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A B S T R A C T   

Adulteration in dairy products presents food safety challenges, driven by economic factors. Processing may 
change specific biomarkers, thus affecting their effectiveness in detection. In this study, proteomics and 
metabolomics approaches were to investigate the detection of bovine milk (BM) constituents adulteration in 
pasteurized mare milk (PMM) and mare milk powder (MMP). Several bovine proteins and metabolites were 
identified, with their abundances in PMM and MMP increasing upon addition of BM. Proteins like osteopontin 
(OPN) and serotransferrin (TF) detected adulteration down to 1 % in PMM, whereas these proteins in MMP were 
utilized to identify 10 % adulteration. Biotin and N6-Me-adenosine were effective in detecting adulteration in 
PMM as low as 10 % and 1 % respectively, while in MMP, their detection limits extend down to 0.1 %. These 
findings offer insights for authenticating mare milk products and underscore the influence of processing methods 
on biomarker levels, stressing the need to consider these effects in milk product authentication.   

1. Introduction 

Mare milk (MM) products are increasingly garnering attention in the 
dairy sector due to their unique composition and beneficial physiolog
ical properties. MM is noted for its similarity to human milk, particularly 
in terms of lactose, proteins, and minerals (Ji et al., 2024; Pietrzak- 
Fiećko & Kamelska-Sadowska, 2020). Importantly, MM exhibits lower 
allergenicity compared to bovine milk (BM) (Duan et al., 2021). The 
limited production and distinctive nutritional value of MM confer upon 
it a commercial value substantially exceeding that of BM. The practice of 
adulterating high-value specialty milk products with lower-cost BM—a 
phenomenon known as heterogeneous milk adulteration—represents a 
deceptive commercial tactic employed by some vendors for financial 
advantage (Azad & Ahmed, 2016). These adulterated milk products pose 
a threat not only to consumer rights but also to the health of individuals 
with BM allergies, particularly children (Manuyakorn & Tanpowpong, 
2019). 

Heat treatment is widely employed in dairy processing to enhance 
the safety and extend the shelf life of milk and dairy products. Although 

fermented mare milk is a significant dairy product and widely favored 
among populations in Central Asia (Di Cagno et al., 2004), mare milk 
can be heated processing for consumers and milk powder for infant are 
inevitable topics. However, such processing and storage can destabilize 
assay targets in milk (Benabdelkamel et al., 2017; Zhu, Kebede, Chen, 
McComb, & Frew, 2020), thereby compromising the accuracy of adul
teration detection. Several methods were used to detect specific milk 
and dairy products adulteration, of these, the Polymerase Chain Reac
tion is a well-established molecular technique widely used in dairy 
product testing, renowned for its high sensitivity, specificity, and cost- 
effectiveness (Deng et al., 2020; Guo et al., 2018). Its limitations, 
however, include vulnerability of DNA to degradation during heating 
processes and a lack of quantitative analysis capabilities. Proteomics and 
metabolomics methods have emerged as highly sensitive and specific, 
unaffected by matrix effects, and capable of targeting a broader spec
trum of compounds, although they are more costly (Böhme, Calo-Mata, 
Barros-Velázquez, & Ortea, 2019). Mass spectrometry (MS)-based ap
proaches, particularly matrix-assisted laser desorption ionization time- 
of-flight-tandem MS (MALDI-TOF-MS) and liquid chromatography- 
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tandem MS (LC-MS/MS), have also been applied to species identification 
in various dairy products (Li et al., 2020; Rau et al., 2020). Notably, 
species-specific peptides from bovine-derived α-lactalbumin have facil
itated the detection of bovine whey adulteration in specific milk at levels 
as low as 0.5 %, using LC-MS/MS (Camerini et al., 2016). Similarly, 
trypsin-digested peptides from bovine β-lactoglobulin have been 
instrumental in detecting adulteration exceeding 10 % whey content in 
BM- or buffalo milk–derived cheese using LC-MS/MS (de Oliveira et al., 
2022). Proteomic characterization through MALDI-TOF-MS of bovine 
liquid milk samples adulterated with varying percentages of BM powder 
identified specific peptides from whey and casein as markers, enabling 
detection of adulteration at levels as low as 1 % (Calvano, Monopoli, 
Loizzo, Faccia, & Zambonin, 2013). Furthermore, β-lactoglobulin and 
αS1-casein have been identified as BM biomarkers for detecting the 
adulteration in goat milk and sheep milk using ion-trap proteomics and 
liquid chromatography electrospray ionization ion-trap MS following 
multi-enzyme digestion (Nardiello, Natale, Palermo, Quinto, & Cen
tonze, 2018). In previous studies, several proteins, including β-lacto
globulin and β-casein, were identified as potential biomarkers for 
detecting adulteration in raw MM with BM using LC-MS/MS (Yang et al., 
2017; Ji et al., 2023). These findings underscore the potential of pro
teomic methods to generate informative fingerprints for verifying milk 
authenticity. However, the specific proteins indicative of adulteration in 
MM products remain to be thoroughly investigated. 

Metabolomics, especially untargeted metabolomics based on LC-MS/ 
MS, is a powerful tool for species-specific milk identification. This 
method focuses on the simultaneous measurement of thousands of me
tabolites in milk, which can be processed by chemometrics (Li et al., 
2022; Wu et al., 2021). Utilizing LC-MS/MS-based metabolomics, re
searchers have analyzed the metabolite composition of human, bovine, 
goat, and mare milk. Notably, certain metabolites, such as orotic acid, 
found in significantly higher concentrations in BM compared to other 
types, have facilitated the differentiation of various milk types (Wu 
et al., 2021). In a study employing LC-MS/MS metabolomics to inves
tigate the composition of BM metabolites from different dairy animals, 
key metabolites like choline and succinic acid were identified as effec
tive markers for distinguishing among various milk types (Yang et al., 
2016). Adulteration of breast milk with BM has been identified using 
quantitative metabolomics, specifically chemical isotope labeling LC- 
MS/MS. This method led to the discovery of five metabolites as bio
markers, capable of detecting BM presence in breast milk at concen
trations as low as 5 % (Mung & Li, 2018). These studies demonstrate the 
efficacy of the milk metabolome as a robust tool for differentiating 
various milk types. However, research is limited concerning the specific 
metabolites that contribute to quantifying BM adulteration in MM 
products. 

