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Abstract

Traffic safety problems are still very serious and human factor is the one of most important

factors affecting traffic crashes. Taking Next Generation Simulation (NGSIM) data as the

research object, this study defines six control indicators and uses principal component anal-

ysis and K-means++ clustering methods to get the driving style of different drivers. Then

use the Bayesian Networks Toolbox (BNT) and MCMC algorithm to realize the structure

learning of Bayesian network. and parameter learning was completed through Netica soft-

ware. Finally, the vehicle-based traffic crash risk model was created to conduct sensitivity

analysis, posterior probability inference, and simulation data was used to detect the feasibil-

ity of the model. The results show that the Bayesian network modeling can not only express

the relationship between the crash risk and various driving behaviors, but also dig out the

inherent relationship between different influencing factors and investigate the causes of driv-

ing risks. The results will be beneficial to accurately identify and prevent risky driving

behavior.

1. Introduction

With the development of the transportation industry, the number of cars has increased, and

the situation of road traffic safety has become more severe. The "2018 Global Road Safety

Report" released by the WHO pointed out that approximately 1.35 million people die from

road traffic collisions every year, 3,700 people die from car accidents every day, and one person

loses his life on the road every 24 seconds. The causes leading to traffic crashes are diverse and

complex [1–3], and the influencing factors mainly include human factor, vehicle factor, roads,

and environmental factor [4]. According to previous research [5–11], human factor is one of

the most important factors. Therefore, identification of dangerous driving behaviors in a

timely manner can reduce the risk of driving and improve the safety of the road traffic system.

In 1993, the driving style was first defined as the driver’s habitual driving method during

driving, and it was emphasized that driving style is a unique driving attribute of each person

[12]. It will affect the driver’s speed control, driving awareness, driving skills and many other

aspects during driving which have a great relationship with traffic safety [13–15]. Currently,
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there are two main types of driving style recognition. One is a subjective questionnaire survey.

Li [16] et al. used a standard driver behavior questionnaire on 225 non-professional drivers to

determine the number of driver style categories based on the fuzzy C-means (FCM) algorithm.

Liu Jing [17] and others used the Multi-Dimensional Driving Style Scale and the General Deci-

sion Style Scale by surveying 199 drivers to study the relationship between various factors and

driving style. However, questionnaire surveys are subjective and may affect the research results

due to the driver’s cognitive bias. To reduce subjectivity, this article uses another method

based on vehicle kinematics parameters to identify driving style. This paper uses principal

component analysis for dimensionality reduction and then uses k-means clustering analysis to

classify driving style, and uses the elbow method to determine the number of classifications

based on the NIGSIM data set which comes from the US "Next Generation Simulation"

(NGSIM) program and will be explained in detail later.

Among the related methods of risk evaluation, the commonly used methods are fuzzy eval-

uation method [18], risk index method [19], regression model [20], decision tree, K-means

algorithm [21], bayesian method [22, 23] and neural networks [24]. Wu et al [25] took various

bad driving behaviors as evaluation indicators, and obtained the main factors affecting traffic

crashes through fuzzy evaluation. Zhang [26] proposed to use equivalent acceleration as the

weighting index and use the driving risk index proposed by Toledo and the safety threshold to

judge whether the driving behavior is safe. Taking the accident samples as the research object,

Ye [27] constructed a generalized ordered logit model to estimate the distribution probability

of different severity levels of crashes and identify the main factors affecting different severity

levels of rollover crashes. Sheng Dong [28] established a binary logit model to perform simula-

tion and analysis of rear-end collisions. Zhang [29] applied the CART decision tree algorithm

to focus on the driving behavior to explore the impact on the severity of the consequences of

the crash. Yanyong Guo et al [30] developed traffic conflict-based real-time safety models for

signalized intersections using multiple indicators under the Bayesian framework. Tarek et al

[31] proposed a hierarchical Bayesian peak over threshold approach for conflict-based before-

after safety evaluation of Leading Pedestrian Intervals.

