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Abstract: This paper provides a novel Newtonian-type optimization method for robust adaptive
filtering inspired by information theory learning. With the traditional minimum mean square error
(MMSE) criterion replaced by criteria like the maximum correntropy criterion (MCC) or generalized
maximum correntropy criterion (GMCC), adaptive filters assign less emphasis on the outlier data,
thus become more robust against impulsive noises. The optimization methods adopted in current
MCC-based LMS-type and RLS-type adaptive filters are gradient descent method and fixed point
iteration, respectively. However, in this paper, a Newtonian-type method is introduced as a novel
method for enhancing the existing body of knowledge of MCC-based adaptive filtering and providing
a fast convergence rate. Theoretical analysis of the steady-state performance of the algorithm is carried
out and verified by simulations. The experimental results show that, compared to the conventional
MCC adaptive filter, the MCC-based Newtonian-type method converges faster and still maintains
a good steady-state performance under impulsive noise. The practicability of the algorithm is also
verified in the experiment of acoustic echo cancellation.

Keywords: Newtonian method; robust adaptive filter; maximum correntropy criterion; steady-state
performance analysis; acoustic echo cancellation

1. Introduction

Adaptive filtering is widely used in many areas including system identification,
channel equalization, interference cancelling, acoustic echo cancellation(AEC), etc. [1–5]. Traditional
adaptive filtering methods based on minimum mean square error (MMSE) criterion perform well in
the presence of Gaussian noise, and the optimization methods adopted are mostly least mean square
(LMS)-type or recursive least square (RLS)-type [6]. LMS-type adaptive filtering uses gradient descent
characterized with a low convergence speed and a very low arithmetic complexity, while RLS-type
adaptive filtering, free from the selection problem of the optimal step size, converges much faster at
the cost of higher complexity, and is afflicted with stability problems caused by error propagation
and unregulated matrix inversion [7]. Kalman filter is also an important optimization method in state
estimation [6].

MMSE criterion-based adaptive filtering suffers from impulsive noise for its sensitivity to large
outliers. To deal with this problem, robust adaptive filtering has been researched extensively. A popular
robust solution is to change the MMSE criterion to other criteria that suppress impulsive noise, such as
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Huber loss [8], least p-norm criterion [9], etc. In recent years, information theory learning (ITL) was
found suitable to deal with non-Gaussian noises [10–14]. Inspired by ITL, maximum correntropy
criterion (MCC) or generalized maximum correntropy criterion (GMCC)-based adaptive filtering
was studied [15–20]. Most of the aforementioned robust algorithms were LMS-like [21,22] or RLS
like [23–25], which is to say that the optimization methods used were limited to gradient descent and
fixed point iteration [26]. MCC-based Kalman filter as an optimization method of state estimation
was studied in [27]. Ref. [28] implied that a Newtonian algorithm could be utilized in the MCC
state estimation, as correntropy is a differentiable function. However, different methods such as
Newton’s method and all its derivative algorithms that converge faster than gradient descent are
seldom considered in MCC-based adaptive filtering. As an inspiring attempt to enrich the optimization
methods, ref. [29,30] proposed a correntropy-based Levenberg–Marquardt algorithm that converges
faster than maximum correntropy-based gradient descent algorithm and performs well dealing with
heavy tailed non-Gaussian noise. This work revealed the potential adoption of more optimization
methods except gradient descent and fixed point iteration. Especially, Newtonian-type optimization
methods of MCC-based robust adaptive filtering are far from complete and still need to be improved.

Adaptive filtering based on Newtonian or quasi-Newtonian methods was proved to be serviceable
for its fast convergence rate [31–36]. Adaptive filtering based on Newtonian methods, known as
LMS-Newton, models the input sequence as an autoregressive (AR) process, and usually focuses on
the acceleration of the estimate of the input autocorrelation matrix [32,33]. Adaptive filtering based
on quasi Newtonian methods, known as quasi-Newtonian adaptive filtering, usually updates the
approximation of the Newtonian direction (typically the inverse Hessian matrix) by formulas similar to
that of BFGS [34,37]. Adaptive filtering based on the Gauss–Newton method or Levenberg–Marquardt
(LM) method also put forward approximations of the Hessian matrix that are easy to compute using
the Jacobian matrix [35]. Moreover, there are many methods adopted to enhance the robustness of
Newtonian-type adaptive filtering [31,34,36]. Reference [36] proposed a robust algorithm and revealed
that the weighting function related to the cost function in the algorithm is the key that ensures the
robustness. Inspired by that, we adopt LMS-Newton to solve the optimization of the cost function
based on MCC, and we call this the MCC-Newton adaptive filtering method, which enhances the
existing body of knowledge in MCC-based adaptive filtering. The proposal is in the category of the
most commonly used linear transversal filter.