In this study, untargeted proteomics and metabolomics employing 
high-resolution Orbitrap Fusion Lumos Tribrid MS were utilized to 
assess the variations in the protein and metabolite compositions be
tween control and adulterated MM products, including pasteurized mare 
milk (PMM) and mare milk powder (MMP). These findings of this study 
have the potential to offer fingerprint protein and metabolite biomarkers 
for the identification of MM products adulterated with BM and may 
serve as a valuable reference for evaluating adulteration in MM. 

2. Materials and methods 

2.1. Sample collection 

Raw MM samples were obtained from farms in the vicinity of 
Urumchi, China, and Holstein milk samples were collected from farms 
near Qingdao, China. The collected milk samples were placed in sterile 
sampling bottles, initially stored at − 20 ◦C, transferred with dry ice, and 
subsequently preserved at − 80 ◦C in the laboratory prior to analysis. The 
protein, lactose and fat levels of studied milk samples are listed in 
Table S1. Given that the dry matter content of BM is approximately 12.7 

% and that of MM is 11.2 %, the adulteration detection procedures were 
conducted as follows. For pasteurized milk, samples were thawed at 
4 ◦C, Binary mixtures were then prepared by blending BM with MM in 
proportions of 0 %, 0.1 %, 1 %, 10 %, 20 %, 50 %, and 100 % by volume, 
followed by pasteurization at 63 ◦C for 30 minutes. For the milk powder 
group, raw milk was converted into powder through freeze-drying. BM 
powder was mixed with MMP in ratios of 0 %, 0.1 %, 1 %, 10 %, 20 %, 
50 %, and 100 % by weight. These binary mixtures were then recon
stituted using ultrapure water at a ratio of 1:8 (80 mL ultrapure water 
per 10 g milk powder). 

2.2. Reagents used 

2-Chlorophenylalanine, HPLC-grade acetonitrile, acetic acid, 
ethanol, methanol, acetone, and formic acid (FA); Tris, sodium dodecyl 
sulfate, hydrochloric acid, dithiothreitol (DTT), iodoacetamide (IAA), 
and ammonium bicarbonate were purchased from Sinopharm Chemical 
Reagent Co. Ltd., Shanghai, China. Sodium tricitrate, DL-dithiotriol, 
urea, sodium dihydrogen phosphate, hydroxypropyl methylcellulose 
were purchased from Sigma-Aldrich company, USA. Bicinchoninic acid 
(BCA) assay were purchased from Beyotime Biotechnology, Shanghai, 
China. Trypsin (TPCK-treated) was purchased from Thermo Fisher Sci
entific (Rockford, IL, USA). Pure water for the experiment was prepared 
with ultrapure water (18.2 MΩ⋅cm, 25 ◦C). 

2.3. Sample preparation for proteomics 

Three replicates each of both MM and BM products, along with their 
mixtures, were subjected to centrifugation at 4,000 × g and 4 ◦C for 30 
minutes. The upper layer of milk fat was discarded, and the middle 
layer, comprising skim milk rich in milk proteins, was collected. Protein 
concentrations in these gradient-diluted samples were quantified using 
the BCA assay, with bovine serum albumin as the standard. The pro
cedure for peptide preparation was as described in our previous study (Ji 
et al., 2023). Briefly, 30 μg milk protein was denatured through heated 
treatment, reduced with dithiothreitol and alkylated with iodoaceta
mide. The protein samples were then digested with 50 μL ammonium 
bicarbonate solution containing 1 μg of trypsin, and incubated at 37 ◦C 
for 16–18 hours. Finally, formic acid was added to terminate the enzy
matic reaction, and the peptides were purified using a SPE column 
(Thermo Fisher Scientific, Milford, MA, USA), dried, and resuspended in 
300 μL of 0.1 % formic acid solution. 

2.4. Data-dependent acquisition analysis by nLC-MS/MS 

The reconstituted peptide mixtures were subjected to analysis using 
an Easy nLC 1000 system coupled with an Orbitrap Fusion Lumos in
strument (Thermo Fisher Scientific, Milford, MA, USA), as referenced in 
our previous study (Ji et al., 2023). Peptide mixtures were automatedly 
loaded onto a C18 trap column (Thermo Fisher Scientific, Milford, MA, 
USA; PepMap 100 μm × 20 mm, 5 μm) and then passed through a C18 
analytical column (Thermo Fisher Scientific, Milford, MA, USA; PepMap 
75 μm × 150 mm, 3 μm) for gradient elution. Briefly, peptide samples 
were loaded and separated using mobile phase A [0.1 % formic acid] and 
mobile phase B [0.1 % (v/v) formic acid in 80 % acetonitrile] at a flow 
rate of 300 nL/minutes as follows: 0–5 minutes (4 %–10 % B), 5–63 
minutes (10 %–30 % B), 63–72 minutes (30 %–40 % B), 72–80 minutes 
(40 %–100 % B), and finally maintained at 100 % for 10 minutes. MS 
was performed in the positive ion mode with a resolution power of 
60,000 at 300–1,800 m/z. The top 20 precursor ions with multiple 
charged ions were analyzed by MS/MS using high-energy dissociation 
(normalized collision energy: 27). 

2.5. Protein identification and quantification 

The raw data were captured using Xcalibur software (Thermo Fisher 
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Scientific, Milford, MA, USA) and subsequently imported into MaxQuant 
software (version 2.0.3.0, Max-Planck-Gesellschaft, Berlin, Germany) 
for searching against a housed database (Bos taurus and Equus caballus, 
2020.12) obtained from UniProt (https://www.uniprot.org/). The 
search parameters included: trypsin specificity, allowance of up to two 
missed cleavages, MS/MS tolerance set at 0.05 Da, carbamidomethyla
tion of cysteine defined as a fixed modification, protein N-terminal 
acetylation, and oxidation of methionine defined as a variable modifi
cation. Protein relative quantification was performed using razor and 
unique peptides according to the label-free quantification (LFQ) work
flow. Acceptance criteria for peptides and proteins included a false 
discovery rate of no more than 0.01 %. Identified proteins were further 
filtered by requiring a minimum of two identified peptides. 

