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Abstract: Artificial proteins can be constructed from stable substructures, whose stability is encoded
in their protein sequence. Identifying stable protein substructures experimentally is the only available
option at the moment because no suitable method exists to extract this information from a protein
sequence. In previous research, we examined the mechanics of E. coli Hsp70 and found four me-
chanically stable (S class) and three unstable substructures (U class). Of the total 603 residues in the
folded domains of Hsp70, 234 residues belong to one of four mechanically stable substructures, and
369 residues belong to one of three unstable substructures. Here our goal is to develop a machine
learning model to categorize Hsp70 residues using sequence information. We applied three super-
vised methods: logistic regression (LR), random forest, and support vector machine. The LR method
showed the highest accuracy, 0.925, to predict the correct class of a particular residue only when
context-dependent physico-chemical features were included. The cross-validation of the LR model
yielded a prediction accuracy of 0.879 and revealed that most of the misclassified residues lie at the
borders between substructures. We foresee machine learning models being used to identify stable
substructures as candidates for building blocks to engineer new proteins.

Keywords: Hsp70; substructures; physico-chemical features; machine learning

1. Introduction

Stable protein super-assemblies have recently been designed and engineered to form
functional nanodevices such as nano-cages for therapeutic applications [1–4]. To increase
the number and the complexity of these super-assemblies, mechanically stable building
blocks are prerequisites. The stability and structure of the building blocks are fully encoded
in their protein sequence. However, short sequences can form different structures of
different stabilities that are impacted by the presence of other folded substructures, which
suggests a long-range contextual dependence.

Protein folding and stability have been studied for decades, and many crucial theo-
retical concepts and principles have been revealed [5]. Some of the challenges in protein
research have remained, e.g., it is currently not possible to reliably determine whether
substructures of folded proteins will assume a folded form or not when they have been
isolated. For example, a substructure derived from villin headpiece wild-type is unstable
and exists as a random-coil structure, whereas the N68A/K70M variant forms a stable
α-helical substructure [6,7].

In this study, we focus on the dichotomy between mechanically stable and unstable
substructures, which we recently discovered using mechanical force experiments on a
multi-domain Hsp70 protein. In general, predicting the mechanical properties of proteins
and the mechanical stability of protein substructures is very challenging due to the absence
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of a validated conceptual framework. While three-dimensional structures can now be
accurately predicted [8–11], the most precious information about the stability of individual
substructures has yet to be revealed. In the critical assessment of protein structure (CASP)
competition, the main goal is to determine the structure. However, at the moment, the
stability of the substructures can only be predicted with great difficulty, if at all [12]. Due
to high cooperativity between interacting substructures, it is unclear whether a particular
substructure is stable in isolation.

Hence, some of the challenges are inherent to the cooperative nature of substructures
and to the mechanical anisotropy of proteins, which means that the mechanical prop-
erties of proteins are highly dependent on pulling orientation [13–16]. Single-molecule
studies showed that during the unfolding of large proteins, folded protein substructures
are disrupted in distinct and well-defined steps [16–25]. The high reproducibility and
specificity of these microscopic unfolding steps indicates a significant level of cooperativity.
After the unfolding of large proteins, single-molecule force spectroscopy identified several
mechanically stable substructures as folding intermediates or partially folded well-defined
structures that are stable even in the absence of other folded substructures in the rest of
the protein as exemplified by a large number of intermediates in adenylate kinase [18],
DnaK [17,19], Hsp90 [23–25], and calmoduline [26]. Based on detailed mechanical stud-
ies, structural borders of stable intermediates were identified, and, in some cases, the
existence of the partially folded substructures was confirmed independently in isolation
and through biochemical characterization [20]. Such shorter substructures were found
to be autonomously folded domains and their properties were verified by traditional
assays [7,20].

