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Exponentially growing systems are prevalent in nature, spanning
all scales from biochemical reaction networks in single cells to food
webs of ecosystems. How exponential growth emerges in nonlin-
ear systems is mathematically unclear. Here, we describe a general
theoretical framework that reveals underlying principles of long-
term growth: scalability of flux functions and ergodicity of the
rescaled systems. Our theory shows that nonlinear fluxes can gen-
erate not only balanced growth but also oscillatory or chaotic
growth modalities, explaining nonequilibrium dynamics observed
in cell cycles and ecosystems. Our mathematical framework is
broadly useful in predicting long-term growth rates from natural
and synthetic networks, analyzing the effects of system noise and
perturbations, validating empirical and phenomenological laws on
growth rate, and studying autocatalysis and network evolution.

exponential growth | reaction networks | systems biology | ergodic theory

Reaction networks are fundamental structures of living sys-
tems. They describe biochemical networks (consisting of

metabolites, chemical reactions, and macromolecules), ecologi-
cal networks (based on species and foraging activities), and
economic systems (composed of materials and production pro-
cesses) (1–5). Such networks can exhibit a capacity for growth
under suitable conditions. A growing system requires uptake of
external components, conversion reactions between internal
components, and energy-generating pathways. These processes
often involve nonlinear dependencies (3). For example, in cells,
many biochemical reactions (e.g., Michaelis–Menten kinetics,
feedback inhibition, and promoter activation) translate into
nonlinear differential equations. Yet, the entire system (total
biomass) often converges to exponential growth in the long term,
which is a typical property of linear differential equations. Sim-
ilarly, multispecies communities can often undergo exponential
expansion (6, 7). Yet, many interactions in ecosystems, including
density-dependent competition and mutation-selection processes,
follow nonlinear equations (4). The emergence of exponential
growth from a multivariable nonlinear network is not mathematically
intuitive. This indicates that the network structure and the flux
functions of the modeled system must be subjected to constraints
to result in long-term exponential dynamics.
Current growth models, including those based on flux balance

analysis (8), proteome partition analysis (9), and general reaction
networks (10–12), have been successful at predicting biomass
growth. A common limitation of these models is that they as-
sume a priori that the system has long-term exponential growth.
In addition, they generally assume that the system exhibits bal-
anced growth (Fig. 1A). That is, all components of the system
under study are assumed to exponentially increase in amount at
the same constant rate, such that their ratios remain fixed during
growth of the system. However, in many biological systems, the
components are not in balance and display oscillatory or even
nonperiodic, behaviors caused by nonlinear fluxes in the systems.

For example, the levels of metabolites and proteins can oscillate
during cell growth (13–15). The abundance of species in eco-
systems can also oscillate (6) or exhibit nonperiodic fluctuations
(7). Yet, the biomass of these systems increases exponentially
(6, 7, 16). This raises a fundamental question: Are there general
principles that underlie long-term exponential growth in complex
reaction networks?
Addressing these questions has been a major challenge due to

the lack of a generalizable theoretical framework that goes be-
yond balanced growth. Ergodic theory is a powerful mathemat-
ical tool that has been successfully applied in the fields of fluid
dynamics and statistical mechanics for studying the long-term
behavior of physical systems (17). The ergodic condition is met
when the time average of a quantity is equal to a statistical av-
erage over all possible outcomes weighed by their likelihood,
also known as a space average. For example, the distance be-
tween two children running around a playground independently
is a stochastic, time-dependent function, yet the average distance
between them over the long term does not depend on time and
can be calculated from each child’s probability distribution over
space. In reaction networks, the relevant “space” consists of the
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set of all possible configurations or states of the entire system,
and the overall dynamics constitute a time-evolution process in
this state space. A basic requirement for the application of er-
godic theory is stationarity of the process under consideration,
which means that the likelihood of events does not change with
time. Biological systems whose biomass increases over time vi-
olate stationarity, and ergodic theory, therefore, cannot be ap-
plied directly to study their long-term growth properties.
Here, we demonstrate that ergodic theory can be applicable in

growing systems whose dynamics may be properly rescaled such
that the growth process is decoupled from the rest of the dy-
namics. We show that many nonlinear biological reaction
networks—which we define and refer to as scalable reaction
networks (SRNs)—satisfy this condition. By applying ergodic
theory on rescaled systems, we show mathematically that scal-
ability and ergodicity ensure that a large class of reaction net-
works have well-defined long-term growth rates (λ), which can be
positive (exponential growth), negative (exponential decay), or
zero (subexponential dynamics). This theoretical framework
opens the door to the study and characterization of processes
that exhibit different growth modalities, including not only static
equilibrium, steady state, and balanced growth but also oscilla-
tory and nonperiodic growth (Fig. 1A). The theory is applicable
both for deterministic and stochastic dynamics. It enables one to
construct scalable networks of arbitrarily high complexity, pre-
dict the growth rate and other dynamical features of the system,
and identify autocatalytic networks associated with positive
exponential growth.

