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Abstract: We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale
altitude and with alength several of hundreds of microns made on the top of the fiber with a radius
of tens microns for refractive index and temperature sensor applications. The whispering gallery
modes (WGMs) in the resonators can be excited with a taper fiber placed on the top of the resonator.
These sensors can be considered as an alternative to fiber Bragg grating (FBG) sensors.The sensitivity
of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are
comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU)
can be reached with abottle resonator on the fiber with the radius 10 µm. It can be improved with
theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The
temperature sensitivity can decrease ~10% for a fiber with a radius rco = 10 µm instead of a fiber
with a radius rco = 100 µm. These sensors have sensitivities comparable to FBG sensors. A bottle
resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any
fiber scheme.

Keywords: refractive index sensor; temperature sensor; bottle resonator

1. Introduction

A bottle resonator made on the surface of the optical fiber is a smooth parabolic perturbation of
the fiber radius with a nanoscale altitude, which looks like a bottle. Operation of the bottle resonator is
based on whispering gallery modes (WGMs) circulating on the surface of the resonator perpendicular
to the fiber axis.The parabolic thickness profile of the bottle resonator, like a linear harmonic oscillator,
provides light confinement along the fiber axis (Figure 1). Similarly to the electromagnetic field of
surface plasmon-polaritons (SPPs) the electromagnetic field of WGMs is localized near the surface of
the resonator. This field distribution makes WGMs useful for sensor applications [1–3]. Contrary to
SPP devices [4–8], WGM devices are completely dielectric, that is free from metal components which
exhibit loss such as in metal films or particles.

In this paper we consider a silica fiber bottle resonator with a nanoscale altitude for refractive
index and temperature sensing applications. WGMs of a bottle resonator can be excited with the
evanescent field of biconically tapered fiber (Figure 1). The excited WGMs appear as transmission
dips in the output spectrum of a tapered fiber. The shift of these dips with the change in the refractive
index or temperature can be used for sensing applications. In order to position our sensors amongst
others let us consider the sensitivity of several widely used sensors, for example, fiber Bragg grating
(FBG), WGM, and surface plasmon resonance (SPR) sensors. The temperature resolution of a FBG
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sensor is closely connected with the thermo-optic coefficient of the fiber. For example, for silica with
its small thermo-optical and thermal expansion coefficients, the temperature sensitivity is ~10 pm/K
at 1550 nm [9]. The refractive index sensitivity of FBG sensors depend on the fiber diameter, which
increases for a smaller fiber diameter. For example, for a fiber with diameter of 2 µm the refractive
index sensitivity is ~231.4 nm/RIU [10]. The refractive index sensitivity of SPR sensors is significantly
higher. As an example for prism-coupled and grating-coupled SPR sensors it is ~7000 nm/RIU
and ~3000 nm/RIU, respectively [11]. In [12] it has been shown theoretically that the temperature
sensitivity of SPR sensors as high as 4 nm/K can be achieved. A comprehensive review of the current
state of the art of physical and biological WGM sensors can be found in Ref. [13].In this review
paperit has been shown that as in the case of FBG sensors a choice of the resonator material of WGM
sensors is a crucial factor in their design. As an example of recent WGM sensor achievements it is
worth mentioning the crystalline MgF2 disc resonator with a sensitivity of 1.09 nm/RIU. Refractive
index sensitivities of 30, 570, and 700 nm/RIU have been reported in a microsphere resonator, a
capillary-based optofluidic ring resonator, and a nanowire loop resonator, respectively [13]. Typically,
in today’s WGM resonators the detection limit is 1.2 ˆ 10´6 RIU [13]. A temperature sensitivity of
0.212 nm/K for WGMs in a fiber-based loop cavity has been reported [13]. The thermal response of
Nd3+-doped barium titano-silicate glass microspheres has also been recently explored, and a tuning of
10 pm/K was demonstrated [13]. In [14], WGM temperature sensors with an associated detectable
resonance wavelength shift of 1.56 ˆ 10´4 pm around 1531 nm wavelength and with an approximate
WGM temperature sensitivity of 14 pm/K at near room temperatures have been presented. It has been
shown, theoretically, that the minimum resolvable temperature can be as small as 1.11 ˆ 10´5 K [14].
A theoretical description of the bottle resonator sensor operation is presented in Section 2. The results
of the simulations are discussed in Section 3.
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Figure 1. Structure under investigation: a fiber with bottle resonator is excited with a tapered fiber. The
dips in the output spectrum correspond to the WGMs circulating in the resonator.