The main contributions of this paper are as follows: (1) the Newtonian-type optimization method
is introduced in MCC-based adaptive filter and the recursive updating equation of the impulse
response is derived. (2) The steady-state performance analysis is discussed theoretically and compared
with that in experiments. According to the theoretical analysis, the guideline of parameter selection
of the algorithm is provided. (3) The algorithm is applied in system identification and acoustic echo
cancellation in experiments to verify the practicability.

The paper is divided into five parts. Section 2 presents the conventional Newtonian-type
adaptive filter based on the MMSE criterion and introduces the MCC. Section 3 proposes the
Newtonian-type adaptive filter based on MCC and gives the recursive solution of the impulsive
response. The complexity of the algorithm is also compared with that of the other algorithms. Section 4
analyzes the steady-state performance of the algorithm theoretically. The experiments verifying the
steady-state performance discussion is displayed in Section 5, and there are also experiments showing
that the proposed algorithm is robust in the presence of impulsive noise and converges faster than the
gradient descent-based adaptive filter algorithms. Besides, the experiment of acoustic echo cancellation
verifies the practicability of the algorithm. Section 6 gives the conclusion of the paper.
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2. Preliminaries

2.1. Conventional Newtonian-Type Adaptive Filtering

The adaptive filter update equation of the conventional LMS-Newton algorithm is implemented
as in [33,36]:

e(n) = d(n)− y(n) (1)

W(n + 1) = W(n) + µe(n)R̂−1(n)X(n), (2)

where e(n) is the estimation error at time point n, d(n) is the observed system output, and the linear
transversal filter estimated output y(n) = XT(n)W(n) is the filter parameter W(n) multiplying the
input X. µ is the step size, and R̂ is the estimated autocorrelation matrix of X(n) which is assumed
to be known in the ideal LMS-Newton algorithm. Note that when R̂ equals to the identity matrix I,
(2) becomes the equation of the conventional LMS algorithm. The ideal algorithm is easy to analyze
theoretically, but it is considered impractical for the computational complexity.

In practical articles considering the application of the LMS-Newton method in acoustic echo
cancellation, the input X(n) is modeled as an autoregressive (AR) process in which the order is
much smaller than the length of the filter [33,38,39]. According to the characteristics of AR modeling,
there are many efficient ways to simplify the computation and updating of R̂−1(n)X(n). Some of
the articles estimate R̂−1(n) first and then perform the matrix multiplication [38,39], while other
articles directly compute the vector R̂−1(n)X(n) without the estimation of R(n) [33]. Owing to the
efficient updating of R̂−1(n)X(n), the modified practical LMS-Newton algorithms could keep very
small computational complexity, which is approximately equal to that of the conventional LMS
algorithm, adding a negligible updating operation of R̂−1(n)X(n). Practical Newtonian-type adaptive
filtering has the potential to converge as fast as RLS-type adaptive filtering while maintaining a low
computational complexity.

2.2. Maximum Correntropy Criterion

Conventional Newtonian-type adaptive filtering derives the equation of the adaptive filter
parameter according to the MMSE criterion, which performs well under Gaussian noise but suffers from
non-Gaussian noise. In this paper, MCC is introduced to enhance the robustness of the Newtonian-type
adaptive filtering. Correntropy in ITL is used to measure the similarity of two random variables, and is
defined as [10]:

V(X, Y) = E[κ(X, Y)] =
∫

κ(x, y)dFXY(x, y), (3)

where X, Y denote two random variables; E[·] is the expectation operator; FXY(x, y) represents the joint
distribution function of (X, Y); and κ(·) stands for a Mercer kernel which is in general the Gaussian
kernel defined as:

κβ(x, y) = Gβ(x− y) =
1√
2πβ

exp
(
−|x− y|2

2β2

)
, (4)

where β is the Gaussian kernel width, and 1/
√

2πβ is the normalization parameter.
In practical adaptive filtering, the available data {xn, yn}N

n=1 of X, Y are discrete and the joint
distribution FXY(x, y) can be estimated by the Parzen kernel estimator as:

V̂β
N(X, Y) =

1
N

N

∑
n=1

κβ (xn − yn) . (5)

2.3. Comparison of Different Criteria

This section presents the characteristic of robustness of MCC to outliers and gives a formal
motivation for the use of MCC. The loss functions of different criteria are the metrics of the estimation
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error e. We compare the correntropy induced loss function defined in (4) with the MSE loss function
and its general version, Lp norm loss function.

The MSE loss, in other words, L2 loss is defined as:

LMSE = |e|2. (6)

The Lp norm loss can be defined as
LLp = |e|p, (7)

where p usually satisfies 1 < p < 2. When p = 2, Lp norm loss becomes L2 loss.
Note that the correntropy induced loss function (C-loss) defined in (4) is a concave function.

So in MCC, we try to find the maximum of the cost function to reduce the estimation error. However,
we usually wish the loss function to be convex, so that the function value will get larger as the absolute
value of the error increases. So we used a modified version of C-loss [40] to compare with the other
loss functions. The modified C-loss is convex and can be defined as:

LC =
1√
2πβ

(1− exp(− |e|
2

2β2 )). (8)

Figure 1 shows the loss function of different criteria. For each convex loss function, the function
value increases with the growth of the absolute value of the estimation error. When an outlier
appears, the value of L2-loss and Lp-loss becomes very large, but the value of C-loss remains relatively
stable. Hence one can conclude that compared with the conventional loss functions, C-loss is robust
against outliers.
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Figure 1. Comparision of different loss functions.

3. A Newtonian-Type Adaptive Filtering Based on MCC

In our robust Newtonian-type adaptive filtering, MCC is used to construct the cost function
J = E[p(e(n))], in which p(e(n)) is the loss function of the error e(n) at time point n, and can be
written as Gβ(e(n)) in MCC instead of e2(n), the L2 loss in MMSE criterion. To calculate the optimal
estimation of the adaptive filter parameter W(n), the gradient of the cost function with respect to W(n)
is set to zero and we can derive that

E
[
Gβ(d− y)(d− y)X

]
= 0 (9)

E
[

Gβ(e)
(

d− XTW
)

X
]
= 0 (10)

and
E
[

Gβ(e)XXT
]
·W = E

[
Gβ(e)d · X

]
. (11)
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In adaptive filtering, the data are discrete and expectation operators can be presented using their
sample estimator:

RMCC ·W = PMCC, (12)

where RMCC = ∑N
n=1 q (e(n))X(n)X(n)T and PMCC = ∑N

n=1 q (e(n)) d(n) · X(n). q(e(n)) is the
weighting function of RLS-type MCC-based adaptive filtering that values how much the n-th sample
data influences the filtering. In Newtonian-type and RLS-type adaptive filtering, the weighting
function can be calculated by [19,36]:

q(e(i)) = |p(e(i))′/e(i)|, (13)

where p(e(n)) is the loss function or the error measurement. One can calculate that the error
measurement and the weighting function are coincidentally Gβ(e(n)) in terms of MCC. In MMSE
criterion, p(e(n)) is set to e2(n), then q(e(i)) equals to constant 2 and (12) will become the conventional
RLS solution. The weighting functions of different criteria are displayed in Figure 2, which shows that
MCC assigns very little weight on sample data that cause large estimation error compared with MMSE
criterion and least p-norm criterion. Therefore, MCC is robust against outliers and able to diminish the
impact of impulsive noises.
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Figure 2. Weighting functions of different criteria.