Results
Reaction Network Modeling and Long-Term Growth Rates. We con-
sider a system represented by a collection of nodes within an
environment, E, that serves as an ideal reservoir for unlimited
supply and removal of materials. A reaction network is defined

by a set of nodes {x1, . . . , xn}, reactions {ϕ1, . . . ,ϕm}, and flux
functions {J1, . . . , Jm}, which specify the flux magnitude of each
reaction. Each reaction represents an interconversion process
that consumes materials from upstream nodes and produces
materials in downstream nodes (Fig. 1B). The stoichiometric
coefficients of interconversion reactions are given by an n × m
stoichiometry matrix S (8) (SI Appendix), with positive or nega-
tive matrix element Ska indicating that the reaction ϕa acts as an
influx or efflux of node xk, respectively (Fig. 1C). In real-world
applications, such networks can describe cellular components
(e.g., metabolites and metabolic reactions), cellular populations
(e.g., cellular states and transitions), or ecological structures
(e.g., species and competitive interactions).
To model the system dynamics, we define a biomass vector

X
* = (X1, . . . ,Xn)T as the total amount of material in each node
(in units of mass, e.g., grams), and denote the system size by

N ≡ X1 + . . . + Xn. The reaction flux Ja(X
*) is a multivariate

function that specifies the rate of reaction ϕa, which can depend

on any number of components of X
*

and can be highly nonlinear
depending on, for example, the order of the reaction, whether or
not it is enzyme-catalyzed, and so on. For each node, summing
all incoming and outgoing fluxes weighted by the stoichiometric
coefficients yields a system of ordinary differential equations that
governs the network’s dynamics,

dXk

dt
= ∑m

a=1
Ska   Ja(X*). [1]

Such systems of nonlinear equations generally cannot be solved
analytically and are typically analyzed using numerical algo-
rithms. Currently, the only way to ensure or verify that a
reaction network exhibits long-term exponential growth is to
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Fig. 1. Mathematical formulation of an SRN. (A) Growth modalities for various types of open systems. System size is represented by different sizes of circles; a
darker green color represents higher metabolite concentration. Flux magnitude is indicated by the thickness of the black arrows. Static equilibrium indicates
that the system is at equilibrium with the environment, with the net flux magnitude equal to zero. Steady state means that influx and efflux are of the same
magnitude, and the system is maintained at steady state with no growth. Balanced growth indicates that the influx is greater than the efflux, and the system
is growing proportionally to the fluxes. For oscillatory and nonperiodic growth modalities, the influx is greater than the efflux and the system is growing, but
the relative proportions of influx and efflux, as well as the metabolite concentration, can vary over time. (B) A reaction network is composed of a collection of
nodes and reactions. Each reaction describes an interconversion process between upstream and downstream nodes and between these nodes and the en-
vironment. (C) Terminology describing relations between node x and reaction ϕ. Given a node xk, the collections of all reactions having xk as the upstream and
downstream nodes are denoted by in(xk) and out(xk), respectively. Given a reaction ϕa, the collections of all upstream and downstream nodes are denoted by
up(ϕa) and dw(ϕa).
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run large-scale numerical computations, combined with massive
scans of parameter space, and check the results on a case-by-case
basis. We therefore sought to identify fundamental features of
nonlinear networks that give rise to exponential growth.
We consider the instantaneous growth rate of the system,

μ(t) ≡ (d=dt)logN(t), a function that specifies the relative rate of
change of the population size at time t. If the system grows ex-
ponentially at long times, then the long-term time average of μ(t)
yields the system’s exponential growth rate,

λ ≡ lim
t→∞

1
t
∫ t
0μ(t’)  dt’. [2]

Note that the long-term dynamics of Eq. 2 could result in a system
size that grows exponentially (λ> 0), decays exponentially(λ< 0),
or displays subexponential dynamics (λ = 0). Since most of our
discussion is related to growing systems, we will refer to λ as
long-term growth rate but the reader should keep in mind that
the same formula is equally applicable to systems with λ≤ 0.
Mathematically, given an arbitrary set of nonlinear reactions

there is no guarantee that the time average in Eq. 2 will converge
to a well-defined limit. For example, if the instantaneous growth
rate increases linearly with time, its long-term average will di-
verge, or if N(t) decays to zero in a finite amount of time, λ has no
well-defined meaning. More complex behaviors can also emerge in
reaction networks, such as periodic, quasi-periodic, and chaotic
dynamics, and in such cases the relation of the network dynamics to
λ is not clear.
We wish to establish general conditions such that the time

average given in Eq. 2 converges, implying that the system will
grow exponentially. These conditions should 1) ensure that the

dynamical system of Eq. 1 has a well-defined solution X
*(t) for all

initial conditions, 2) imply that the system’s composition can
exhibit stationarity even as population size may grow without
bound, and 3) enable the time average in Eq. 2 to be computed
as a space average over the system’s stationary distribution. We

examine the system’s biomass composition vector, Y
* = X

*

=N,
whose components specify the fraction of the total biomass
present in node xi. By substituting Xk = NYk into Eq. 1, we find

dYk

dt
= ∑m

a=1
Ska[Ja(NY*)/N] − μ(t)  Yk. [3]