In this paper, we employed Bayesian network to construct a vehicle-based traffic crash risk

model. Compared with methods such as fuzzy mathematics and analytic hierarchy process, the

objectivity of Bayesian network is stronger. Compared with regression models, Bayesian net-

works can better show the correlation between different crash risk factors in complex systems

while odds ratios from a logistic regression can only show the relationship between crash risk

and various factors. Compared with neural networks, Bayesian networks are more explana-

tory. Model visualization can directly show the relationship between various influencing fac-

tors, and make inferences by setting evidence variables. The Bayesian network graphically

describes the relationships between independent and dependent variables. According to the

Bayesian network structure, prior probability, and the conditional probability table of each

node, the probability of event occurrence can be predicted. Therefore, the Bayesian network is

selected for the prediction of traffic crash risk.

2. Data preparation

2.1 Data description

In this study, we used NIGSIM data to establish a vehicle-based risk assessment model and

used the simulated data to verify the model.

NIGSIM data [32–34] comes from the US "Next Generation Simulation" program which

collected vehicle trajectory data on us-101 southbound and Lankershim Avenue in Los Ange-

les, California, I-80 eastbound in Emeryville, California, and Peachtree Street in Atlanta,
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Georgia. And this study selected us-101 data for analysis. The simulation data were collected

from a driving simulation system, which can simulate the driving environment and driving

behavior of the vehicle. The driver controls the vehicle model through acquisition modules

such as the keyboard and steering wheel, and adopts different response methods in different

driving environments.

The us-101 data contains 25 attributes such as Vehicle ID, Frame ID, Global time, Local X,

and Local Y, etc. The length of the study area is 640m, including 5 main lanes; 1 distribution

lane is located between the entrance of Ventura Boulevard and the exit of Cahuenga Boule-

vard. Fig 1 shows the road section of us-101.

We selected the vehicles on the main lane in order to ensure the accuracy of the data, which

accounts for about 97% and selected the car as the research object and then converted the Brit-

ish unit into the international standard unit.

The contents of the data after processing is shown in Table 1:

Fig 1. The road section of us-101.

https://doi.org/10.1371/journal.pone.0252484.g001

Table 1. Basic information of NIGSIM data.

number name unit

1 Vehicle ID number

2 Frame ID 100ms

3 Total frames 100ms

4 Global time h

5 Local X m

6 Local Y m

7 Vehicle length m

8 Vehicle width m

9 Vehicle velocity km/h

10 Vehicle acceleration m/s2

11 Lane Identification number

12 Space headway m

13 Time headway s

https://doi.org/10.1371/journal.pone.0252484.t001
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2.2 Risk assessment indicators

There are many factors influencing road traffic safety. As we mentioned at the beginning of

the study, dangerous driving behavior is one of the leading causes of the traffic crashes. This

part focuses on the identification of dangerous driving behaviors by establishing eight vehicle-

based risk assessment indicators based on the collected data.

2.2.1 Car following interval control indicator. In order to have enough reaction time to

deal with unexpected accidents for the driver, a reasonable safety distance between vehicles

needs to be guaranteed. The minimum distance between vehicles can be derived by analyzing

the braking process of vehicles as shown in Fig 2. If the distance between front and rear vehi-

cles is less than the minimum vehicle distance during driving, it is considered to have a certain

driving risk.

D ¼ Vit þ
Vi

2

2ai
�
Vi� 1

2

2ai� 1

þ d0 ð2:1Þ

In the picture, Xi−1, Xi means the location of the two vehicles before braking and decelera-

tion, D represents the distance between the two vehicles, t represents the reflected time [35] of

the following car which means the time from when the vehicle in front slows down to when

the rear vehicle slows down, and the distance traveled by the rear vehicle during this period is

reflected distance which is represented by Vit. According to the dynamic formula, the braking

distance of the front vehicle is Vi−1
2/2ai−1, and the driving distance of the rear vehicle during

braking is Vi
2/2ai. Assuming that the speed and acceleration of the front and rear cars are the

same before braking, the minimum vehicle spacing Dmin between them can be obtained.