2.6. Quantitative protein analysis by capillary electrophoresis 

To evaluate potential biomarkers, samples of MM, BM, and their 
mixtures underwent analysis using capillary electrophoresis (CE) 
(Beckman Instruments, California, USA). Milk protein samples were 
diluted to 1 mg/mL in a sample reduction buffer containing 5 mmol/L 
sodium tricitrate, 5 mmol/L DL-dithiotriol, and 8 mol/L urea at pH 8.0. 
After dilution, the samples were vortexed and incubated for 1 hour at 
room temperature. Prior to CE analysis, the protein samples were 
filtered through a 0.22 μm filter. 

CE analysis was conducted using a Beckman PA800 plus CE system, 
operated with 32KaratTM software (Beckman Instruments, California, 
USA). The coated capillary column had dimensions of 580 mm × 50 μm 
× 375 μm. The distance from the detection window to the outlet was 80 
mm. The separation process utilized a voltage of 20 kV, resulting in a 
final current of approximately 30 μA. Samples were injected into the 
system at a pressure of 20 psi (1 psi = 6894.76 Pa) for 10 seconds. 
Detection of the analytes was performed at a wavelength of 214 nm. 
Before each sample injection, the capillary was sequentially flushed with 
purified water for 2 minutes and then with a running buffer (composed 
of 11.5 mmol/L sodium dihydrogen phosphate, 8.5 mmol/L hydrox
ypropyl methylcellulose, and 8 mmol/L urea at pH 2.50) for 5 minutes at 
30 psi. 

Bovine β-casein was isolated following the method described by 
previous research (Post, Arnold, Weiss, & Hinrichs, 2012). To quantify 
β-casein in samples, β-Casein was electrophoresed at five different 
concentrations: 20, 50, 100, 200, and 500 μg/mL. 

2.7. Statistical analysis of proteomics 

Protein data derived from three parallel samples for each treatment 
was imported into Perseus (https://www.perseus-framework.org) for 
statistical analysis. This analysis included principal component analysis 
(PCA), loading plots, and hierarchical cluster analysis. Proteins exhib
iting P-value < 0.05 were considered significantly different. On this 
basis, if a protein in adulterated samples shows a FC value ≥ 2 relative to 
unadulterated samples, this protein is considered to have potential as a 
biomarker for the detection of adulteration. Volcano plots were created 
using GraphPad Prism software, version 8.0 (GraphPad Software, San 
Diego, California, USA). For the CE data, the quantification of bovine 
β-casein in adulterated samples was determined by correlating the 
concentration and peak area of isolated β-casein, using Microsoft Office 
Excel 2010. 

2.8. Sample preparation for metabolomics 

Eight replicates each of MM and BM products, as well as their mix
tures, were prepared. These samples were centrifuged at 4,000 × g at 
4 ◦C for 30 minutes to produce skimmed milk samples. For the quality 
control (QC), equal aliquots from each sample were pooled. Metabolites 
were extracted by mixing 1 mL of the skimmed milk sample with 10 μL 
of 3 mg/mL 2-chlorophenylalanine as an internal standard and 30 μL of 

33 % acetic acid to adjust the pH for protein precipitation. This mixture 
was then centrifuged at 10,000 × g for 15–20 minutes. The resulting 
supernatant was transferred to a 2 mL centrifuge tube and lyophilized. 
Post-lyophilization, 2 mL of 90 % ethanol was added to the dried sample, 
shaken at 750–1000 rpm for 5 hours, followed by centrifugation at 4 ◦C 
10,000 × g for 15 minutes. The final supernatants were lyophilized 
again, reconstituted in 100 μL of ultrapure water and methanol (1:1), 
and centrifuged at 10,000 × g for 15 minutes. The clear supernatant was 
then prepared for further analysis. 

2.9. Metabolite analysis by LC-MS/MS 

Metabolites were analyzed using a Dionex UltiMate 3000 UHPLC 
system coupled with an Orbitrap Fusion Lumos system (Thermo Fisher 
Scientific, Milford, MA, USA). Each sample was run twice with technical 
repetitions. Metabolite samples were injected into an Agilent Poroshell 
120 SB-C18 column (2.1 × 100 mm, 2.7 μm) using an autosampler. 
Chromatographic separation was achieved with two mobile phases: 
mobile phase A [5 % (v/v) acetonitrile and 0.1 % (v/v) formic acid] and 
mobile phase B [0.1 % (v/v) formic acid in acetonitrile]. The flow rate 
was set at 0.2 mL/minutes. The elution program was structured as fol
lows: 0–2 mL/minutes with 100 % mobile phase A, followed by a 
gradient from 100 % to 0 % A over the next 10 minutes, and then a 4 mL/ 
minutes maintenance period. 

The mass spectrometer parameters for this experiment were as fol
lows: electrospray voltage in positive mode was 3.5 kV; the temperature 
of the electrospray ionization source was 350 ◦C; the resolution of the 
initial full scan was 70,000; the scan range extended from 100 to 1,000 
m/z; the resolution of the secondary data dependency scan was 35,000; 
and the automated gain control target was set to 1e6. To ensure the 
stability of the analysis, the QC was conducted by injecting a sample 
once every 14 samples throughout the analysis to monitor the consis
tency of sample preparation and instrument performance. 

2.10. Metabolite data acquisition 

Raw metabolomics data were obtained using Xcalibur and uploaded 
into Compound Discoverer 3.13 (Thermo Fisher Scientific, Milford, MA, 
USA). This software facilitated the extraction of mass spectral peak lists, 
mass annotation, and deconvolution, incorporating the analysis of 
relevant fragment ion and isotope distribution. The retention time 
tolerance window was set to 20 seconds for definitive identification 
searches, and a mass tolerance of 0.005 Da was applied for the putative 
searches. Retention time alignment was performed using a mass toler
ance of 5 ppm for both precursor and fragment ions, with a maximum 
time shift of 30 seconds. Compound detection parameters involved a 
mass tolerance of 10 ppm, an intensity tolerance of 30 %, and a signal- 
to-noise ratio threshold of 3. Information on protonated molecular ion 
[M + H]+, [M + K]+, [M + Na]+, and [M + 2H]+, acquired from MS, was 
utilized for metabolic profile analysis and characterization. A fragmen
tation score ranked the potential identification of high-energy accurate 
mass fragment ions against the theoretical dissociation of the molecule. 
The outcomes of the quantitative and statistical analyses, encompassing 
metabolites and peak area, were subsequently obtained. 