Here, we see that if all fluxes scale up proportionally with N, that
is, if the flux functions are extensive in the system size, then the
term within the brackets would be simply Ja(Y

*), and independent
of N. Summing both sides over k yields the expression for the
growth rate,

μ(t) = ∑n
k=1

∑m
a=1

Ska   Ja(Y*)  , [4]

which would likewise be independent of N. Then, the system’s
composition Y

*

evolves independently of N according to the dy-
namical system in Eq. 3, and the composition alone determines
the instantaneous growth rate according to Eq. 4. Hence, we can
write μ(t) = μ(Y*(t)) (SI Appendix, Fig. S1). Below, we formally
specify the conditions that ensure that all fluxes are extensive
and that Eq. 3 has a well-defined, physical solution. We will refer
to such systems as SRNs.

Building SRNs: Conditions and Examples. We state the formal con-
ditions that define an SRN and discuss some practical implica-
tions and examples. We denote by Qn+ ≡ {Xj > 0} the positive
quadrant and by Qn ≡ {Xj ≥ 0} the nonnegative quadrant. A flux

function Ja(X
*) is scalable if it satisfies three conditions:

1) JaðX
*

Þ is positive on Qnþ and continuously differentiable
on Qnnf0g;

2) if node xk is an upstream node of JaðXÞ, then JaðXÞ ¼ 0
whenever Xk ¼ 0; and

3) JaðcX
*

Þ ¼ cJaðX
*

Þ for any c> 0.

A reaction network is an SRN if all of its flux functions
are scalable.
For an SRN, condition 1 guarantees that the system given in

Eq. 1 will have a unique solution. Condition 2 requires the flux
functions to be upstream-limited, that is, whenever an upstream
node is depleted, its connected efflux must be zero. This ensures
that solutions are physical, that is, the trajectories remain within
Qn. Condition 3 requires the flux magnitude to be extensive in
the system size, which enables projection onto the simplex and
the application of ergodic theory as detailed below.
We would like to emphasize that a multivariate flux function

satisfying condition 3 does not necessarily need to be linear.
There is a wide range of commonly occurring flux functions that
are not linear and yet scalable (Table 1), which one can verify by
checking conditions 1 to 3 directly.
More generally, biochemical fluxes are typically written as

nonlinear functions of metabolite concentrations [X*] (mass
per volume). If, in addition, the system volume (V) scales with
the total biomass N, that is, V = bN with constant b, the fluxes

become scalable. To see this, we denote by Junit([X
*]) the meta-

bolic flux magnitude per unit volume. Metabolic fluxes usually
obey a mass-action law, for example Junit ∝ [X1]A[X2]B or
quasi-steady-state kinetics, for example Junit ∝ [X1][X2]

K+[X1]. The total

flux magnitude J(X*) scales with volume and can be expressed as

J(X*) = VJunit([X*]) = bNJunit(X1

bN
, . . . ,

Xn

bN
)  , [5]

which satisfies the scaling condition 3. Therefore, under the
volume–biomass scaling assumption, biochemical flux functions
belong to the class of scalable flux functions. When volume–
biomass scaling is not exact, a larger class of networks, which
we refer to as asymptotically scalable, is often applicable with
similar results (see SI Appendix and Table 1).

Ergodicity and Dynamics in SRNs. We are now positioned to apply
ergodic theory to evaluate the time average of Eq. 2. The scal-
able condition of SRNs allows us to rescale the system and focus

on the long-term dynamics of the composition vector Y
*(t) in the

unit simplex Δn−1, the space of all vectors (Y1, . . . ,Yn)T satisfying

∑n
i=1

Yi = 1 with Yi ≥ 0 for all components i. The distribution on the

simplex space, or likelihood of Y
*(t) being located in a given re-

gion of Δn−1, can be regarded as a probability measure ω defined

on Δn−1, satisfying the normalization condition ∫  

Δn−1ω(dY*) = 1.
We are interested in probability measures ω that are invariant
under the time evolution of Eq. 3, that is, probability distribu-

tions with respect to which Y
*(t) is stationary. Invariant measures

are sometimes decomposable, meaning they are weighted sums
of invariant measures supported on disjoint invariant sets. Those
that cannot be decomposed are called ergodic measures. Ergodic
measures are guaranteed to exist for continuous flows on a
compact metric space such as Δn−1, and they have the important
property that time averages of observables can be equated with
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space averages, a property we now use to compute exponential
growth rates.
Given an ergodic measure ω, we can apply the Birkhoff er-

godic theorem to evaluate Eq. 2, yielding

λ   =
↑

by  scalability

lim
t→∞

1
t
  ∫

t

0
μ(Y*(t’))  dt’

[time  average]