Recently, we conducted a series of single-molecule nanomechanical studies on DnaK,
the Hsp70 chaperone from E. coli [16,17,19,20]. Using laser optical tweezers for mechanical
studies, we examined mechanical properties of both Hsp70 domains: the nucleotide-
binding domain (NBD) and the substrate-binding domain (SBD). In these experiments, we
found that several substructures can fold even in the absence of other folded substructures.
The NBD consists of two stable substructures (S1, S2, Figure 1a)—lobe IIa, a discontinuous
domain that can fold only after lobe IIb, which can fold very quickly. The SBD consists of
two stable substructures (S3, S4, Figure 1a) that belong to a C-terminal helical bundle and a
functional β-core (see also Supplementary Figure S1). These four Hsp70 substructures we
labeled as mechanically stable substructures (S class) to indicate their significant mechanical
stability and these substructures can be classified as autonomously folding units as well.
The stable substructures S2–S4 are separated by three unstable substructures (U1–U3, U
class, Figure 1a). Some of the residues lying at the S/U borders, so they are encompassed
by the different class residues.

Classifying residues that belong to stable protein substructures and hence identifying
them using sequence information would be highly useful when screening protein databases
for stable building blocks. Along this line, our group has identified a stable substructure
and ATP-binding mini-domain that can be easily combined with a subdomain from a
yeast mitochondrial homolog, which yields new chimeric and functional fully folded
proteins [20].

Here we ask whether amino acid residues that are located in mechanically stable or
mechanically unstable substructures can be distinguished based on their physico-chemical
properties. While the physical theories cannot predict stability from sequence information,
a heuristic approach is to apply machine learning methods to generate a model that can
predict with high accuracy. Even though we have successfully developed machine learning
models for Hsp70 protein, there are no limitations to apply our conceptual framework
to any other protein. Now, the major limitation is the availability of experimental data
on internal protein nanomechanics. As the experimental work on protein mechanics
continues, several high-quality experimental datasets can then be used to develop efficient
and accurate machine learning models that reliably predict stable substructures from the
sequence information only.
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Figure 1. Structural and sequence characterization of Hsp70s and their substructures belonging
to U (red) and S (green) classes (see also Supplementary Figure S3). (a) The 3D structure and the
length of substructures are shown in the closed form (2KHO) of E. coli. The protein consists of
three mechanically unstable and four mechanically stable substructures. Substructure S1 is split into
two parts by the inserted domain—the substructure S2. (b) Secondary structure content of α-helix
and β-sheet of S1–S4 and U1–U3 substructures for E. coli DnaK. (c) The number of hydrogen bonds
per amino acid for U/S substructures. (d) Amino acid composition of 205 Hsp70 sequences. The
error bars showed variability of the amino acid composition of Hsp70s. (e) Conserved positions per
amino acid in substructures and absolute numbers of conserved positions for U/S substructures from
MSA. (f) Wu–Kabat variability of 205 Hsp70 sequences obtained from MSA. (g) Averaged variability
of residues in U/S substructures obtained from the MSA of 205 Hsp70 sequences. There are no
significant differences in variabilities between classes.

This paper is divided as follows: First, we present a post hoc structural analysis of
E. coli Hsp70 followed by phylogenetic analysis of 205 Hsp70s. Of these 205, 183 sequences
are bacterial DnaK (including nine paralogs), 12 Hsp70 are from Archea and 10 from
Eukaryota. Second, we focus on unsupervised and supervised machine learning meth-
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ods. To this end, 28 physicochemical features, as well as one-hot encoding, were used
to find informative projections in the principal component analysis (PCA). Substructures
were classified using linear discriminant analysis (LDA). In the first naive approach, we
assumed context-free features and were not able to develop a successful learning model
for classification. To improve our model, a sequence context was included by applying
the moving average algorithm, which uses pre-defined window sizes. Then, LDA and
PCA methods were better able to distinguish between two classes of residues located in
either mechanically stable or unstable substructures. In particular, LDA at relatively large
window sizes was partially successful at distinguishing and classifying the residues into
S/U classes. However, we found that the classification was not robust enough. For more
accurate S/U class prediction, three machine learning models were used: logistic regression
(LR), random forest (RF), and support vector machine (SVM). All these methods were able
to identify and distinguish residues located in stable and unstable substructures at good
accuracy; the logistic regression model performed best, with an accuracy of 0.925 (before
the cross-validation procedure). In the next step, the cross-validation procedure of the
logistic regression model was conducted, and a final accuracy of 0.879 was obtained. We
found that the most of the misclassified residues are located at the borders of the S/U
substructure class.