Dmin ¼ Vit þ d0 ð2:2Þ

Using the ratio z of the minimum vehicle distance to the actual vehicle distance as the fol-

lowing interval control index to evaluate the driver’s control of the vehicle distance, the

Fig 2. Vehicle braking process.

https://doi.org/10.1371/journal.pone.0252484.g002
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calculation formula of z is as follows:

z ¼
Di

D
ð2:3Þ

2.2.2 Sharp acceleration and deceleration control indicator. The sudden acceleration

and deceleration caused by poor control will bring crash risks. Set the abrupt acceleration

threshold a0accða
0

acc > 0Þ, and abrupt deceleration threshold a0decða
0

dec < 0Þ, and when abrupt

acceleration is greater than a0acc or the abrupt deceleration is less than a0dec, it is judged that the

abrupt speed change occurs. Define the continuous rapid acceleration/deceleration time

threshold as T. According to the three different states of no speeding behavior, speeding

behavior, and continuous speeding behavior, the risk levels are divided into three categories:

low risk, normal risk, and high risk. Compared with the previous simple classification of

whether there are over-speeding behaviors based on only acceleration, this classification is

more detailed and accurate.

2.2.3 Frequent acceleration and deceleration control indicator. Frequent acceleration

and deceleration mainly mean that the speed of the vehicle changes frequently with a short

period. Frequent acceleration and deceleration are not illegal in traffic laws. Therefore, drivers

pay relatively little attention to such dangerous driving behaviors. What’s more, in the process

of frequent acceleration and deceleration, fuel consumption will increase, causing environ-

mental pollution and economic waste. Therefore, the driver should be reminded in time when

the vehicle speed is detected to be unstable.

Define Q as the oscillation frequency of acceleration in time T, n means the number of

acceleration changes in the time T, so the calculation formula is:

Q ¼
n
T

ð2:4Þ

2.2.4 Line driving control indicator. Define D1 and D2 as the distance respectively

between the vehicle and the left or right sides of the lane. Set the safety distance as D. There is a

high driving crash risk when the condition D1<D/2 or D2< D/2 is satisfied. Considering that

the data with a small value may be caused by two reasons: driving on the line or changing

lanes, a time threshold T is set to eliminate the interference of the lane changing behavior.

2.2.5 Serpentine driving control indicator. The serpentine driving control indicator is

created to study the dangerous driving situation where the vehicle shakes frequently in a short

period of time based on the distance collected by the vehicle from the left side of the lane every

time.

Within time T, the sloshing frequency W of the vehicle is determined by judging the change

of the distance of the vehicle relative to the left side of the lane. When the value of W is larger,

the driving behavior is more dangerous. The calculation formula of W is as 2.5:

W ¼
k
T

ð2:5Þ

Where k is the number of shaking in time T.

2.2.6 Speeding control indicator. Set a speed threshold V, and when the vehicle speed

exceeds the threshold V, it is judged that an overspeed behavior has occurred. Then for each

overspeed behavior, calculate the overspeed duration, and define the overspeed time threshold

T.
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2.2.7 Frequent lane change control indicator. Define P as the frequency of lane change

in T time, the calculation formula is:

P ¼
n
T

ð2:6Þ

N is the number of lane changes in T time, and the value of N increases by 1 when the num-

ber of lanes where the vehicle is located changes.

2.2.8 Driving style. Driving style is closely related to driving safety and aggressive driving

style is usually more likely to cause traffic crashes. In order to combine with the actual situation

and reduce the impact of subjective questionnaire surveys on the results, this paper used vehi-

cle kinematics data to classify driving styles.

Speed and acceleration can show the driving habits, and the frequency of lane changes and

the following distance can reflect the driving personality. This article selected 13 evaluation

indicators about driving style, as shown in Table 2:

Then use the principal component analysis method to reduce the dimension, and finally

use the elbow method to determine the number of driving style classifications. The calculation

formula of the core index SSE (sum of the squared errors) is as follows:

SSE ¼
Xk

i¼1

X

p2Ci

jp � mij
2

ð2:7Þ

Among them, Ci is the i_th cluster, p is the sample point in Ci, mi is the centroid of Ci

(mean of all samples in Ci), and SSE is the clustering error of all sample, representing the qual-

ity of the clustering effect.