 =
↑

by  ergodicity

∫
 

Δn−1
μ(Y*)ω(dY*)

[space  average]
  , [6]

where the second equality holds for almost every initial condition
Y
*(0), except possibly on a set of measure zero with respect to ω.
Since Δn−1is a compact space, μ(Y*) is bounded and hence the
space average in Eq. 6 is finite. Thus, the long-term growth rate λ
defined in Eq. 2 converges and its value is independent of initial
conditions (except for a set of ω-measure zero; see SI Appendix,
section 2 for an example and a detailed discussion). It is also
straightforward to show that if a trajectory exhibits exponential
growth, any other trajectory that converges to the first one will
have the same long-term growth rate. Thus, depending on the
structure of ω, a wide range of trajectories exhibit exponential
growth with the same rate.
We illustrate the above point with a few concrete scenarios in

low dimensional systems, though it is important to note that the
real power of the results is that they hold for high-dimensional
SRNs, that is, for networks with an arbitrary number of nodes.
Here, we consider three-node SRNs, where the composition
vector lies in the two-dimensional simplex Δ2.
Let us first discuss deterministic dynamics without noise.

Flows exhibiting a limit cycle, bistability, or a heteroclinic cycle
are shown in Fig. 2 A–C (the support of the ergodic measures is
shown in green, and any regions lying outside of the support have
measure zero). In Fig. 2A, the ergodic measure is supported by a
limit cycle, and thus λ converges along the limit cycle. All other
trajectories converge to the limit cycle trajectory, which implies
that the system eventually grows exponentially with the same rate
λ regardless of the initial condition. In Fig. 2B, we show a bistable
system in which two ergodic measures are shown, each supported
on a different fixed point. A trajectory that remains at one fixed
point will grow exponentially, but the rate of growth can be
different for each fixed point; all trajectories that converge to a
given fixed point will grow exponentially with the same rate. In
Fig. 2C, ergodic measures exist at each of the simplex vertices,
and a heteroclinic cycle lies on the boundary. Trajectories starting
in the interior of the simplex spend progressively longer amounts
of time near each of the vertices without converging to any one of
them. In this case, although the long-term growth rate would
generally not converge, exponential growth will be achieved for
increasingly long periods of time while the trajectory remains in
the vicinity of each fixed point.

We see that while ergodic measures determine the long-term
growth rates of SRNs, complex scenarios involving multiple er-
godic measures are possible even in low-dimensional systems,
and the situation only gets more complicated in higher dimen-
sions. However, in the presence of random noise, one generally
obtains dynamics that are better behaved and are described by a
single ergodic measure. All of the ergodic theory results de-
scribed above carry through for random dynamical systems,
specifically when Eq. 3 is formulated as a stochastic differential
equation to model noise in the system’s composition. Fig. 2D
shows the bistable network of Fig. 2B with the addition of noise.
A single ergodic measure exists on the interior of the simplex,

Table 1. Common examples of scalable and asymptotically scalable flux functions, where xj ,   xk
are upstream nodes of the flux, xz is a maintenance node of the flux, and xp is a regulatory
node of the flux.

Scalable flux functions Asymptotically scalable flux functions

rXj r >0 All scalable fluxes

rYa
j Y

b
k N r >0;   a,b≥ 1 Xj

 
b0þb1Xpþb2X2

p

a0þa1Xpþa2X2
p

!
aj ,   bj >0

rXθ
j Xz

Xθ
j þKNθ r,K > 0; θ≥1 ðaþ be�cXm

p Þ  Xj a,b, c> 0, m≥1

rXjXk

aXjþbXkþcN r,a,   b,   c>0 ½aþ tan�1ðbXpÞ�Xj a> π
2�

aþ b sin
�

cXp

N

��
Xj a>b>0;      c> 0

�
aþ sin

�
bþXp

cþXp

��
Xj a>1;   b, c>0

The system size is N ¼ X1 þ . . .þ Xn.

A

C

B

D

Fig. 2. Dynamics of three-node SRNs and ergodic measures. Each panel
shows representative trajectories of the composition vector Y

*(t) on the
simplex Δ2, where vertices correspond to network composition states (1,0,0),
(0,1,0), or (0,0,1), and any point in the simplex corresponds to a linear
combination of these. Ergodic measures are shown in green. (A) Dynamics
with a stable limit cycle; the ergodic measure is supported on the limit cycle.
(B) A bistable system with two stable fixed points; two ergodic measures are
shown, supported on each of the stable fixed points. (C) Dynamics with a
heteroclinic cycle on the boundary; ergodic measures exist supported at each
of the vertices which are unstable fixed points. Trajectories approach each
vertex for a progressively longer time before moving close to the next ver-
tex, and so forth. (D) Stochastic dynamics were simulated for the bistable
system of B and the ergodic measure is shown as a green density within the
simplex; the density peaks near the fixed points of the deterministic flows
shown in blue.
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concentrated near the two fixed points but also exhibiting non-
zero measure between them, indicating that stochastic trajecto-
ries spend time sampling both fixed points. Thus, an SRN whose
deterministic dynamics exhibit distinct growth rates depen-
dent on the initial conditions can, due to the presence of noise,
grow exponentially with a single rate for all trajectories. The
timescale for a stochastic trajectory to converge to an ergodic
measure depends on the magnitude of diffusion and drift on the
simplex (18). Mathematical techniques, such as large devia-
tions theory and mean first passage time calculations (e.g.,
refs. 19 and 20), can be applied for estimating the timescale for
convergence.
In summary, ergodic measures underlie exponential growth