2. Theoretical Analysis

In this part of the paper we give a short overview of the theory used to simulate the operation of
proposed sensors. A bottle resonator can be described with a truncated harmonic-oscillator profile [15]:

R pzq “ Rb

”

1` p∆kzq2
ı´1{2

(1)
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where Rb = rco + ∆rco, rco is the radius of the fiber without of a resonator, ∆rco is the maximum altitude
of the resonator. ∆k is a parameter, which can be obtained, for example, from an experiment. The
electric field of a bottle resonator mode in the scalar approximation in adiabatical approximation in
cylindrical coordinates (r,ϕ,z) can be presented as [16]:

E pr, ϕ, zq “ Ψm,p,q pzqΦm,p pr, zq exp pimϕq (2)

where an integer m (m = 0,1,2, . . . ) is an azimutal number. It gives the number of field nodes around
the circumference. An integer p (p = 1,2, . . . ) is a radial quantum number. It gives the number of
power maxima along the radius, and q (q = 0,1,2, . . . )is the discrete or continuous axial quantum
number. Here:

Φm,p pr, zq “ Ai

«

21{3m2{3

rco
prco ´ rq ´ αp

ff

(3)

where αp is p-th root of the Airy function [17]. The amplitude Ψm,p,q(z) in the case of a harmonic
oscillator profile can be estimated using the one-dimensional Schrödinger equation [15,16,18] and
described by the relation:

Ψm,p,q pzq “

«

∆Em

π22q`1 pq!q2

ff

1
4

Hq

˜

c

∆Em

2
z

¸

exp
ˆ

´
∆Em

4
z2
˙

(4)

where Hq(x) is the Hermite polynomial. ∆Em = 2Um,p∆k/Rb. Um,p can be estimated with the
relation [19,20]:

Um,p « m

»

–1`
αp

21{3m2{3
´

ncl

m
`

n2
co ´ n2

cl

˘1{2

ˆ

nco

ncl

˙˘1
`

3
10
¨

α2
p

22{3m4{3

fi

fl (5)

Signs + and – correspond to TE and TM polarization, respectively. c is the speed of light in
vacuum. nco and ncl are refractive index of the fiber and surrounding medium, respectively. In
the first approximation rcokrnco « m, where kr = ωr/c = 2π/λr, and the WGM frequency, ωr, can be
estimated using the geometry of a sample. This frequency corresponds to the condition for constructive
interference of the wave upon a round trip of the resonator. The resonant wavelength of the WGM is

λm,p,q “ 2πnco

«

ˆ

Um,p

Rb

˙2
`

ˆ

q`
1
2

˙

∆Em

ff´1{2

(6)

In the case of the bottle resonator a smooth (nm) parabolic perturbation of the fiber radius can be
described as

R pzq “ rco ` ∆r pzq “ rco ` ∆rco ´
z2

2R
, for 0 ă z ă L (7)

where L = (2R∆rco)1/2 is the length of resonator. R is the radius of the curvature of the bottle resonator.

As one can see in Equations (1) and (7) p∆kq2 “
2∆rco

RbL2 . Following [13] the WGM excitation process

can be simulated with the δ-function Cδ(z-zc), where C is the coupling parameter. zc is the point near
the top of the resonator on the z-axis, which is directed along the fiber axis, where the tapered fiber
touches the resonator. In this case [18],

Ψm,p,q pzq “ CG pλ, zc, zq (8)
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and the bottle resonator Green’s function can be presented as

G pλ, z, zq “
cos rψpλ, zt1, zcq ` π{4s cos rψpλ, zc, zt2q ` π{4s

2β pλ, zcq cos rψpλ, zt1, zt2s
(9)

where

ψpλ, zc, zq “

z
ż

zc

β pλ, zq dz (10)

Here, β pλ, zq is the propagation constant and the zt1 and zt2 are turning points, where
β(λ,zt1,2) = 0 [18]. The WGM does not propagate beyond these points along the length of the fiber. We
want to emphasize that the semiclassical theory fails near the turning points, since the axial wavelength,
which is proportional to β´1(λ,zt1,2), reaches infinity at the turning points [19].