3. Methods

Bayesian Networks graphically describe the independent or dependent relationship between

variables. According to the Bayesian network structure, prior probabilities and the conditional

probability table of each node, the probability of event occurrence can be predicted, which can

intuitively show the causal relationship between data variables. This method is suitable for

describing the relative relationship between multiple variables in a complex system. Suppose A

and B are two random variables, A = a is a certain hypothesis, and B = b is a set of evidence.

Table 2. Driving style evaluation index.

num indicators

1 Average speed

2 Standard deviation of speed

3 Mean forward acceleration

4 Standard deviation of forward acceleration

5 Mean value of negative acceleration

6 Standard deviation of negative acceleration

7 Mean value of absolute acceleration

8 Standard deviation of absolute acceleration

9 Average headway distance

10 Standard deviation of headway

11 Mean value of absolute Acceleration shock

12 Standard deviation of absolute Acceleration shock

13 Number of lane changes

https://doi.org/10.1371/journal.pone.0252484.t002
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Before considering the evidence B = b, the probability estimation P(A = a) of the event A = a is

called the prior probability; after considering the evidence B = b, the probability estimation

P (A = a) of the event A = a is called the posterior probability. Bayes’ theorem describes the

relationship between the prior probability and the posterior probability. The formula is as fol-

lows:

PðA ¼ a j B ¼ bÞ ¼
PðA ¼ aÞ � PðB ¼ b j A ¼ aÞ

PðB ¼ bÞ
ð2:8Þ

The construction of Bayesian network mainly has two processes: network structure and

parameter learning. Structural learning mainly includes expert experience and machine learn-

ing methods. Compared with the expert experience method, the machine learning method can

avoid the influence of subjective factors. Machine learning methods include scoring-based

search methods, constraint-based methods, and random sampling-based methods. The basic

idea of the score-based search method is to traverse all possible structures, and then use a cer-

tain standard to measure each structure to find the best structure. In 1992, Cooper and Hers-

kovits proposed the first Bayesian scoring function, the K2 scoring function [36, 37]; in 1995,

Heckerman proposed the BD scoring function, which is a generalization of the K2 function; at

the same time, Heckerman proposed the BDe scoring function based on additional likelihood

equivalence hypothesis [38, 39]; Bouckaert and Suzuki proposed the K3 algorithm using a

scoring function based on the Minimum Description Length (MDL) principle in information

theory [40, 41]. Constraint-based Bayesian network structure learning method (also known as

dependency analysis method or conditional independence test method), usually uses statistical

or information theory methods to quantitatively analyze the dependence relationship between

variables to obtain the optimal expression of the network structure. In 1993, the SGS algorithm

proposed by Spines et al. was a typical algorithm for determining the topological structure by

conditional independence tests [42]; in 2000, Spines et al. enhanced the SGS algorithm and

proposed the PC algorithm [43]; in 2002, Cheng combined information theory with statistical

testing and proposed the TPDA algorithm [44].

Among the machine learning methods, the learning method based on score search has a

large search space and low learning efficiency and it is difficult for the method based on con-

straints to judge the independence between nodes. Therefore, this paper uses MCMC to learn

parameters based on random sampling, which has high learning efficiency and is easy to

implement. Since there is no missing data in this article, in order to improve the efficiency of

parameter learning, this article used a counting algorithm for parameter learning.

In MCMC, the likelihood function is given as

E f xð Þ½ � �
1

m

Xm

i¼1

f xið Þ: x0; x1; . . . ; xmð Þ � MC pð Þ ð2:9Þ

Among them, xi represents the i-th sampling sample, m represents the number of samples

and MC(p) stands for Markov process.