modalities in SRNs. They can be used to analyze these modali-
ties for both deterministic and stochastic dynamics. We found
two general criteria for the long-term growth rate of an SRN to
converge (see SI Appendix, Supplementary Text for proof):

• For deterministic dynamics, if a trajectory Y
*

ðtÞ converges to a
fixed point, a periodic or a quasiperiodic orbit, then it ex-
hibits a well-defined long-term growth rate λ, which is deter-
mined by the ergodic measure for the given attractor according
to Eq. 6.

• For stochastic dynamics, if one adds random diffusion to the
composition vector, and if SRNs can always regenerate any
component that goes to zero from other components (we call
these regenerative SRNs), then all trajectories have the same
exponential growth rate regardless of the initial conditions.

Our results extend also to chaotic dynamics, as we show below.
Further details and generalizations are provided in SI Appendix.
In the following sections, we use concrete examples to illustrate
the versatility of the SRN framework. This framework allows us
to implement nonlinear flux functions in reaction networks to
study growth dynamics beyond balanced growth and perform
systematic parameter scans for long-term growth rate analysis.

Growth Modalities of SRNs. SRNs that display exponential growth
can exhibit various growth modalities. The simplest is balanced
growth, in which all components of the system grow at the same
unchanging rate (Fig. 1A). This modality corresponds to expo-

nential growth along a constant vector Y
*p

, and according to Eq. 6
it is a special case in which an ergodic measure is concentrated

entirely at Y
*p

, that is, ω = δ(Y* − Y
*p

) and λ = μ(Y*
p

). In general, ω
can have forms that correspond to various growth modalities.
They include periodic growth as in metabolic cycles (14, 21), cell
cycles (22–24), oscillating populations (6, 25), and economic
business cycles (26) as well as different types of aperiodic growth
such as chaos in microbial food webs (7). Such systems cannot
be modeled according to a balanced growth assumption, yet their
ability to exhibit exponential growth over long timescales fol-
lows the general principles of ergodicity and scalability described
above.
To demonstrate the utility of SRNs for the study of non-

balanced growth, we consider two explicit examples with various
growth modalities for which long-term growth rates cannot be
calculated by using a balanced-growth approach. We first con-
structed an SRN consisting of a repressilator-type regulatory
circuitry. The repressilator is an autonomous nonlinear genetic
circuit that is well-known for generating oscillations of protein
expression in bacterial cells (27). To create a growing system, we
incorporated the repressilator circuit into an autocatalytic net-
work (Fig. 3A). In this model, the synthesis fluxes J2,   J3, and J4
are subject to the repression of nodes x3,   x4, and x2, respec-
tively. These sigmoidal flux functions depend on the Hill coef-
ficient (θ) and the repression strength (K). By varying θ, we found
that this network is able to change growth modes. For small

θ (e.g., θ= 1), the system exhibits balanced growth (Fig. 3B),while
larger θ (e.g., θ = 4) causes the system to display a periodic
growth modality (Fig. 3C). Here, the bifurcation happens around
θ ≈ 2 upon a change in the fixed-point stability of Eq. 3. Inter-
estingly, the oscillation period and growth rate are strongly
coupled in this model. For example, under high repression
strength, growth rate λ sharply increases around θ ≈ 2 (Fig. 3D),

where the attractor of Y
*(t) transitions from a fixed point to a

limit cycle (Fig. 3E). The transition from fixed point toward limit
cycle is accompanied by a fast increase of growth rate. This in-
triguing behavior is due to a change in the network composition
at the transition, such that the relative biomass fraction of nodes
x2,   x3,   x4 sharply increases, promoting greater autocatalysis in-
flux (J1 in Fig. 3A), which yields higher values of λ.
By combining two mutually inhibiting repressilator networks

(Fig. 3F) we obtained an SRN capable of exhibiting additional
growth modalities, ranging from quasiperiodic to nonperiodic,
chaotic growth (Fig. 3G; see SI Appendix, Fig. S3 for the full
bifurcation diagram and the largest Lyapunov exponent signa-

ture). Under a chaotic growth modality, the trajectory of Y
*(t) is

intrinsically unpredictable in the long term. However, in the
presence of noise, this regenerative SRN is guaranteed to have a
single ergodic measure with density in the interior of the simplex,
and therefore a well-defined long-term growth rate, which we
calculate using Eq. 6 in the small-noise limit (SI Appendix, Fig.
S3C). Numerical simulation indicates convergence of λ (Fig. 3 G,
Insets). This example demonstrates that the long-term growth
rate of SRNs can be robust, even when the components of the
network fluctuate indefinitely.