3. Results and Discussion

3.1. WGMs of the Bottle Resonator

Let us consider a silica fiber with the radius rco = 30 µm. Following Equation(2) one can simulate
the field distribution along the radius of the fiber for different modes (Figure 2). All calculations have
been performed in Matlab with double precision. As one can see in Figure 2, the maximum of the field
moves closer to the fiber axis as the radial quantum number p increases, that is, the WGM with p = 1 is
the most suitable mode for sensing applications.

Sensors 2016, 16, 87 4 of 9 

 

   zzCGz cqpm ,,,,   (8) 

and the bottle resonator Green’s function can be presented as  

     
   21

21

,,(cos,2

4),,(cos4),,(cos
,,

ttc

tcct

zzz

zzzz
zzG







  (9) 

where 

 
z

z

c

c

dzzzz ,),,(   (10) 

Here,  z, is the propagation constant and the zt1 and zt2 are turning points, where  
β(λ,zt1,2) = 0 [18]. The WGM does not propagate beyond these points along the length of the fiber. 
We want to emphasize that the semiclassical theory fails near the turning points, since the axial 
wavelength, which is proportional to β−1(λ,zt1,2), reaches infinity at the turning points [19]. 

3. Results and Discussion 

3.1. WGMs of the Bottle Resonator 

Let us consider a silica fiber with the radius rco = 30 μm. Following Equation(2) one can simulate 
the field distribution along the radius of the fiber for different modes (Figure 2). All calculations 
have been performed in Matlab with double precision. As one can see in Figure 2, the maximum of 
the field moves closer to the fiber axis as the radial quantum number p increases, that is, the WGM 
with p = 1 is the most suitable mode for sensing applications. 

(a) (b) (c) 

Figure 2.The electric field intensity distribution along the fiber radius for (a) p = 1, ,1,0m  = 1.4526 

μm, (b) p = 2, ,2,0m  = 1.3948 μm, and (c) p = 3, ,3,0m  = 1.3597 μm. rco = 30μm, m = 176. 

As we already mentioned, the bottle resonator is like a linear harmonic oscillator provides light 
confinement along the fiber axis. Using relation Equation (4) we have simulated the electric field 
intensity distribution in WGM along the length of the resonator (z-axis) with ∆rco = 3.8 nm, ncl = 
1.33.The resonators with three different lengths L = 500, 1000, and 1500 μm have been considered  
(Figure 3a). We have also simulated the electrical field intensity distribution in the WGM along the 
length of the resonator with L = 500 μm and three different altitudes ∆rco = 1.8, 3.8, and 4.8 nm (Figure 
3b). As one can see in Equation (4) the WGM field becomes more concentrated near the top of the 
resonator with increasing ∆rco/rco and/or with decreasing length of the resonator, L. As an example, if 
∆rco = 3.8 nm and the length L = 500 μm the WGM field is concentrated in the vicinity of 0.4 of the 

Figure 2. The electric field intensity distribution along the fiber radius for (a) p = 1, λm,1,0 = 1.4526 µm,
(b) p = 2, λm,2,0 = 1.3948 µm, and (c) p = 3, λm,3,0 = 1.3597 µm. rco = 30µm, m = 176.

As we already mentioned, the bottle resonator is like a linear harmonic oscillator provides light
confinement along the fiber axis. Using relation Equation (4) we have simulated the electric field
intensity distribution in WGM along the length of the resonator (z-axis) with ∆rco = 3.8 nm, ncl = 1.33.
The resonators with three different lengths L = 500, 1000, and 1500 µm have been considered (Figure 3a).
We have also simulated the electrical field intensity distribution in the WGM along the length of the
resonator with L = 500 µm and three different altitudes ∆rco = 1.8, 3.8, and 4.8 nm (Figure 3b). As one
can see in Equation (4) the WGM field becomes more concentrated near the top of the resonator with
increasing ∆rco/rco and/or with decreasing length of the resonator, L. As an example, if ∆rco = 3.8 nm
and the length L = 500 µm the WGM field is concentrated in the vicinity of 0.4 of the length of the
resonator that is ~200 µm near the top of the resonators (Figure 3a). If the length of the resonator is
increased up to L = 1500 µm and the altitude is the same ∆rco = 3.8 nm the WGM field is concentrated in
the vicinity 0.23 of the length of the resonator that is ~345 µm near the top of the resonators (Figure 3a).
If the altitude of the resonator is increased keeping a constant length L = 500 µm, the field of the
WGM will be concentrated closer to the top of the resonator. For example if ∆rco = 1.8 nm the field
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is concentrated in the vicinity of 0.5 of the length of the resonator that is ~250 µm near the top of the
resonator. For ∆rco = 4.8 nm this distance decreases to 0.4 of the length of the resonator that is ~200 µm
near the top of the resonator.
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3.2. Refractive Index Sensing