2.11. Statistical analysis of metabolites 

The metabolites identified through database searches and substances 
retrieved via MS2 were retained for accuracy assurance. The data were 
then imported into Perseus (https://www.perseus-framework.org) for 
comprehensive multivariate statistical analysis included PCA. This 
process strictly followed the established methodologies outlined in the 
Perseus instructions, encompassing several key steps: 1) Importation 
and classification of data into respective groups within the Perseus 
software. 2) Removal of low-quality data. 3) Logarithmic transformation 
of the data, with missing values imputed using interpolation methods 

Z. Ji et al.                                                                                                                                                                                                                                        

https://www.uniprot.org/
https://www.perseus-framework.org
https://www.perseus-framework.org


Food Chemistry: X 22 (2024) 101265

4

align with the assumptions of normal or uniform distribution assump
tions. 4) Execution of statistical analyses including one-way ANOVA, 
PCA, and clustering analysis were performed, followed by their visual 
representation. Additionally, SIMCA 14 (Umetrics, Umeå, Sweden) was 
utilized for orthogonal partial least-squares discriminant analysis 
(OPLS-DA) and the generation of loading plots based on OPLS-DA. Its 
analytical procedures mirrored those of Perseus. PCA and OPLS-DA were 
employed to elucidate potential clustering and trends among the sam
ples, and loading plots were utilized to highlight metabolite differences 
between samples. Metabolites were considered significantly different if 
they exhibited a P-value < 0.05 and a variable importance for projection 
(VIP; as calculated in the OPLS-DA model) ≥ 1. On this basis, if a 
metabolite in adulterated samples shows a FC value ≥ 1 relative to 
unadulterated samples, this metabolite is considered to have potential as 
a biomarker for the detection of adulteration. The univariate receiver 
operating characteristic (ROC) curve analysis was employed to assess 
the performance of metabolites as biomarkers, using MedCalc version 
9.5.2.0 statistical software (MedCalc Software) for the ROC analysis. The 
area under the curve (AUC) values were interpreted as follows: an AUC 
of 1.0 indicated a perfect test; 0.9 to 0.99, an excellent test; 0.8 to 0.89, a 
good test; 0.7 to 0.79, a fair test; and < 0.7, a test not considered useful. 

3. Results 

3.1. Proteomics profiles of MM products with different levels of 
adulteration 

In this study, 2,004 and 1,931 tryptic peptides were identified in the 
PMM and MMP groups, respectively, and are detailed in Tables S2 and 
S3. Among these, several peptides were found to originate from bovine- 
derived proteins. Specifically, 17 peptides from bovine-derived αS1- 
casein were identified in both PMM and MMP groups, 20 peptides from 
bovine αS2-casein in the PMM group and 21 peptides in the MMP group, 
four peptides from bovine β-2-microglobulin (B2M) in both groups, and 
seven peptides from bovine osteopontin (OPN) in the PMM group as 
opposed to six in the MMP group. Statistical analysis revealed the 
identification of 740 differentially abundant peptides from bovine- 
derived proteins in the PMM group and 634 in the MMP group, as lis
ted in Tables S4 and S5. The relative abundances of these proteins was 
quantified using the LFQ workflow, focusing on bovine-specific peptides 
that elucidate the protein differences between MM products and BM. 

A total of 254 proteins, each identified by at least two peptides, were 
detected in the PMM group, as detailed in Table S6. The clustering 
analysis of these quantitatively assessed proteins in the PMM group is 
depicted in Fig. S1a, Notably, pure PMM and adulterated PMM samples 
at 0.1 % and 1 % formed a subcluster, while the 10 %, 20 %, and 50 % 
adulterated PMM samples clustered together with pasteurized bovine 

Fig. 1. Principal component analysis (PCA) score plots and PCA-based loading plots of all milk proteins using proteomics methods. PMM, PBM, and 0.1 %, 1 %, 10 %, 
20 %, and 50 % BM in PMM (a). MMP, BMP, and 0.1 %, 1 %, 10 %, 20 %, and 50 % BMP in MMP (b). 

Z. Ji et al.                                                                                                                                                                                                                                        



Food Chemistry: X 22 (2024) 101265

5

milk (PBM) in a larger, separate grouping. The PCA score plots, as 
depicted in Fig. 1a, revealed a distinct separation in the protein profiles 
correlated with the levels of adulteration. Notably, samples at different 
adulteration levels were distinctly isolated from each other, with the 
exception that PMM and the 0.1 % and 1 % adulterated mixtures were 
not clearly differentiated. In terms of the loading plots corresponding to 
these score plots, specific bovine proteins such as B2M, κ-casein, and 
glycosylation-dependent cell adhesion molecule 1 (GlyCam1) were 
identified as significant proteins to the differentiation of adulterated 
samples. 

In the MMP group, a total of 241 proteins, each identified by at least 
two peptides, were detected (Table S7). The clustering analysis of these 
proteins, presented in Fig. S1b, revealed that the pure MMP and adul
terated MMP samples at 0.1 % and 1 % formed a subcluster, while 10 %, 
20 %, and 50 % adulterated MMP samples constituted another. Bovine 
milk powder (BMP) alone clustered separately, and joined these two 
clusters. The PCA score plots for the MMP group, as shown in Fig. 1b, 
indicated that the protein profile’s apparent separation was linked to the 
proportion of BMP ingredients added, displaying similarities to the PMM 
group. In alignment with these loading plots, several bovine proteins 
including B2M, κ-casein, OPN, and GlyCam1, were identified on the 
loading plots as key proteins to the differentiation of the adulterated 
samples in MMP. 