Similar to the derivation process of the conventional LMS-Newton, the gradient of W can be
calculated as

∇MCC =
∂JMCC(n)

∂w
= 2RMCC ·W− 2PMCC. (14)

Adding a multiplier 1/2 ∗ R−1
MCC to both sides of the formula, one can get

W∗MCC = W− 1
2

R−1
MCC∇MCC. (15)

Meanwhile, from (10) we can derive the gradient ∇MCC as

∇MCC =
1
N

N

∑
n=1

Gβ(e(n)) (e(n))X(n) (16)

where we retain the information of all moments but not take the instantaneous gradient as a substitute
like other algorithms.
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Combining (15) and (16) one can derive the expression of the MCC-based Newtonian-type
adaptive filtering as:

WMCC(n + 1) = WMCC(n) + µ · R−1
MCC(n)FMCC(n)XMCC(n), (17)

where FMCC(n) is a vector in which each element is Gβ(e(n)) (e(n)) of each time point, and XMCC(n) is
a matrix composed by vectors from X(1) to X(n). A step size µ is also added in the recursive equation
to enhance the flexibility of the algorithm. Note that the MCC-Newton algorithm of this paper is
different from that of [36], because the error vector and the input matrix in (17) contain the information
of all the previous time points. In practical implementation of calculating the gradient according
to (16), a forgetting factor and a sliding window could be also adopted to enhance the tracking ability
and reduce the computational complexity, just like in the sliding-exponential window RLS adaptive
filtering or sliding window LMS algorithm [41,42].

4. Steady-State Performance Analysis

The steady-state performance analysis [21,22,43,44] of adaptive filtering is a theoretical foundation
and gives the guideline for the parameter selection.

Firstly, the assumptions used throughout the analysis are given as follows.
A1: The additive noise sequence v(n) with variance σ2

v is independent and identically distributed
(i.i.d.), and is independent of the input sequence X(n).

A2: The filter is enough long so that the a priori error ea(n) is zero-mean Gaussian and
independent of the background noise v(n).

We define the steady-state MSE as:

MSE = lim
n→∞

E
[
e2(n)

]
. (18)

The steady-state excess mean square error (EMSE) can be presented as:

EMSE = lim
n→∞

E
[
e2

a(n)
]

. (19)

So
MSE = EMSE + σ2

v . (20)

In our theoretical analysis of the steady-state behavior of the algorithm, the desired output of the
unknown system d(n) can be presented as:

d(n) = WT
o X(n) + v(n), (21)

where Wo is the optimal impulsive response vector of the adaptive filter which could not be measured
directly, and v(n) is the additive noise at time point n.

The weight error vector is presented as:

W̃(n) = W0 −W(n). (22)

To simplify the structure of the discussed expressions, we assume that the width of the sliding
window is 1, then (17) becomes

W(n + 1) = W(n) + µ · Gβ(e(n))e(n)R−1(n)X(n). (23)

Combining (23) and (22), one can obtain:

W̃(n + 1) = W̃(n)− µ · Gβ(e(n))e(n)R−1(n)X(n). (24)
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We define prior and posteriori errors as

ea(n) = W̃(n)TX(n)

ep(n) = W̃(n + 1)TX(n)
(25)

Premultiplying XT(n) on both sides of (24), one can get

ep(n) = ea(n)− µ · Gβ(e(n))e(n)X(n)TR−1(n)X(n). (26)

As a stable algorithm, the MCC-Newton converges to the steady-state when time point n comes
to a very large number. So the weight error vector satisfies [44]:

lim
n→∞

E
[
‖W̃(n)‖2

]
= lim

n→∞
E
[
‖W̃(n + 1)‖2

]
(27)

Combining (25) and (27), one can derive:

lim
n→∞

E
[
ep(n)2

]
= lim

n→∞
E
[
ea(n)2

]
. (28)

At the steady-state, the time index n can be omitted for brevity since the distributions of the
input and error signals are independent with n. We also omit the limit operators of the formulas and
rewrite (28) as:

E
(

e2
a

)
= E

(
e2

p

)
. (29)

Substituting (26) into (29), one can derive that

E
(

e2
a

)
= E

(
e2

a

)
− 2E

(
eaµGβ(e)e · XTR−1X

)
+ E

(
(XTR−1X)2 ·

(
µGβ(e)e

)2
)

(30)

and
2E
(
eaµGβ(e)e

)
= E

(
XTR−1X ·

(
µGβ(e)e

)2
)

. (31)

XTR−1X is independent from µGβ(e)e, so that E
(

XTR−1X ·
(
µGβ(e)e

)2
)

= E(XTR−1X) ·

E(
(
µGβ(e)e

)2
).

