

To examine the three variants of the MIKANA network

inference approach, two types of numerical experiments were

designed for simulating steady-state datasets and time-series

datasets of gene expression in response to external stimuli. The

numerical experiments were designed in accordance with the

microarray studies on HUVECs described in Hurley et al. [1].

Steady-state data were generated to simulate a series of siRNA

knockdown experiments in which a different, single gene in the

network was perturbed in each experiment. Time-series data were

simulated by perturbing the initial conditions of all genes in the

network. This was designed to simulate the wide-ranging effect of

a broader perturbation, for example triggering inflammatory

response.

Two assumptions were made for simulating these experiments:

(1) The system is originally at a steady state, which is considered as

the reference state for the experiments; (2) the initial concentration

of mRNA of a target gene in siRNA knockdown experiments or

the mRNA abundances of all genes in a temporal experiment are

changed once external stimuli is applied. The simulation has two

steps: (i) reference state generation and (ii) microarray experiment

simulation. The simulation is executed by MatLab code, which is

available from author upon request.

(i) Reference state generation
Numerical experiments are initiated with all variables x (mRNA

concentrations) at reference steady state values. To determine an

appropriate reference state, the steady state of the set of ODEs is

found by solving with a set of initial conditions being randomly
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generated from a normal distribution with mean 1000 and

standard deviation 1000. The steady-state solution of Equation

(1.9) xss
i is then used as the reference state x

reference
i for subsequent

experiments.

0~fi xss
1 ,xss

2 � � � ,xss
N

� �
{dix

ss
i ð1:10Þ

In order to generate numerical data, the parameters in

Equations (1.8) and (1.9) were randomly selected from uniform

distributions. The range of each distribution was determined

empirically in order to achieve a stable model with sufficient

variations in simulated data across time: vi[½8,10�,
Kaj ,Kik[½150,200�, and di[½0:07,0:1�.

(ii) Microarray experiment simulation
Simulation of siRNA knock-down. For each knockdown

experiment a different gene is perturbed – a target gene is selected

and knock-down is simulated by holding the corresponding

variable xtarget at a fixed, reduced level, such that

x
perturbed
target ~x

reference
target 1{eð Þ. The degree of knock-down e is drawn

from a uniform distribution with a range of [0, 1] indicating the

percentage by which the expression level of the target gene that

would be reduced (by the particular siRNA for example). For the

remaining variables, the remaining set of ODEs was integrated.

Steady state datasets. To simulate steady state datasets

generated from a series of siRNA knock down experiments, the

procedure is repeated for each targeted gene in turn, with the

remaining N-1 ODEs solved to find the new steady state,

generating a set of steady state data.

Simulation of broad cellular response to

perturbation. To capture the variation in gene expression in

response to broader external stimuli, for example cellular response

to an inflammatory trigger, we simulated experiments in which all

genes in the network were initially perturbed. For each experi-

ment, a set perturbation coefficients ei was generated from a

uniform distribution with a range of [21, 1] representing the

percentage expression level increase or decrease caused by the

perturbation. The ODE system was solved with initial conditions

x
perturbed
i,0 ~x

perturbed
i 1{eið Þ for each genei.

Time-series datasets. To generate time series data a

number of gene expression data were collected at sequential time

points as the system evolves to a new steady state. The process was

repeated M times (replicates) with m time points, generating an

M|m sample time-series dataset.

Noise model. To assess the effects of noise on the perfor-

mance of an ODE-based algorithm we modelled noisy gene

expression data yi tð Þ by adding noise that was randomly generated

from a Gaussian distribution to the noiseless synthetic data xi tð Þ:

yi tð Þ~xi tð Þ| 1znoiseð Þ ð1:11Þ

where the random variable noise is drawn from Gaussian

distribution with a zero mean and a specified standard deviation

s for each noise level.

Assessment of network inference. To score the perfor-

mance of network inference, inferred networks were compared to

the synthetic networks used to generate the data by calculating

Sensitivity and False Discovery Rate (FDR):

Sensitivity : Sn~ TP
TPzFN

ð1:12Þ

FalseDiscoveryRate : FDR~
FP

TPzFP
ð1:13Þ

where TP stands for true positives, FP is false positives, and FN is

false negatives.

Endothelial cell microarray datasets
In this work, we have used two experimental microarray

datasets in HUVECs: siRNA disruptant and TNF time course

microarray datasets. These two microarray datasets were prepared

previously [1] by using siRNA transfection and TNF treatment,

respectively of cultured HUVECs.

To prepare the siRNA disruptant microarray dataset, Hurley et

al. had selected 400 siRNA targets, including transcription factors,

signalling molecules, receptors and ligands that are related to

endothelial cell biology. HUVECs were perturbed by siRNA

treatment against each of the selected target RNAs. The global

variations in transcript abundance resulting from the siRNA-

mediated knockdowns were then measured by the CodeLink

UniSet Human 20K Bioarray microarrays. These data are

publicly available from the Gene Expression Omnibus (GEO)

database with accession number GSE27869. The siRNA dis-

ruptant microarray dataset used in this study is a small subset of

the data containing 400 samples for 379 RNAs that are

particularly selected for their relevance to Rel/NFkB transcription

factors, as described in [1].

To prepare the TNF time-series microarray dataset, HUVECs

had been treated with the pro-inflammatory growth factor TNF

for 24 hours. Samples were then harvested at 0, 1, 1.5, 2, 3, 4, 5

and 6 hours after being treated and were prepared in triplicate. In

each of three replicates, the abundance of transcript was measured

by CodeLink Uniset microarrays at each time point. These data

are publicly available from the GEO database with accession

number GSE27870. The TNF-treated time course dataset used in

this study is a subset of the data containing 234 differentially

expressed RNAs identified by Hurley et al [1] for network analysis.

Full experimental details are given in the publication describing

the generation of these data sets [1].

Supporting Information

Table S1 A list of 50 RNAs that were collected in both
the siRNA disruptant and TNF time course datasets.

(XLSX)

Table S2 Interactions inferred from the siRNA disrup-
tant data of 50 RNAs using ssMIKANA. 130 interactions
were identified by ssMIKANA. Each interaction is defined by

a regulator gene (parent) pointing to a target gene (child) with an

interaction coefficient showing the strength of the interaction.

(XLSX)

Table S3 Interactions inferred from the TNF time
course data of 50 RNAs using tsMIKANA. 204 interactions

were identified by tsMIKANA. Each interaction is defined by a

regulator gene (parent) pointing to a target gene (child) with an

interaction coefficient showing the strength of the interaction.

(XLSX)

Table S4 Interactions inferred from the combined
dataset of 50 RNAs using cMIKANA. 738 interactions were

identified by cMIKANA from the combination of the siRNA

disruptant and the TNF time course data of 50 RNAs. Each

interaction is defined by a regulator gene (parent) pointing to a
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target gene (child) with an interaction coefficient showing the

strength of the interaction.

(XLSX)
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