Exponential Growth of Ecosystems with Interspecies Competition and
Cross-Feeding. In ecological and population dynamic contexts,
SRNs provide a basis for understanding how exponential growth
can emerge from nonlinear interactions between different spe-
cies, such as in natural expansion of ecosystems. In addition, the
SRN model is also applicable for turbidostat and chemostat
experiments. In a turbidostat, nutrients typically remain in excess
at all times and cell density is maintained constant by a feedback
loop that adjusts the dilution rate. In such a bioreactor, the long-
term average dilution rate is equal to the long-term growth rate
of the population and therefore can be predicted by the SRN
model. In a chemostat, an essential nutrient is in limiting con-
centration while the dilution rate is held at a constant value set
by the user. We provide an SRN model that enables the long-
term dynamics of chemostats to be analyzed under the SRN
framework (SI Appendix, section 2.8).
To illustrate these points, we used an SRN framework to

construct a three-species community in which the species com-
pete through a classical Lotka–Volterra-type interaction (28)
(Fig. 4A). In addition, in this model, each species (x1 to x3) se-
cretes a metabolite (m1 to m3) that can cross-feed the other two
species. The efficiency of cross-feeding and the competitive in-
teractions are allowed to be asymmetric. To mimic the diversity
of natural interactions among species, we took advantage of the
SRN framework to scan 150,000 different parameter sets of
species interactions and studied long-term species coexistence
(SI Appendix, Methods).
We initially performed our analysis assuming that the envi-

ronmental nutrient is unlimited (turbidostat-type systems). For a
first dataset, we simulated random competitive interactions
without cross-feeding. We found that, in the long term, more
than 60% of the simulated systems consist of single species, with
the remaining systems consisting of two or all three species
(Fig. 4B). For a second dataset, we simulated random competi-
tive interactions plus random weak cross-feeding (with efficiency
parameters between 0 and 0.1; see SI Appendix, Methods). In-
creasing the efficiency of cross-feeding increased the chance of
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species to coexist (Fig. 4B). For a third dataset, we allowed
stronger cross-feeding to occur (with efficiency parameter be-
tween 0 and 0.5), which further increased the probability of
species coexistence (Fig. 4B). We found that different growth
modalities can emerge when three species coexist. They include
not only examples of balanced growth (fixed point) but also ex-
amples of limit cycles (periodic growth, Fig. 4C) and heteroclinic
cycles (growth with increasing period, Fig. 4D). As shown
mathematically (see above and SI Appendix), a rescaled system
with a fixed point or limit cycle has a well-defined growth rate. In
the case of an ecosystem with a heteroclinic cycle, one of the
three species will dominate alternately with increasing periods.
Exponential growth is achieved when the trajectory Y (t) is at the
vicinity of the saddle points of the heteroclinic cycle. For de-
terministic dynamics the heteroclinic cycle can be arbitrarily
close to the simplex boundary. In stochastic dynamics of finite

populations, a species would go extinct when the last individual is
lost, and the system could end up at a fixed point.
Next, we considered the case when the concentration of a

nutrient is limiting (chemostat-type systems) by modifying the
cross-feeding model to a chemostat-type equation and including
the limited nutrient into the equation (SI Appendix, section 2.8).
By scanning 120,000 parameter sets, we found that the cross-
feeding model can, in specific cases, exhibit transitions in growth
modality as the dilution rate is varied. This is illustrated in Fig. 4E,
where the long-term dynamics can be either two-species fixed
point, three-species fixed point, three-species limit cycle, or
extinction depending on the dilution rate D.The bifurcations of
this system can therefore be studied using the SRN framework
in the future.
Our results provide a theoretical basis to understand how

ecosystems can grow and expand exponentially even when
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���Y − Y ’
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exhibiting complex, unbalanced dynamics among not only spe-
cies but also resources (e.g., due to cross-feeding or nutrient
limitation). We envision that similar SRN-based models can be
constructed for economic systems to study their growth [e.g.,
business cycles (26)].

Exponential Growth of Biosynthesis with Energy Allocation. Often
reaction networks are modeled to study cellular metabolism and
biomass growth, which can be done using SNRs. As a proof
of concept, we constructed a simplified biosynthesis model with
24 nodes using common metabolic flux functions such as
Michaelis–Menten equations (Fig. 5A; also see SI Appendix for
details). The advantage of using an SRN framework is that it
enables unconstrained parameter scans of the system while

automatically ensuring that various unphysical behaviors are
avoided (e.g., the system size blowing up at a finite time, or biomass
components becoming negative). There is no need to impose con-
straints based on empirical objective functions or phenomenological
laws. Instead, as we illustrate below, the SRNs model can be used to
uncover a phenomenological law.
We built a toy model in which the reaction network imports