2. Materials and Methods

For the analysis, E. coli Hsp70 sequence ID sp|P0A6Y8, as well as the set of 205 Hsp70
sequences, was taken from Uniprot/Swissprot database (https://www.uniprot.org/).
One hundred eighty-three of these sequences are bacterial DnaK, including nine paralogs,
twelve Hsp70 from Archea, and ten are eukaryotic Hsp70. Structural analysis was con-
ducted on the closed form of E. coli Hsp 70 (accession PDB code: 2KHO) [27] using Discov-
ery Studio (BIOVIA, Dassault Systèmes, Discovery Studio, San Diego: Dassault Systèmes,
2019). Using this program, we calculated secondary structure content, average number,
and average lengths of intramolecular H-bonds. Sequence alignment was generated using
MEGA X [28] by applying the MUSCLE algorithm [29]. The following settings were used:
gap open: −2.90, gap extension: 0, hydrophobicity multiplier: 1.2, and clustering method:
UPGMA. The sequence identity matrix was calculated after sequence alignment using the
program BioEdit [30]. According to the manual, for each pair of sequences, score values are
calculated as indicated: (i) all positions are pairwise compared, one at a time, (ii) all ‘gap’
or place-holding characters are treated as a gap, (iii) positions where both sequences have a
gap do not contribute (they are not an identity, they do not exist), (iv) positions where there
is a residue in one sequence and a gap in the other do count as a mismatch, (v) reported
number represents the ratio of identities to the length of the longer of the two sequences
after positions, where both sequences contain a gap, are removed.

Wu–Kabat variability values describe the susceptibility of an amino acid position to be
replaced during evolution [31]. It highlights stretches of accentuated amino acid variation.
The value of Wu–Kabat variability is computed using the following equation:

N × k
n

(1)

where N is the number of sequences in the alignment, k is the number of different amino
acids at a given position, and n is the frequency of the most common amino acid at that
position. Wu–Kabat variability values were calculated using Protein Variability Server
(http://imed.med.ucm.es/PVS/). All data analysis, calculations, normalizations, moving
averages, PCA, LDA, and implementation of the supervised models were performed in
the KNIME data analytics tool (https://www.knime.com/). Feature pairwise correlation
was calculated as Pearson correlation coefficient. For data normalization, we used Z-score
normalization, which means that values in each column are Gaussian distributed, i.e., the
mean value is 0 and the standard deviation is 1. The formula for Z-score normalization
is below:

https://www.uniprot.org/
http://imed.med.ucm.es/PVS/
https://www.knime.com/
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value − µ

σ
(2)

The moving average was calculated by the center Gaussian moving average method.
Here vn is the value in the n-th row of the data table in the selected column, and k is the
window size.

Center gaussian =
n

∑
i=0...k−1

(
i, (k − 1)
2, stdev

)
× vn +

(
i − (k − 1)

2

)
(3)

For the Gaussian weighted moving average, individual values are weighted according
to their position in a given window:

stdev =
k − 1

4
(4)

and the weighting factor:

gauss(i, mean, stdev) = exp
(−0.5)×(i−mean)2

stdev2 (5)