3.2. Statistical analysis of differentially abundant proteins 

Statistical analysis of the identified proteins identified in the PMM 
group revealed 193 proteins to be significantly, as listed in Table S8. 
Notably, bovine-derived β-casein, κ-casein, αS1-casein, and αS2-casein 
were observed to increase in adulterated PMM samples with BM content 
(ranging from 0.1 to 100 %), exhibiting a FC ≥ 2 and P-value < 0.05. The 
levels of bovine-derived proteins such as α-lactalbumin, B2M, sero
transferrin (TF), zinc-α-2-glycoprotein (AZGP1), and OPN in adulterated 
PMM significantly increased in adulterated PMM samples with 1 %–100 
% BM content. Additionally, β-lactoglobulin levels significantly 
increased in adulterated PMM samples adulterated with 10 %–100 % 
BM content. Volcano plots were employed to illustrate the significantly 
different proteins between the PMM and other studied groups. Several 
different proteins including α-lactalbumin, OPN, and caseins were 
labeled, as depicted in Fig. 2a. Corresponding to the varying adultera
tion levels, the relative abundance changes of caseins, TF and OPN are 
detailed in Fig. S2a. 

Statistical analysis of the proteins identified in the MMP group 
revealed that 193 proteins were significantly different, as documented in 
Table S9. Within this group, bovine-derived proteins such as lactoferrin, 
αS1-casein, and αS2-casein, were detected in MMP samples adulterated 
with 0.1 %–100 % BMP, exhibiting a FC of ≥ 2 and P-value < 0.05. 
Significantly different bvine-derived proteins including β-Casein, 
κ-casein, and B2M were identified in MMP adulterated with 1 %–100 % 
BMP. Additionally, the levels of TF, α-lactalbumin, AZGP1, OPN, 
β-lactoglobulin, and GlyCam1 significantly increased in MMP adulter
ated with 10 %–100 % BMP. Volcano plots, as illustrated in Fig. 2b, 
highlighted the differential proteins between MMP and the other studied 
groups, specifically annotating variations in β-lactoglobulin and caseins. 
Corresponding to the varying adulteration levels, the relative abun
dances changes of caseins, AZGP1, and OPN are detailed in Fig. S2b. 

To further elucidate the findings, the mean relative abundances of 
some proteins or metabolites identified as potential markers in various 
adulterated samples were detailed, alongside their respective ANOVA P- 
value and Post hoc Tukey’s HSD test results, in Table S10 and Table S11. 
Additionally, clustering analysis was employed to directly present the 
differential proteins in the PMM and MMP groups, as depicted in Fig. 3. 
It was observed that the variations in protein levels identified in PMM 
were similar to those in MMP, with specific variations in proteins like 
β-lactoglobulin and α-lactalbumin, likely attributable to variations in 
milk processing methods. This point previously addressed in this study. 

The presence of bovine β-casein in adulterated PMM and MMP 
samples was conclusively verified using CE. Chromatograms represent
ing PMM and MMP at different adulteration levels (0 %, 0.1 %, 1 %, 10 
%, 20 %, 50 %, and 100 %), as depicted in Fig. S3. Quantification of 
β-casein in PMM and MMP adulterated with BM, as depicted in Fig. S4. 
In PMM adulterated with 0.1 %–100 % BM, β-casein levels increased 
from 32.94 ± 1.23 μg to 181.63 ± 10.99 μg, and in MMP adulterated 
with 0.1 %–100 % BMP, the increase was from 29.06 ± 0.73 μg to 
144.26 ± 9.04 μg. These changes in β-casein levels in adulterated PMM 
and MMP showed a gradual increase commensurate with the increasing 
BM components, similar to our proteomics results. 

3.3. Metabolomics profiles of MM products with different levels of 
adulteration 

The raw data from the PMM and MMP groups were processed using 
Compound Discoverer 3.0, leading to the identification of 1,270 and 
1,105 metabolites, respectively, as listed in Tables S12 and S13. To 
illustrate the changes in the metabolome profile, PCA of the quantitative 
metabolites from both the PMM and MMP groups was conducted, as 
shown in Fig. 4. In the PMM group, different adulteration levels of PMM 
were distinctly separated, with each level forming a tight cluster. The 
metabolite profile of adulterated PMM changed in accordance with the 
increase in BM supplementation, and the unsupervised PCA model 
effectively distinguished these variations. In addition, in the MMP 
group, pure MMP, 0.1 % and 1 % adulterated MMP showed slight 
overlap, the other groups were tightly clustered and distinctly separated 
from each other. The metabolite profiles of the MMP group demon
strated a pattern of regularity akin to that observed in the PMM samples. 

3.4. Identification of differentially abundant metabolites 

To identify differentially abundant metabolites, all metabolites from 
the studied groups underwent multivariate statistical analysis, employ
ing a pattern recognition method based on supervised OPLS-DA. The 
OPLS-DA model of the PMM group is depicted in Fig. 5a. Utilizing the 
first six principal components, the OPLS-DA model yielded parameters 
R2(X), R2(Y), and Q2 of 0.856, 0.963, and 0.855, respectively, indi
cating that the models had good adaptability and predictive ability. The 
loading plots, illustrating the correlation between X and variables and Y- 
variables, highlight the metabolite differences between pure PMM and 
the adulterated samples based on OPLS-DA. Important variables 
contributing to the differentiation between authentic and adulterated 
samples were discerned using VIP values. In Fig. 5a, metabolites with a 
VIP ≥ 1 were highlighted in red, with 2-aminonicotinic acid and 7-meth
ylguanine were specifically labeled. Based on the criteria of VIP of ≥ 1 
and P-value < 0.05, a total of 125 metabolites were found to be signif
icantly different in the PMM group, as documented in Table S14. Among 
these, with a FC ≥ 1, the levels of N6-Me-adenosine, prostaglandin A2, 
and two unidentified metabolites with molecular weights (MW) of 
226.0757 and 317.1757 increased significantly in proportion to the BM 
content, ranging from 0.1 % to 100 %. Additionally, the abundances of 
7-Methylguanine, 2-aminonicotinic acid, and 2,4-quinolinediol showed 
a significant increase with BM additions of 1 % to 100 % in PMM. The 
metabolites choline, 7-methylguanine, 2,4-quinolinediol, N6-Me- 
adenosine and 2-aminonicotinic acid were observed to increase in 
abundance with rising levels of BM adulteration in PMM, as demon
strated in Fig. S5a. Furthermore, ROC curves for N6-Me-adenosine, 2- 
aminonicotinic acid, 2,4-quinolinediol, and 7-methylguanine, 
employed to discriminate between pure PMM and PMM adulterated 
with 0.1 %, 1 %, and 10 % BM, are listed in Fig. S6a. Analysis revealed 
that the abundance of these metabolites enhanced in tandem with the 
increase in BM content in PMM. In the PMM group adulterated with at 
least 1 %, the AUC for these metabolites was at least 0.875, as illustrated 
in Fig. S6a. 