As one can see in relations Equations (5) and (6) the wavelengths, λr “ λm,p,q (renamed here for
simplicity), of the WGMs are functions of the refractive index of the surrounding medium. WGMs
circulate on the surface of the resonator. They have to be sensitive to any changes in the refractive index
of the surrounding medium like SPPs. Each excited WGM appears as a transmission dip in the output
spectrum of the tapered fiber (Figure 1). This dip will shift along the wavelength axis as the refractive
index of the surrounding medium changes. This shift, ∆λ, divided by the corresponding change in the
refractive index, ∆n, characterizes the sensor’s sensitivity ∆λ/∆n. The sensitivity of a bottle resonator
sensor is different for TE and TM modes. It can be estimated from relations Equations (5) and (6) as
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For TM modes, respectively.
Figure 4 illustrates the sensitivity of the bottle resonator to the refractive index as a function of the

fiber radius for TE and TM-polarizations. In our simulations the length L = 500 µm and the altitude
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∆rco = 3.8 nm, and coupling constant |C|2 = 2 ˆ 104 m´1 [18]. The radius of the curvature of the
resonator is R « 32.8 m. As one can see in Equations (11) and (12) the sensitivity of the WGMs with
TM-polarization is better than the sensitivity of the TE-polarized WGMs, although these values are
comparable (Figure 4). The sensitivity of the first mode with p = 1 is better than the sensitivity of the
second p = 2 and third p = 3 modes. Indeed, as we already mentioned the maximum of the WGM
with p = 1 is the nearest to the surface (Figure 2a). Although the sensitivities of the WGMs with p = 2
and p = 3 are high enough to be useful for sensing applications. As one can see in Equations (13)
and (14), the sensitivity of all modes decreases with increasing fiber radius (Figure 4). The sensitivities
of all modes become almost equal to each other for fibers with rco > 60 µmradius. The decrease in the
sensor’s sensitivity with the increase in the fiber radius is caused by the change in the field distribution
along the fiber radius as the fiber radius increases. Indeed, for the fiber with the radius rco = 10 µm
the maximum of the WGM intensity is located within ~0.71 µm of the fiber surface. For a fiber with
the radius rco = 100 µm the maximum of the WGM intensity is located ~1.7 µm away from the fiber
surface. This shift of the maximum of the field decreases the sensor’s sensitivity. As one can see from
simulations based on Equations (13) and (14) the refractive index sensitivity changes in the range
~150–20 (nm/RIU) for TM modes and ~130–18 (nm/RIU) for TE modes for fibers, which have a radius
belonging to the range 10–100 µm, respectively. That is, fibers with smaller radii are more favourable
for the increase of the sensor sensitivity. It is easy to estimate that for a sensor with a refractive index
sensitivity of~150 nm/RIU and an OSA’s resolution of 10 pm, the detection limit for refractive index is
~6.67 ˆ 10´5.
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Figure 4. The sensitivity of the bottle resonator sensor as a function of the fiber radius for (a) the TE
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3.3. Temperature Sensing

The WGM wavelength is a function of the refractive index and the radius of the fiber (see
Equations (5) and (6)), which are functions of temperature, i. e.,a bottle resonator sensor can be used as
a temperature sensor. Let us investigate its sensitivity to temperature. We assume that the sensor is
placed in air or vacuum that is ncl = 1. The shift in the resonant wavelength with the temperature can
be estimated in the first approximation as