three types of external nutrients (s1 to s3) and converts them to
amino acids (m7 tom10) through intermediate metabolites (m1 to
m6) (Fig. 5A). The generated amino acids are then utilized in
polymer synthesis (anabolic pathways, green) or energy pro-
duction (catabolic pathways, orange). Biosynthesis produces
transporters (P1–3), enzymes (Q1–8), and ribosomes (R), while
energy production replenishes adenosine 5′-triphosphate (ATP)
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from adenosine 5′-diphosphate (ADP). The polymers and energy
molecules are, in turn, required for catalyzing the upstream
fluxes (see SI Appendix, Methods section 4 for details). Using
parameter values that are compatible with physiological condi-
tions (SI Appendix, Table S4), the system trajectory Y (t) con-
verges to a fixed point or a limit cycle. Hence, the long-term
growth rate can be calculated using Eq. 6, and the correlation
between growth rate, metabolic levels, and flux magnitudes can
be analyzed for various parameters.
Using this model, we investigated how growth rate is affected

by the balance between catabolism and anabolism, which is
known to be essential to achieve optimal biosynthesis (29, 30).
We set values of ATP consumption and production within a
reasonable range (31). Specifically, consumption of one amino
acid (m7−10) produces 20 ATP while the synthesis of an amino
acid costs 2 ATP. Utilization of amino acids for polymer syn-
thesis costs 3 ATP. Therefore, for each amino acid, the system
either produces 18 ATP through the catabolic pathway (orange
arrows) or consumes 5 ATP through the anabolic pathway (green
arrows) for polymer synthesis (Fig. 5A). If the flux magnitudes of
the catabolic and anabolic pathways have a ratio of 5:18, the
production and consumption of ATP will be balanced. Heuris-
tically, 5/(5 + 18) = 0.22 would be the optimal catabolic flux
fraction. This value can be used as a target for an objective
function on energy balance.
To determine whether this objective function predicts the

optimal growth rate, we varied the external nutrient level and
the ribosomal synthesis strength in simulations. In Fig. 5B, the
condition with the highest λ across various nutrient levels is in-
dicated by the white curve (left graph). In Fig. 5C, the optimal
objective function (catabolic flux fraction = 0.22) is given by the
red curve. The similarity between the white and red curves shows
that the objective function can indeed predict optimal growth.
When we varied the ATP production stoichiometry to 10, 20, or
30 ATP per amino acid, the optimal catabolic flux fractions be-
came 0.38, 0.22, or 0.15 in this model. In all cases, the optimal

growth rate determined by simulation strongly correlated with
the optimal growth rate predicted by the objective function
(SI Appendix, Fig. S4).
Altogether, our results show that our biosynthesis toy model

can be used to validate the objective function of ATP balance for
optimal growth. By using an SRN formulation, this type of model
can be easily generalized to include any number of nodes and
reactions.

Autocatalytic Circuits for SRNs. For a system to grow autonomously
(e.g., free-living organisms), it must contain a reaction network
that is autocatalytic. What makes a network autocatalytic?
Theorists have addressed this fundamental question and identi-
fied design principles of autocatalysis using discrete symbolic
models (32, 33). As shown below, by using SRNs we can bridge
from symbolic models to continuous dynamical systems (de-
scribed by differential equations), demonstrating that the exis-
tence of autocatalytic properties is a necessary condition for a
positive long-term growth rate (λ> 0).
Here, we refer to a reaction ϕa as maintained by node xz, if

Ja(X) = 0 whenever Xz = 0, and designate the maintenance set of
ϕa to be the collection of nodes that maintain ϕa, which we de-
note as mt(ϕa). Note that the maintenance set of the reaction ϕa
only includes the components that directly affect the magnitude
of the flux Ja. For example, in a biochemical network, the im-
mediately upstream precursors, the enzymes and the coenzymes
that are directly involved in the reaction are all essential for
generating a positive flux. Hence, they all belong to the main-
tenance set of the given reaction.
A collection of reactions K is called an autocatalytic circuit if

∪
ϕa∈K

mt(ϕa)⊆ ∪
ϕa∈K

dw(ϕa) [7]

where dw(ϕa) denotes the downstream nodes of reaction ϕa
(Fig. 1C). Intuitively, an autocatalytic circuit is a collection
of reactions capable of synthesizing their own maintenance set
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(see SI Appendix, Fig. S5 for an example). In biological systems,
an autocatalytic circuit contains all central metabolic reactions
and synthesis pathways for making essential macromolecules.
We call a reaction network autocatalytic if it contains at least
one autocatalytic circuit.
With the SRN formulation, we are able to establish a connec-

tion between the sign of λ (which is an analytical property given by
Eq. 6) and the presence of an autocatalytic circuit (which is an
algebraic property given by Eq. 7). Our main result is the following
(see SI Appendix, Supplementary Text section 6 for proof):
Any SRN (x, ϕ, J) with λ> 0must have at least one autocatalytic

circuit K ⊆ϕ; furthermore, every node xk ∈mt(K) has the same
long-term growth rate λ.
The above result provides the basic topological constraint: If an

SRN does not have an autocatalytic circuit, it cannot exhibit positive
long-term growth rate under any parameter set and any initial con-
dition. This topological constraint can be used to identify autocata-
lytic circuits and to rule out nongrowing topologies from thousands of
random networks (see SI Appendix, Fig. S6 for examples of random
reaction networks with a power-law connection probability).