Assume that f (e) = (µGβ(e)e), then (31) becomes

2E (ea · f (e)) = E(XTR−1X)E( f (e)2). (32)

It is known that e(n) = ea(n) + v(n). The simplification of (32) needs the Taylor expansion of
f (e) [21].

f (e) = f (v + ea) = f (v) + f ′(v)ea +
1
2

f ′′(v)e2
a + o (ea) . (33)

Then one can derive the following expressions:

E [ea f (e)] = E
[(

ea f (v) + f ′(v)e2
a + o (ea)

]
≈ E

[
f ′(v)

]
EMSE (34)

and
E
[

f 2(e)
]
≈ E

[
f 2(v)

]
+ E

[
f (v) f ′′(v) +

∣∣ f ′(v)∣∣2] EMSE. (35)

Substituting (34) and (35) into (32), one can obtain

EMSE =
E
(
XTR−1X

)
· E
(

f 2(v)
)

2E ( f ′(v))− E (XTR−1X) · E ( f (v) f ′′(v) + f 2(v))
(36)
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where f (v) = µv exp(−v2/(2β2)), f ′(v) = exp(−v2/(2 ∗ β2)) − (v2 exp(−v2/(2β2)))/β2 and
f ′′(v) = (v3 exp(−v2/(2β2)))/β4 − (3v exp(−v2/(2β2)))/β2. Then, one can get the closed form
solution of EMSE. The three parameters affecting the steady-state EMSE are step size µ, the noise
deviation v2 and β, the kernel width of MCC.

5. Experiments and Results

In this section, several experiments were carried out. In experiment 1, we simulated the algorithms
in a simple system identification scenario to verify their effectiveness. Experiment 2 discussed the
influence of the kernel width parameter selection of MCC-Newton under Gaussian and non-Gaussian
noises. Experiment 3 compared Newtonian-type and LMS-type algorithms on the Correntropy
performance surface. Experiment 4 compared the theoretical and the experimental results of EMSE of
MCC-Newton. The effectiveness of MCC-Newton in practical acoustic echo cancellation was examined
in experiment 5. Experiment 6 compared the echo return loss enhancement performance of different
algorithms in practical acoustic echo cancellation.

Experiment 1:
The system impulsive response Wo was set as a vector with 20 entries, which was consistent with

the order of the adaptive filter. The 10th element of Wo was set to 1, and the other elements were 0.
The iteration number was set to 2000. The input signal followed Gaussian distribution with zero mean
and unit variance. The desired signal was generated by the convolution of Wo and the input signal,
added by the system noise. We executed 100 Monte Carlo runs so that the average simulation result
was available for the discussion. We simulated in both Gaussian and α stable noises, and compared two
criteria (MMSE criterion and MCC)-based algorithms, each optimized with three different methods.
The additive Gaussian noise had zero mean and the noise variance was 0.09. The additive α stable
noise [45] was set with the same variance with the Gaussian noise, and the characteristic exponent α

was set to 1.2, which is a measure of the thickness of the tails of the α stable distribution. When α is
equal to 1 or 2, α stable distribution becomes the Cauchy distribution and the Gaussian distribution as
special cases. To compare the convergence rate of the algorithms, step sizes were adjusted to ensure
that the steady-state MSD of different algorithms were close to each other. The results are shown in
Figures 3 and 4.
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Figure 3. The performance of different algorithms under Gaussian noise.
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Figure 4. The performance of different algorithms under α stable noise.

From Figures 3 and 4 one can observe that: (1) all the algorithms converge to a steady-state in the
presence of Gaussian noise. However, in α stable noise environment, MMSE criterion-based algorithms
could not converge to a steady-state but MCC-based algorithms still converge well. (2) Newtonian-type
and RLS-type algorithms converge in similar rate, and are much faster than LMS-type algorithms.