And for counting algorithm, before it begins, the net starts off in a state of ignorance. At

each node, all CPT probabilities start as uniform. Only nodes for which the case supplies values

for all of its parents, have their experience and conditional probabilities modified. Each of

these nodes is modified as follows.

Only the single experience number, and the single probability vector, for the parent config-

uration which is consistent with the case is modified. The new experience number (exper’) is
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found from the old (exper) by:

exper0 ¼ exper þ degree ð2:10Þ

where degree is the multiplicity of the case.

Within the probability vector, the probability for the node state that is consistent with the

case is changed from probc to probc’ as follows:

probc0 ¼ ðprobc � exper þ degreeÞ=exper0 ð2:11Þ

The other probabilities in that vector are changed by:

probc0 ¼ ðprobc � experÞ=exper0 ð2:12Þ

where probc is the probability of the case.

4. Results

In the driving style recognition section, we calculated the contribution rate and cumulative

contribution rate of each principal component, as shown in Fig 3. According to the principle

that the cumulative contribution rate reaches 85%, the first six principal components were

selected to reflect the information of the original indicators sufficiently. The principal compo-

nent coefficient matrix is shown in Table 3.

The score of the principal component according to the analysis coefficient will be used as

the input for the classification and driving style recognition model later.

Then use the elbow method to determine the number of categories. When the number of

clusters increases, the degree of aggregation of each cluster will also increase, and the SSE will

gradually decrease. When the value of k is less than the correct number of clusters, the increase

of the value of K will significantly increase the degree of aggregation of each cluster, and the

decrease of SSE is larger. Conversely, when k reaches the true number of clusters, the return

on the degree of polymerization obtained by increasing k will quickly decrease, so the decline

Fig 3. Principal component contribution rate and cumulative contribution rate.

https://doi.org/10.1371/journal.pone.0252484.g003
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of SSE will also decrease, and eventually it will tend to be gentle. Fig 4 is the SSE change graph

when the number of clusters is between 1 and 7.

As it can be seen from Fig 4, when the number of clusters is greater than 3, the change in

SSE tends to be flat. Combined with current research, driving styles are mainly divided into

three types: calm type, general type, and aggressive type. So, the number of driving style classi-

fications in this study is 3.

Then draw the result of driving style recognition based on the first three principal compo-

nents. The recognition result is shown in Fig 5,

This article divided the driver’s driving style into three types: calm type, general type, and

aggressive type according to the degree of aggressiveness. It can be seen from the figure that

the three driving styles have obvious differences in the first three principal components.

According to the previous crash risk assessment indicators, all data was used as the input

for constructing the Bayesian network, and the following Table 4 was obtained by discretizing

the variable of each node.

In order to facilitate the display of the Bayesian network structure, the variable names were

simplified. The corresponding relationship is shown in Table 5:

The MCMC algorithm was applied to learn the Bayesian structure of the original data.

Finally, there are 21 directed edges, and the DAG structure is shown in Fig 6. 0 means there is

no obvious dependency between the two nodes, 1 means there is an obvious correlation

between the them.

Combining the existing prior knowledge, 18 directed edges were finally determined. The

visualization of the Bayesian network structure is shown in the following Fig 7.

It can be found from the above figure that after structural learning, the car following inter-

val control, rapid acceleration and deceleration, frequent acceleration and deceleration, line

driving, snake driving, speeding, and lane change frequency all have a direct impact on the

type of risk. At the same time, there is a mutual influence between various factors. For exam-

ple, speeding will affect the car following index, the car following index is mainly related to the

vehicle distance and vehicle speed and the vehicle speed obviously affects the distance between

the front and rear vehicles. Overall, the Bayesian network structure conforms to basic logical

cognition.

Table 3. Principal component score coefficient matrix.