Discussion
Long-term growth is an essential property of living systems. How
this remarkable property is achieved and maintained is one of the
most fundamental questions in biology. In this study, we identify
an important class of biological reaction networks, SRNs, whose
long-term growth properties can be studied using powerful ergodic
theory tools. With these tools, we mathematically demonstrate two
basic principles of exponentially growing systems: scalability of the
underlying flux functions and ergodicity of the rescaled system.
Our mathematical framework explains how various growth dy-
namics (balanced growth, oscillatory or nonperiodic) driven by
complex, nonlinear flux functions can converge to long-term ex-
ponential growth, which is prevalent in biological systems.
Our theory has a number of practical implications as it pro-

vides a rigorous mathematical foundation for modeling and
probing natural and synthetic reaction networks with distinct
advantages over existing methodologies. First, our approach
does not a priori assume that a long-term growth rate exists;
instead, this is a mathematically derived consequence of scal-
ability and ergodicity. Second, as current methods are limited to
the case of balanced growth, our theory considerably expands the
type of systems that can be analyzed, including metabolic cycles
(13, 14, 21, 23) and chaotic oscillations in communities (7).
Third, once an SRN is constructed, there is no requirement for

the dynamics of the system, Y
*(t), to be constrained by objective

functions or phenomenological laws. In fact, with our approach,
objective functions or phenomenological laws can be inferred or
validated through large-scale simulation across the parameter
space (Fig. 5 and SI Appendix, Fig. S4). Fourth, biological pro-
cesses are stochastic in nature and thereby inherently noisy, yet
noise is often neglected in current growth models. The ergodic
theory formulation enables generalization from ordinary differ-
ential equations to stochastic differential equations and allows
rigorous consideration of how noise impacts long-term growth.
From a technical standpoint, our study bridges two fields that

seldom interact: ergodic theory and growth modeling. The key
concept underlying this connection is the scalability of multi-
variate functions in reaction networks. This allows one to le-
verage a powerful branch of mathematics in the study of
biological growth processes. Interestingly, in the field of ergodic

theory, noise has emerged as an important factor to consider, as
its averaging effect tends to produce simpler, more tractable
dynamics, while at the same time capturing the system’s essential
features (34–36). Consistent with this observation, we find that
noise can enable SRNs to achieve ergodicity and thus helps
systems attain a robust long-term growth rate (SI Appendix,
Supplementary Text and Fig. S3). This highlights an unappreci-
ated role for noise in biology.
Living systems (e.g., cells) are highly complex in their reaction

network structure. Hence, realistic models of such systems can
include hundreds to thousands of components (nodes) and re-
actions (fluxes) (37). Simulating this level of complexity is
computationally challenging, largely because of open problems
regarding 1) the stability of models, 2) the robustness of results
to the choice of parameters and initial conditions, and 3) the
behavior of the dynamics over long timescales. In our frame-
work, an SRN regardless of its complexity can be projected into a
bounded simplex space while preserving all of the key dynamical
information. This results in well-behaved topological and ana-
lytical properties (simply connected space, straightforward pa-
rameterization, etc.), which will help address the aforementioned
open problems.
Our mathematical framework is applicable for both expo-

nential growth and decay. This allows one to study when a system
transitions from growth to decay (or vice versa), which can be
critical in the context of ecosystem management and economic
development (38, 39). For a system to grow and expand expo-
nentially, it must achieve λ> 0. Under the SRN framework, we
prove that a sufficient condition for achieving λ> 0 is the exis-
tence of an autocatalytic circuit. Autocatalysis has been exten-
sively studied, primarily using symbolic models (32, 33).
Continuous dynamical models have also been reported (e.g.,
refs. 40–42). However, they are usually restricted to linear net-
works while the nonlinear network models are specialized for
particular systems because of the absence of a theoretical
framework. In contrast, our theory provides a generalizable and
systematic way to connect symbolic and continuous models to
analyze long-term growth rates from any SRN. We envision that
our mathematical framework will facilitate future studies in
subjects as diverse as network design and evolution, biochemical
modeling of the cell, ecosystem growth and sustainability, and
economic business cycles.

Materials and Methods
Numerical solutions of differential equations were integrated using MATLAB
(MathWorks) or Mathematica (Wolfram). The bifurcation diagrams and
phase plots were generated by customized scripts in MATLAB. See SI Ap-
pendix for the detailed description of models and parameters used in
the simulations. The theoretical derivation is described in SI Appendix,
Supplementary Text.

Data Availability. Simulation code used to generate the results shown in this
study can be found at https://github.com/JacobsWagnerLab/.
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