Experiment 2:
We simulated the performance of MCC-Newton algorithm with different kernel widths set and the

results are presented in Figures 5 and 6. The parameter settings are the same as the previous experiment.
From Figure 5 one can observe that under a Gaussian noise environment, the MCC-Newton algorithm
performs as well as LMS-Newton algorithm, and the kernel width selection of MCC-Newton does not
make much difference in terms of the steady-state MSD. However, as Figure 6 shows, LMS-Newton
does not converge under the α stable noise, and MCC-Newton converges to a steady-state only when
the kernel width is set small. One can also observe that MCC-Newton with a large kernel width
performs similar to LMS-Newton which agrees well with the relation of the MMSE criterion and
the MCC.
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Figure 5. The performance of the MCC-Newton with different kernel width β under Gaussian noise.
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Figure 6. The performance of the maximum correntropy criterion (MCC)-Newton with different kernel
width β under α stable noise.

Experiment 3:
To image the difference of the convergence process of MCC-based Newtonian-type and LMS-type

algorithms, we simulated a system identification scenario of two tap weights, and presented the weight
tracks of the algorithms on the correntropy performance surface [23].

The system impulsive response was set as [1,2], and the initial one was [1,−1]. Figure 7 shows
the weight tracks (i.e., how the impulsive response W changes to approach the optimal one Wo) of
different algorithms. One can observe that there are many twists and turns in the curve of MCC_GD
than MCC_Newton, so that MCC_GD needs much more steps to reach an estimation close to Wo,
which is consistent with one of the results of experiment 1; that Newtonian-type algorithms converge
faster than LMS-type ones. Figure 7 also shows that the ideal MCC_Newton algorithm possesses the
best direction of optimization and the weight track of MCC_GD is approximately consistent with the
gradient descent. However, it seems hard for the practical MCC_Newton algorithm to find the right
direction at the beginning of the iteration. This can be explained by the temporary imprecision of the
correlation matrix estimation in the practical MCC_Newton. The difference between the ideal and
the practical MCC_Newton algorithms is the calculation of the correlation matrix of the input signal.
The ideal MCC_Newton algorithm can use the perfectly calculated correlation matrix through the
whole iteration, but the practical one can only build the estimated correlation matrix from the received
input signals, which causes the imprecision of the estimation of the matrix at the beginning of the
iteration. When the number of iterations increases, the estimation becomes more accurate, so that the
practical MCC-Newton algorithm will achieve a similar performance with the ideal one after a certain
number of iterations.
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MCC Performance Surface

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

MCC Performance Surface

MCC_Newton

ideal MCC_Newton

MCC_GD

Wo

Figure 7. The weight tracks for the gradient descent-based algorithm (MCC_GD) and
the Newtonian-type algorithm (ideal MCC_Newton and MCC_Newton) on the Correntropy
performance surface.

Experiment 4:
In this experiment, we compared the theoretical derived EMSE in Section 4 with the simulated

one to confirm the theoretical result. The input signal was generated from a Gaussian distribution with
zero mean and unit variance, and the additive noise was Gaussian distributed with specified variance.
We executed 100 Monte Carlo runs to get the average simulation result of EMSE. From (36), we can
learn that the steady-state EMSE are determined by step size µ, the noise deviation v2 and β, the kernel
width of MCC. So we separately simulated the steady-state performance versus different parameters.
In each simulation, one parameter varied with the other two parameters stayed unchanged, so we
could display the influence of the specified parameter to the steady-state EMSE in Figures 8–10.

Figure 8 represents the theoretical and simulated EMSEs under different step sizes. The kernel
width β was set to 5, and the noise variance σ2

v was set to 0.09. The step size µ scaled from 0.01 to
0.15. Figure 9 shows the theoretical and simulated EMSEs versus different kernel widths which scaled
from 1 to 25. The step size was 0.07 and the noise variance was set as 0.09. Figure 10 displays the
theoretical and simulated EMSEs under noise variances scaling from 0.01 to 0.25. The step size was
0.07 and the kernel width was set to 5. One could observe that the simulation results agrees well with
the theoretical analysis. The steady-state performance of the algorithm degrades with the increase of
the step size, the kernel width and the noise variance. In other words, we can choose smaller step size
and kernel width to help MCC-Newton algorithm achieve better steady-state performance.
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Figure 8. Theoretical and simulated EMSEs versus the step size µ (β = 5, σ2
v = 0.09).
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Figure 9. Theoretical and simulated excess mean square errors (EMSEs) versus the kernel width
β (µ = 0.07, σ2

v = 0.09).
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Figure 10. Theoretical and simulated EMSEs versus the noise variance σ2
v (µ = 0.07, β = 5).