The OPLS-DA model for the MMP group is illustrated in Fig. 5b. This 
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Fig. 2. Volcano plots of differential abundant proteins from all milk samples. PMM, PBM, and 0.1 %, 1 %, 10 %, 20 %, and 50 % BM in PMM (a). MMP, BMP, and 0.1 
%, 1 %, 10 %, 20 %, and 50 % BMP in MMP (b). 
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model, based on the first six principal components, demonstrated R2(X), 
R2(Y), and Q2 parameters of 0.699, 0.787, and 0.656, respectively, 
signifying effective predictive reliability. Metabolites with VIP ≥ 1, such 
as biotin and 2-aminonicotinic acid were labeled on the loading plots of 
OPLS-DA (Fig. 5b). From the analysis of metabolites with a VIP ≥ 1 and 
P-value < 0.05, a total of 147 metabolites were identified as significantly 
different in the MMP group, as detailed in Table S15. Among the iden
tified metabolites with a FC of ≥ 1, biotin, 2-aminonicotinic acid, N6- 
Me-adenosine, and an unknown metabolites (MW = 254.0784) signifi
cantly increased with BMP ranging from 0.1 % to 100 %. Additionally, 7- 
Methylguanine, 6-methylflavone, and another unknown metabolite 
(MW = 326.1729) significantly increased in MMP adulterated with 1 % 
to 100 % BMP. Meanwhile, the abundances of biotin, 6-methylflavone, 
2-aminonicotinic acid, N6-Me-adenosine and 7-Methylguanine 
increased with the rising levels of BMP adulteration, as depicted in 

Fig. S5b. Furthermore, ROC curves for N6-Me-adenosine, 2-aminonico
tinic acid, biotin, and 7-methylguanine, aimed at distinguishing be
tween MMP and MMP adulterated with 0.1 %, 1 % and 10 % BMP, are 
presented in Fig. S6b. In the MMP group adulterated with at least 1 % 
BMP, the AUC for these metabolites was at least 0.922, as shown in 
Fig. S6b. Additionally, it was observed that most of the differentially 
abundant metabolites identified in the PMM group were similar to those 
detected in the MMP group. 

4. Discussion 

In this study, PMM and MMP samples adulterated with varying 
amounts of BM components were analyzed using proteomic and 
metabolomic approaches. Multivariate statistical analysis revealed that 
the abundances of several proteins, including B2M, OPN, and 

Fig. 3. Cluster analysis of some differential abundant proteins from all milk samples. PMM, PBM, and 0.1 %, 1 %, 10 %, 20 %, and 50 % BM in PMM (a). MMP, BMP, 
and 0.1 %, 1 %, 10 %, 20 %, and 50 % BMP in MMP (b). 

Fig. 4. Principal component analysis (PCA) of metabolite profile from all milk samples. PMM, PBM, and 0.1 %, 1 %, 10 %, 20 %, and 50 % BM in PMM (a). MMP, 
BMP, and 0.1 %, 1 %, 10 %, 20 %, and 50 % BMP in MMP (b). 
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metabolites such as 2-aminonicotinic acid and N6-Me-adenosine, 
increased with the level of BM adulteration in both PMM and MMP. 
These specific proteins and metabolites were identified as biomarkers 
and employed to detect adulteration of dairy products with BM, even at 
levels as low as 0.1 %. The differential expression patterns of these 
proteins and metabolites, potentially originating from mare and bovine 
mammary glands, provide valuable insights into the adulteration of MM 
products with BM. 

4.1. Proteomics analysis of markers 

The caseins αS1-casein, αS2-casein, β-casein, and κ-casein were 
identified as key markers for distinguishing PMM and MMP adulterated 
with BM components in this study. In prior research, α-casein was 
effective in detecting the addition of ≥ 5 % BM to goat milk using the 
differing retention times of α-casein from the two species. However, 
when employing reversed-phase high performance liquid chromatog
raphy, caseins were not capable of identifying the addition of BM to 
sheep milk (Veloso, Teixeira, & Ferreira, 2002). αS1-Casein has been 
utilized for the detection and quantitation of BM in buffalo mozzarella 
cheese via multiple reaction monitoring MS (Gunning, Fong, Watson, 

Philo, & Kemsley, 2019). Bovine-specific peptides derived from αS1- 
casein and αS2-casein have been employed as biomarkers to detect a 5 % 
BM presence in goat and sheep milk based on different tryptic peptides 
between bovine and goat or sheep using MALDI-TOF-MS (Calvano, 
Ceglie, Monopoli, & Zambonin, 2012). κ-Casein has been identified as a 
biomarker for detecting as low as 2 % BM components in goat milk. This 
detection is based on the differences in MW and isoelectric point as 
observed on 2D-gels (Jamnik, Volk, Ogrinc, & Jerek, 2019). As previ
ously mentioned, caseins, due to differences in amino acid sequences 
and physicochemical properties, can serve as biomarkers for dis
tinguishing milk from different species. Utilizing the the Uniprot data
base, we conducted a comparative analysis of the amino acid sequences 
of αS1-casein, αS2-casein, β-casein, and κ-casein between mare and 
bovine, revealing sequence similarities of 30.1 %, 66.7 %, 67.5 %, and 
51.3 %, respectively. Through MS, we identified several tryptic peptides 
specific to bovine caseins and observed that the abundances of bovine 
caseins in both PMM and MMP increased with the addition of increasing 
amounts of BM. Consequently, caseins can be considered as fingerprint 
proteins for identifying PMM and MMP that containing BM. Our study 
found that the levels of BM κ-casein and β-casein levels in PMM signif
icantly increased with BM adulteration ranging from 0.1 % to 100 %, 

Fig. 5. Orthogonal partial least-squares discriminant analysis (OPLS-DA) and OPLS-DA -based loading plots of metabolites from all milk samples using metabolomics 
approach, metabolites with VIP ≥ 1 were marked in red. PMM, PBM, and 0.1 %, 1 %, 10 %, 20 %, and 50 % BM in PMM (a). MMP, BMP, and 0.1 %, 1 %, 10 %, 20 %, 
and 50 % BMP in MMP (b). 
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and in MMP with BMP adulteration from 1 % to 100 %. The difference in 
detection limits of κ-casein and β-casein between PMM and MMP groups 
may be attributed to the adhesion of casein and whey protein to the 
surface of fat globules, a phenomenon potentially caused by shear forces 
during milk powder reconstitution (Holzmüller & Kulozik, 2016; Zheng 
et al., 2020). Then, β-casein in PMM and MMP adulterated with BM 
components was quantified using CE. It was observed that the peak area 
of β-casein increased with the quantity of BM. This observation confirms 
the reliability of bovine β-casein as a biomarker for identifying adul
teration in PMM and MMP. 