Standardized variable t1 t2 t3 t4 t5 t6

‘Mean speedX1’ 0.2548 -0.3843 -0.0813 0.0580 0.0093 0.3162

‘Standard deviation of speedX2’ -0.1047 0.4000 -0.0987 0.1552 0.1628 0.7174

‘Mean forward accelerationX3’ 0.3200 0.1620 -0.4574 0.0040 -0.0514 0.1270

‘Standard deviation of forward accelerationX4’ 0.2131 0.2764 -0.5084 0.1277 -0.1655 -0.4131

‘Mean value of negative accelerationX5’ -0.3028 -0.1581 -0.4851 -0.0890 0.1072 -0.0524

‘Standard deviation of negative accelerationX6’ 0.2238 0.2667 0.5197 0.1835 -0.2187 -0.1168

‘ Mean value of absolute acceleration X7’ 0.4188 0.0272 -0.0232 0.0310 0.0169 0.2776

‘Standard deviation of absolute acceleration X8’ 0.3871 0.2703 -0.0410 0.1598 -0.1895 -0.1059

‘ Average headway distance X9’ -0.1945 0.4094 0.0299 -0.3083 0.1562 -0.1161

‘ Standard deviation of headway X10’ -0.1844 0.4960 0.0209 -0.0759 0.2263 0.0182

‘ Mean value of absolute Acceleration shock X11’ 0.3821 -0.0554 0.0387 -0.3230 0.3477 0.0391

‘ Standard deviation of absolute Acceleration shock X12’ 0.3014 -0.0032 0.0727 -0.4527 0.4575 -0.1731

‘Number of lane changes X13’ 0.0233 -0.0554 0.0171 0.6914 0.6649 -0.2206

https://doi.org/10.1371/journal.pone.0252484.t003
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The parameters were estimated based on counting-learning algorithm which is a kind of

Bayesian learning algorithm. Build a Bayesian network based on the results of structural learn-

ing, and obtain the Bayesian network structure. 303 3 And then get the conditional probability

table of each node by counting algorithm, the Bayesian network model obtained by parameter

learning in Netica software is shown in Fig 8:

Through the counting algorithm, Netica can get the probability table of each node. The

probability table shows the probability relationship between the changed node and its child

nodes. Taking the Sty node as an example, this node has two child nodes Sha and Fol. Table 6

shows the conditional probability table of node Sty.

5. Discussion

To further explore the results of established vehicle-based crash risk model, we analyzed and

verified the model from three aspects: model sensitivity, posterior probabilistic inference, and

effectiveness.

Fig 4. Relationship between cluster number and SSE.

https://doi.org/10.1371/journal.pone.0252484.g004
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5.1 Model sensitivity

Bayesian network sensitivity analysis refers to analyzing the impact of other nodes on the tar-

get node. Through sensitivity analysis, we can identify the factors that have a greater impact on

the vehicle’s crash risk and take effective measures for the factors. The results are shown as fol-

lows in Table 7.

Mutual Information is used to measure the degree of dependence between nodes. The

mutual information between two nodes can indicate whether the two nodes depend on each

other. From Table 7, it can be seen that the mutual information between the line driving and

the risk type is the largest which can be speculated that the vehicle has a greater possibility of

line driving followed by snake driving, frequent acceleration and deceleration, speeding and so

on.

5.2 Posterior probabilistic inference

The Bayesian network model can be used for probabilistic inference, including calculating the

posterior probability of the target node, predicting the possibility of the result, and analyzing

the main influencing factors of the result when the node state has been determined. The above

two posterior probabilities of inferring results from causes and inferring causes from results

are called risk prediction and causal inference, respectively.

Risk prediction refers to inputting the determined status of node variables into the Bayesian

network. In Netica, if a certain node variable is determined, the corresponding state will be set

to 100%, and the changes of other nodes in the entire Bayesian network can be observed. As

shown in Fig 9, when the rapid acceleration and deceleration indicator is at the general risk

level, the existing risk increases from 38.5% to 57.7%, and the risk level increases from a certain

risk to a higher risk.

Fig 5. Driving style recognition results.

https://doi.org/10.1371/journal.pone.0252484.g005
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Another advantage of Bayesian network is causal inference. Causal inference refers to two-

way inference through Bayesian network. It can not only calculate the probability of the target

node, but also calculate the posterior probability of other nodes when the target node is deter-

mined. To find out the most probable combination of factors, this analysis is more intuitive

and can prevent the most influential factors in advance.