Experiment 5:
We examined the algorithm in practical acoustic echo cancellation and the parameters in this

experiment were set as follows. We recorded two different simple voices that both last for 4.0 s as the
near end speech and the far end speech. In ideal acoustic echo cancellation, the echo caused by the far
end speech should be well cancelled from the mixed speech picked up by the near end microphone
thus the output of the canceller could be close to the near end speech. The size of the impulsive
response Wo was set to 2000, which was large enough so that the generated echo can be heard clearly.

To evaluate the performance in AEC, we introduce the echo return loss enhancement (ERLE)
which is defined as:

ERLE =
E
{
(d(n)− ε(n))2

}
E
{
(e(n)− ε(n))2

} , (37)

where d(n) is the echo signal of the far end speech picked up by the microphone, which contains the
additive noise ε(n) and the original echo signal. e(n) is the residual error of AEC which is transmitted
back to the far end together with the near end speech. So, ERLE tells us how large the estimated echo
is compared with the residual error of AEC, without the influence of the additive noise.

We used the MCC-Newton algorithm in practical acoustic echo cancellation where the additive
noise picked up by the near end microphone follows non-Gaussian distribution. To focus on the
problem of AEC, it was assumed that we already had an ideal detection scheme to tell when near end
speech was present. Figure 11 shows the practical effect and the ERLE performance of MCC-Newton.
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One can observe that: (1) the microphone signal contains the near end speech, the far end speech and
its echo signal added with the system noise. (2) The AEC output is free from the far-end speech echo
and is very close to the original near-end speech. However, it could not get rid of the influence of noise.
(3) ERLE becomes larger when there exists echo signal of the far end speech. The algorithm could
achieve up to 50 dB ERLE.
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Figure 11. Effect of the MCC-Newton algorithm and the echo return loss enhancement performance.

Experiment 6:
We compared the ERLEs of MCC-Newton algorithms with that of LMS-Newton and

the conventional LMS-type algorithms to see their performance under practical AEC scenario.
The parameter settings are similar with that of the previous experiment. Figure 12 shows the
result, from which one can observe that: (1) the ERLEs of all the algorithms tends to increase at
the early stage of the experiment, and the ERLEs of Newtonian-type algorithms increase faster than
that of LMS-type algorithms. The possible explanation is that the algorithms need to converge to a
steady-state in the early stage iterations and Newtonian-type algorithms converge faster than LMS-type
ones. (2) Compared with the other algorithms, MCC-Newton achieves higher ERLE performance.
This confirms the practical effectiveness of MCC-Newton algorithm in the presence of heavy tailed
mixed Gaussian noise.
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Figure 12. Echo return loss enhancement (ERLE) of different algorithms.

6. Conclusions

MCC is recently adopted to deal with the heavy tailed impulsive noise problem in robust adaptive
filtering. In this paper, a Newtonian-type method is innovatively used to solve the MCC-based adaptive
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filtering, of which the existing optimization methods are usually LMS-type or RLS-type. Experiments
demonstrate that the Newtonian-type MCC-based adaptive filtering converges as fast as RLS-type
ones, and is much faster than LMS-type. The steady-state performance of the Newtonian-type MCC
adaptive filtering is theoretically analyzed and is verified to be consistent with the experiment results.
It is also revealed in experiments that a smaller kernel width helps the Newtonian-type MCC-based
adaptive filtering perform better under impulsive noises, which could be a guide for the selection of
the parameter. Experiments also show that the MCC-Newton algorithm is practical in acoustic echo
cancellation under heavy-tailed system noise. In future work, better approximation methods of the
Hessian matrix could be involved to decrease the computational complexity and further improve the
performance of the algorithm.
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