Numerous proteins, including B2M, α-lactalbumin, β-lactoglobulin, 
GlyCam1, TF, AZGP1, and OPN, have been employed to detect adul
teration in PMM and MMP. TF, a protein originating from blood and 
identified in milk, has been observed to be significantly higher in BM 
whey compared to that from goat and camel (Yang et al., 2013). B2M, an 
integral component of the major histocompatibility complex class 1, is a 
low-molecular-weight protein of approximately 12 kDa. The expression 
of the B2M gene was found to be elevated in somatic cell samples from 
mastitic milk compared to healthy samples, as identified through RNA- 
sequencing technology (Asselstine et al., 2019), whereas the levels of 
this protein in serum and milk proteins during mastitis, according to 
TMT proteomics. (Turk et al., 2021). B2M has been widely indicated to 
be involved in immune modulation and is critical for protection against 
bacterial infections (Argov-Argaman et al., 2010). Interestingly, a 
comparative analysis of milk whey between Kashmiri and Jersey cattle 
revealed B2M as a milk protein in Jersey cattle (Bhat et al., 2020). In 
addition, in our previous study, an increase in B2M in raw MM adul
terated with BM was detected using a data-independent acquisition 
proteomics approach (Ji et al., 2023). In the current study, several 
peptides such as f53-69 and f43-52 derived from bovine B2M, which 
increased significantly in PMM and BMP adulterated with 1 %–100 % 
BM, were identified, thus serving as useful fingerprint proteins to detect 
PMM and MMP adulterated with BM. 

α-Lactalbumin and β-lactoglobulin are primary constituents of 
bovine whey proteins. Various studies have indicated the efficacy of 
β-lactoglobulin as a marker for identifying BM in adulterated milk. For 
instance, a specific β-lactoglobulin variant was utilized to detect adul
teration in buffalo milk and mozzarella cheese with as little as 1 % BM, 
based on retention time and peak areas using high performance liquid 
chromatography (Enne et al., 2005). In their study, the peak areas and 
heights of β-lactoglobulin were significantly lower in the cheese matrix 
compared to the milk. This reduction was attributed to protein degra
dation during the cheesemaking process. In a recent study, β-lacto
globulin was employed to detect adulteration of camel milk powder with 
BM at levels as low as 5 %, using ultra-high performance liquid chro
matography (Li et al., 2021). As discussed previously, the differences in 
amino acid sequences and physicochemical properties of β-lactoglobulin 
contribute to its use as a fingerprint protein for detecting milk adulter
ation. In our study, bovine β-lactoglobulin was identified as a specific 
marker for BM in PMM, with a detection limit of 10 %, based on the 
distinct tryptic peptides of β-lactoglobulin between mare and bovine. 
α-Lactalbumin has been used in detecting adulteration in goat, camel, 
yak, and buffalo milk with BM, as evidenced by its spots on 2D-gel maps 
(Yang et al., 2014). More recently, α-lactalbumin was identified as a 
marker for detecting BM in buffalo milk at a 1 % level using CE (Trimboli 
et al., 2019). In our study, bovine α-lactalbumin was effectively identi
fied as a biomarker capable of detecting as little as 1 % BM in PMM. 
Interestingly, bovine β-lactoglobulin and α-lactalbumin were identified 
as markers for BM in MMP, with a detection limit of 10 %. This could be 
attributed to the partial adhesion of bovine whey protein to fat globules. 
Thus, it is evident that the quantification and detection of biomarkers in 
MM and its products can be influenced by the milk processing 
procedures. 

GlyCam1, a hormone-regulated secreted glycoprotein, is the most 
abundant host defense protein found in whey. It has been identified in 
whey and milk fat globule membrane from various types of milk (Han 

et al., 2022; Ma, Zhang, Wu, & Zhou, 2019). Recently, bovine-derived 
GlyCam1 peptides have been utilized as markers for assessing BM con
stituents in fresh bovine, buffalo, and goat milk (Sassi, Arena, & Scaloni, 
2015). Interestingly, we observed a significant increase in the abun
dance of GlyCam1 in PMM and MMP when mixed with various amounts 
of BM. Thus, we propose that GlyCam1 can serve as a biomarker to 
detect adulteration in PMM and MMP with BM ingredients, leveraging 
the differences in GlyCam1 peptides between mare and bovine. 

Transferrin has also been selected as a biomarker for plasma powder 
to enhance the identification of processed animal proteins in feed or feed 
materials (Lecrenier et al., 2016). In our study, we observed that TF 
levels significantly increased in PMM adulterated with 1 %–100 % BM 
and in MMP adulterated with 10 %–100 % BMP. Our findings under
score the potential of TF as a biomarker for detecting the authenticity of 
milk. OPN, an acidic and highly phosphorylated glycoprotein, is syn
thesized by a wide range of cells and tissues, including the mammary 
gland, blood, and immune organs. This protein has been extensively 
identified in the milk of human and various dairy animals (Jin et al., 
2021; Yang et al., 2013). OPN is known for multiple beneficial functions, 
such as facilitating cellular migration and modulating immune re
sponses (Christensen & Sørensen, 2016). In BM, OPN exists as a full- 
length 60-kDa protein and a truncated 40-kDa isoform, both charac
terized by MS as being highly phosphorylated and glycosylated (Bis
sonnette, Dudemaine, Thibault, & Robitaille, 2012). Recently, OPN has 
been employed as a target protein for detecting and quantifying rumi
nant proteins in animal feed, effective even at an adulteration level of 1 
% (w/w) (Lecrenier et al., 2021; Steinhilber et al., 2019). In our study, 
we observed an increase in OPN levels corresponding to BM constituents 
adulteration ranging from 1 % to 100 % in PMM and 10 % to 100 % in 
MMP. This increase could be linked to peptides such as f153-161, f31- 
51, and f36-51 derived from bovine OPN. 