∆λ “ λr

ˆ

α`
1
n

dn
dT

˙

∆T (15)

where ∆T is the change in the temperature. α “ dr{ prdTq is the coefficient of thermal expansion,
which is the fractional increase in radius per unit rise in temperature. It changes slightly with
temperature in the range between ~0.2 ˆ 10´6 K´1 at ´50 ˝C and ~0.7 ˆ 10´6 K´1 at 250 ˝C [21].
dn{dT is the thermo-optical coefficient. The thermo-optic coefficient of silica at room temperature is
dn/dT « 9.2 ˆ 10´6 K´1. It decreases more or less linearly down to ~3 ˆ 10´6 K´1 at liquid nitrogen
temperature [22]. This dependence of the thermo-optical coefficient on the temperature has been taken
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into account in our simulations. As one can see in Equation (15) the influence of thermal expansion on
the sensor sensitivity is less than the influence of the thermo-optic effect by a factor of approximately
ten. As we see from our simulations the influence of the thermal expansion on the sensor’s sensitivity,
which can be described as the relation:

ST “ ∆λ{∆T (16)

is negligible in comparison with the thermo-optic effect and can be neglected in simulations. As before
let us consider the bottle resonator sensor with the length L = 500 µm and the altitude ∆r0 = 3.8 nm,
and the coupling constant |C|2 = 2 ˆ 104 m´1. The transmission spectra of the tapered fiber for three
different temperatures of the bottle resonator 200 K, 300 K, and 400 K have been simulated using the
Green’s function Equation (9). They are presented in Figure 5. As one can see in Figure 5 the dip
shifts with temperature. The bandwidths of the dips in the transmission spectrum are ~0.025 nm.
The sensitivity of the bottle resonator as a temperature sensor can be estimated with Equations (15)
and (16). The temperature sensitivity of the sensor as a function of the fiber radius is illustrated in
Figure 6 for TM and TE polarized modes. The temperature sensitivity decreases ~10% as the fiber
radius decreases from rco = 100 µm to rco = 10 µm. The decrease in the sensor sensitivity is caused by
the decrease in the resonant wavelength, λr, with the radius of the fiber. Using Equations (5) and (6)
we have obtained the rate of change of the resonant wavelength with the radius of the fiber as

dλ

drrco
“

λ2αp

21{33π pncorrcoq
5{3

„

Um,p

Rb
` ∆k

ˆ

q`
1
2

˙

(17)

Here rrco “ rcoko is the normalized fiber radius. For all fiber radii dλr{dr ą 0, λr increases with the
increase in the fiber radius. As one can see in Equation (17) and Figure 6 the rate of change of the
resonant wavelength with the radius, dλr{dr, increases with a decrease in the radius of the fiber,
and this rate dλr{dr Ñ 0 as the radius of the fiber increases substantially. For our structures, where
∆k<<Um,p/Rb Equation (17) can be simplified and presented as

dλr

drrco
«

21{34πncoαp

3 pncorrcoq
1{3

”

αp ` 21{3 pncorrcoq
2{3

ı2 (18)

As in the case of the refractive index sensor, the sensitivity of TM polarized modes exceeds the
sensitivity of TM polarized modes but these values are comparable (Figure 6). Our temperature sensor
with a sensitivity of 10 pm/K can provide a temperature detection limit of 1 K if an OSA with a
resolution 10 pm is used for the monitoring process. This sensitivity is comparable tothe sensitivities
of other WGM sensors [14].
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Figure 6. The sensitivity of the bottle resonator temperature sensor as a function of the fiber radius for
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4. Conclusions

We have proposed the use of a bottle resonator as a sensor. We have theoretically analyzed the
operation of a bottle resonator with an altitude of several nanometers and with a length of several
hundreds of micrometers made on the surface on the fiber with a constant radius, within a range
of 10µm and 100µm. Such bottle resonators can be made with CO2 laser processing or with 248 nm
excimer laser beam ablation with sub-angstrom precision [23]. They can be excited with a tapered
fiber placed at the top of the resonator perpendicular to the fiber axis. Like FBG sensors the bottle
resonator sensors have all the advantages of the fiber geometry and can be used for refractive index
and temperature sensing. Contrary to FBG sensors bottle resonator sensors are immune to decay at
high temperature. A bottle resonator made on the fiber surface does not cause coupling of the fiber
modes propagating in the core of the fiber, that is bottle resonator sensors can be made on the surface
of an active fiber device, such as a high power fiber laser or a laser cooled fiber sample, to monitor the
temperature distribution along these devices without any perturbation of device performance. The
refractive index bottle resonator sensors have advantages over the SPP sensors, as they are free from
metal parts, which introduce undesirable loss in the system. Although the refractive index sensitivity
of SPR sensors is higher than the sensitivity of bottle resonator sensors, a bottle resonator sensor with
a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme.
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