Assuming that the risk probability is 100%, as shown in Fig 10, it can be discovered that the

safety of line driving and serpentine driving are significantly reduced. The most obvious

changes in indicators are: the range of high risk increases from the initial 24.9% to 64.7%. This

shows that in the absence of other evidence, the most likely cause is line driving.

Table 4. Bayesian network node variables and their discrete values.

node variables Data description Discrete value frequency ratio

Car following interval control indicator z≧3.5 3 240 0.05%

1≦z<3.5 2 31728 6.80%

z<1 1 434524 93.15%

Sharp acceleration/deceleration control indicator |a|≧3 & t≧3 3 111 0.03%

|a|≧3 & t<3 2 39815 8.53%

|a|<3 1 426566 91.44%

Frequent acceleration and deceleration control indicator Q≧0.8 3 21320 4.57%

0.6≦Q<0.8 2 53812 11.54%

Q<0.6 1 391360 83.89%

Line driving control indicator (D1<0.25 | D2<0.25) & t≧5 3 116203 24.91%

(D1>0.25 & D2>0.25) | ((D1<0.25 | D2<0.25) & t<5) 1 350289 75.09%

Serpentine driving control indicator W≧0.45 3 29229 6.27%

0.22≦W<0.45 2 64147 13.75%

W<0.22 1 373116 79.98%

Speeding control indicator V> = 55 & t> = 10 3 3413 0.73%

V> = 55 & t<10 2 24042 5.15%

V<55 1 439037 94.11%

Frequent lane change control indicators P> = 0.14 3 952 0.20%

P<0.14 1 465540 99.80%

Driving style Aggressive type 3 106063 22.74%

General type 2 144126 30.90%

Calm type 1 216303 46.37%

Risk type High risk 2 181008 38.80%

Low risk 1 285484 61.20%

https://doi.org/10.1371/journal.pone.0252484.t004

Table 5. Node variable symbol correspondence.

number variable name Simplified symbol

0 Risk type Typ

1 Car following interval control indicator Fol

2 Sharp acceleration/deceleration control indicator Sha

3 Frequent acceleration and deceleration control indicator Qui

4 Line driving control indicator Lin

5 Serpentine driving control indicator Sna

6 Speeding control indicator Ove

7 Frequent lane change control indicators Cha

8 Driving style Sty

https://doi.org/10.1371/journal.pone.0252484.t005

PLOS ONE Driving risk identification and cause analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0252484 August 13, 2021 12 / 20

https://doi.org/10.1371/journal.pone.0252484.t004
https://doi.org/10.1371/journal.pone.0252484.t005
https://doi.org/10.1371/journal.pone.0252484


5.3 Effectiveness

For the judgment of the effectiveness of the crash risk model, this paper selected the risky driv-

ing process and compared it with the normal driving process from simulation data.

Combine the video of the corresponding time to verify the risk status.

Fig 11 is a screenshot of the video corresponding to the normal driving time. The vehicle

speed is lower and the driving is more stable, which is consistent with the driving behavior

during normal driving.

Fig 12 is a screenshot of the video corresponding to the risky driving time. During this

period, driving behaviors such as frequent vehicle lane change and continuous overtaking

occur, which are consistent with the driving behavior when there is an accident risk.

Then input the data into the Bayesian network to calculate the risk value, and draw a com-

parison chart of the risk value during the normal driving period and the risky period in Fig 13

as follows:

It can be seen from Fig 13 that during the operation of the vehicle, the risk state will change

with time. The risk value in the risk driving process shown in the figure above fluctuates

Fig 6. DAG structure matrix.

https://doi.org/10.1371/journal.pone.0252484.g006

PLOS ONE Driving risk identification and cause analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0252484 August 13, 2021 13 / 20

https://doi.org/10.1371/journal.pone.0252484.g006
https://doi.org/10.1371/journal.pone.0252484


between 50-100%. For the first 0.5s, the risk value is close to 90% which can be considered that

there is a higher risk in this time period. After 0.5s, as the driver correcting the behavior, the

risk is reduced and remains at about 50%. The risk of normal driving process fluctuates around

10%, which is much lower than the former one, indicating that the risk is relatively low during

normal driving.