AZGP1, a 41-kDa multifunctional glycoprotein, has been detected in 
serum, saliva, and milk (Yang et al., 2013). This protein, functioning as a 
lipid-mobilizing factor, stimulates lipid degradation in adipocytes and 
binds to polyunsaturated fatty acids (Zahid et al., 2021). While a pre
vious study using a labeled proteomic approach did not report a sig
nificant difference in AZGP1 abundance between Holstein and goat or 
camel milk (Yang et al., 2013), our study identified several peptides, 
such as f287-295, f283-295, and f231-238, derived from bovine AZGP1. 
These peptides showed increased levels in PMM adulterated with BM at 
1 %–100 % BM and in MMP adulterated with 10 %–100 % BMP. 
Additionally, the observed differences in the detection limits of the 
protein between PMM and MMP might be attributable to the adhesion of 
some of these proteins to fat globules, as previously discussed. Collec
tively, the current study demonstrates that variations in several bovine 
proteins increase in tandem with the amount of BM adulteration in MM 
products, and the phenomenon potentially influenced by the milk pro
cessing procedures. Additional studies are essential to evaluate the 
suitability of these proteins as potential markers for addressing wider 
aspects of milk authentication. 

4.2. Metabolomics analysis of markers 

In this study, we observed a significant increase in the levels of 
several metabolites, including N6-Me-adenosine, 2-aminonicotinic acid, 
and biotin, consequent to the addition of BM constituents to PMM and 
MMP. To date, the characteristics of N6-Me-adenosine and 2-aminonico
tinic acid in milk remain largely unexplored. We found that the abun
dances of N6-Me-adenosine and 2-aminonicotinic acid significantly 
increased with the BM constituents added to PMM and MMP. Thus, N6- 
Me-adenosine and 2-aminonicotinic acid might serve as novel markers 
for detecting BM adulteration in MM products, even at levels as low as 1 
%. A previous study delved into the origin of 2,4-quinolinediol in BM, 
uncovering that it is exclusively present in the gastrointestinal tract of 
bovine and notably absent in forage, including hay, grass silage, and 
maize silage, as well as in rumen juice (Rouge et al., 2013). These 
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findings might indicate that 2,4-quinolinediol in milk is a product of gut 
metabolism in bovine. Considering the clear differences between bovine 
and mare milk, this specific metabolite emerges as a promising candi
date for detecting the adulteration of MM products with BM constitu
ents. In our research, we observed an increase in the abundance of 2,4- 
quinolinediol correlating with the rising levels of BM in PMM. There
fore, we posit that this metabolite could serve as an effective finger
printing tool to detect the presence of BM in PMM, even at levels as low 
as 1 %. 

Biotin is a water-soluble B vitamin, acts as a cofactor for enzymes like 
pyruvate carboxylase and propionyl-coenzyme A carboxylase, playing a 
role in various metabolic reactions (Lombard & Moreira, 2011). In our 
study, we found a significant increase in biotin levels corresponding to 
the addition of 1 %–100 % BMP to MMP. This suggests its potential as a 
specific marker for detecting BMP adulteration in MMP. Water-soluble 
vitamins, including biotin, are known to be more sensitive to heat 
treatment than fat-soluble vitamins (Bendicho, Espachs, Arantegui, & 
Martín, 2002). Previous research has shown that pasteurization pro
cesses reduce the concentrations of various vitamins, including vitamin 
B12, vitamin E, vitamin C, and folic acid (Zhu et al., 2021). Therefore, 
the biotin content in PMM may be partially diminished compared to 
MMP. In addition, biotin did not show a significant increase in PMM 
adulterated with BM. Furthermore, 7-methylguanine and 6-methylfla
vones showed variability in expression between BMP and MMP. These 
metabolites increased significantly with the addition of BMP to MMP, 
aiding in the detection of MMP adulteration with BMP at levels as low as 
1 %. However, further research is needed to fully understand the char
acteristics of these metabolites. Choline, an essential nutrient for normal 
fetal development, has also been studied in the context of milk adul
teration. A mathematical model utilizing nuclear magnetic resonance 
and 10 different metabolites, including choline, was applied to detect 
goat milk mixed with 5 % BM (Li et al., 2016). In our study, we noted 
that the abundance of choline in PMM and MMP increased in tandem 
with the addition of BM, particularly at levels ranging from 10 % to 100 
%. Consequently, choline could potentially serve as a biomarker for 
assessing BM adulteration in both PMM and MMP. 

In our study, we noted a significant increase in the levels of several 
unknown metabolites with MW of 226.0757 and 317.1757 in PMM 
adulterated with BM. Additionally, other unknown metabolites with 
MW of 254.0784 and 326.1729 showed increased levels in MMP adul
terated with BMP. Collectively, these metabolites have been instru
mental in identifying MM products adulterated with BM at levels as low 
as 0.1 %. However, the specific characteristics of these metabolites, 
especially in relation to their fragment ions in milk, warrant further 
exploration in future studies. 

5. Conclusions 

In this study, the changes in protein and metabolite profiles in PMM 
and MMP when adulterated with various proportions of BM components 
were characterized by proteomics and metabolomics approaches. 
Crucially, our research underscores the transformative effects of dairy 
processing on these profiles. Proteins including AZGP1, OPN, and TF 
were effective in detecting adulteration in PMM as low as 1 %, while in 
MMP group, the detectable limit of adulteration was 10 %. For metab
olites, N6-Methyladenosine exhibited a detectable adulteration limit of 
0.1 % in the MMP group, compared to 1 % in the PMM group. 
Furthermore, to obtain robust results, multiple commercial samples 
could be required for assessing the MM products adulteration, although 
we have provided an internal validation strategy. 
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