Fig 7. Bayesian network structure diagram.

https://doi.org/10.1371/journal.pone.0252484.g007

Fig 8. Bayesian network model after learning with Netica software parameters.

https://doi.org/10.1371/journal.pone.0252484.g008
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Table 6. CPT of node Sty.

Sha Fol 1 2 3

1 1 48.038 31.628 20.334

1 2 24.767 36.346 38.887

1 3 50 26.852 23.148

2 1 46.994 19.645 33.361

2 2 23.932 21.176 54.892

2 3 50 10 40

3 1 46.602 10.68 42.718

3 2 14.286 7.143 78.571

3 3 33.333 33.333 33.333

https://doi.org/10.1371/journal.pone.0252484.t006

Table 7. Sensitivity analysis results of node Typ.

Node Mutual Info Percent

Typ 0.96122 100

Lin 0.44593 52.9

Sna 0.10001 12

Qui 0.07685 9.38

Ove 0.02205 2.96

Sha 0.01035 1.48

Fol 0.00977 1.40

Cha 0.00191 0.252

Sty 0.00092 0.128

https://doi.org/10.1371/journal.pone.0252484.t007

Fig 9. Known network changes on rapid acceleration and deceleration.

https://doi.org/10.1371/journal.pone.0252484.g009
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Verification results show that the model is effective for vehicle-based crash risk analysis.

6. Conclusion

Based on the NIGSIM data set, this paper has developed 8 indicators to comprehensively iden-

tify dangerous driving behaviors. Compared with previous studies, this paper considered

Fig 10. Network changes with known risk status.

https://doi.org/10.1371/journal.pone.0252484.g010

Fig 11. Video during normal driving time.

https://doi.org/10.1371/journal.pone.0252484.g011
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Fig 12. Video of the time of risk driving.

https://doi.org/10.1371/journal.pone.0252484.g012

Fig 13. Vehicle operation risks in different time periods.

https://doi.org/10.1371/journal.pone.0252484.g013
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more types of dangerous driving behaviors, which can ensure the safety of vehicle operation

better.

Based on the vehicle kinematics data, PCA algorithm was used for dimensionality reduc-

tion, and improved K-means algorithm was used for driving style classification. Compared

with commonly used questionnaire survey methods, this method has better feasibility and

objectivity.

This paper proposes to use Bayesian network to build a vehicle operation risk assessment

model. Compared with commonly used methods such as fuzzy mathematics and neural net-

work, Bayesian network is more objective and explanatory, and can analyze the correlation

between various factors in depth. Through sensitivity analysis of eight factors, the mutual

information between driving on the line and risk types was the largest, reaching 44.59%. It is

more likely for vehicles to run on the line, which has the greatest impact on the risk types and

is the most sensitive. Through causal inference, when the risk probability is 100%, the safety of

line pressing and snake driving is significantly reduced. Among them, the driving index of

pressing line is in a high risky range, which increases from the initial 24.9% to 64.7%. This

shows that, in the absence of other evidence, the most likely cause of the risk is driving on the

line, which is consistent with the conclusion of sensitivity analysis, thereby providing a

research basis for the prevention of dangerous driving behavior. Once the risk level reaches a

higher level, the model infers the most likely driving behavior that causes the danger based on

the posterior probability, and reminds the driver to respond. Finally, the validity of the model

is tested to verify that the model is effective for vehicle operation risk analysis, so that it pro-

vides a direction for the prevention of dangerous driving behaviors to fundamentally reduce

the driving risk. This article only studied the risk of single-vehicle crashes, and did not com-

prehensively consider the interaction between other motor vehicles, which could be consid-

ered in the subsequent research.
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