Attention was paid to the feature values at the beginning and at the end of the Hsp70
sequence. The first and last values were omitted so that the central value of the moving
average was calculated with the full size of the window. The window size was varied
from 1 to 31 amino acids. For the PC analysis, informative projections were calculated
using Orange [32]. In this approach, for every 2D projection 10 nearest neighbors were
identified. Hence, combinations of pairs of features are found. Next, counting of features
with identical labels provides the score of the projection. The following machine learning
supervised methods were used: logistic regression, random forest, and support vector
machine. In all methods, the values of the attributes were normalized. Regarding the
training and testing set: for each window size, we selected 40 amino acids from the
beginning and 40 amino acids from the end of the Hsp70 sequence for the testing. Hence,
the first 40 amino acids belong to the class of unstable substructures (U1), and the other
40 amino acids belong to the stable substructures S4. The other positions were used as a
training set. In the selection of residues for the training set, we selected residues that are
not affected by the residues used for testing purposes. Because of significant window size
in some cases, training residues may contribute to the features of nearby residues, and
hence they can affect each other. To this end, special care was devoted to select positions
used for training, which depends on the size of the window used for moving average.
Feature selection was performed using a forward feature selection algorithm. It is an
iterative approach, which starts with no feature selected. In each iteration, the feature that
improves the model the most is added to the feature set. Using the final selected feature
set, parameter optimization was then conducted using at least 1000 iterations, and, in the
case of SVM, the brute force method was used. In this method, all possible parameter
combinations of the given learning model (given the intervals and step sizes) are evaluated,
and the best (the highest accuracy) is returned. For LR and RF, the number of iterations was
optimized as well. For SVM, three parameters were optimized: power, bias, and gamma
for polynomial kernel type. Cross-validation ran in 10-folds, and partitions were sampled
randomly. For these partitions, the class distribution has been preserved. A synthetic
set of artificial physicochemical features was created by randomized mixing of values for
individual amino acids only within a given feature (see also Supplementary Materials).
There was no exchange of the amino acid values between different features.

3. Results
3.1. Analysis of the Stable and Unstable Substructures of Hsp70

Hsp70 consists of 638 amino acid residues that belong to either mechanically stable or
unstable protein substructures (Figure 1a)—based on our previous research [16,17,19,20].
For our analysis, we excluded residues 604–638 because they belong to a low-complexity
intrinsically disorder sequence, which differs dramatically from the folded substructures.
The strategies for the identification of low-complexity disordered regions have been pub-
lished [33]. In total, there are three unstable substructures: U1 = lobe I (res. 1–185, NBD),
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U2 = the linker (res. 371–392), and U3 = helix A and part of helix B (res. 506–533),
and there are four stable substructures: S1= lobe IIa (res. 186–228 + 312–371, NBD),
S2 = IIb (res. 229–311, NBD), S3 = β-1-8 (res. 393–505, SBD), and S4 = α-helices B–E (534–603).
When we compare the sizes, the size of unstable substructures is highly variable and varies
from 21 to 185 residues, while the size of stable substructures is more homogeneous and
varies from 70 to 113 amino acid residues. On average, unstable substructures are shorter
than stable substructures.

The mechanical stability of stable and unstable substructures may depend on the
secondary structure content, and therefore, we analyzed the secondary structure content
of the substructures in their full-length folded form (Figure 1b). In this full-length form,
the first initial residues are not resolved; therefore, our analysis started at residue 4. The
analysis of the individual substructures shows that stable substructures have a preference
for β-sheets, while only one out of three unstable substructures contains a significant
amount of β-sheets. Thus, secondary structure preferences can be different between
different classes of U/S substructures, which might be reflected by the different number of
hydrogen bonds.

To follow up on this idea, we have included the analysis of intramolecular hydrogen
bonds in individual substructures (Supplementary Figure S2). The number of hydrogen
bonds per amino acid is slightly lower for U substructures compared to stable substruc-
tures. The lowest number of hydrogen bonds per residue are found for U2 (0.857), followed
by U3 (1.25). On the other hand, S4 showed the highest number of hydrogen bonds per
residue (1.514), likely the result of the helical characters (84.29%) of this substructure. In
principle, the mechanical properties of Hsp70 substructures can have different evolutionary
constraints, which can be deduced from phylogenetic analysis (see also Supplementary
Materials). We collected 205 sequences of Hsp70 mostly from eubacteria and performed
multiple sequence alignment (MSA). The MSA enabled us to have a deeper look at the
average amino acid composition of the substructures, the number of conserved residues
within each substructure, and amino acid variability. In the first step, the average amino
acid composition of the substructures was analyzed (Figure 1d). There are subtle differ-
ences in amino acid composition; for example, Ala is slightly more presented in unstable
substructures (13.94%) than stable substructures (8.15%). On the other hand, it appears that
stable substructures consist slightly more Thr (7.56%) compared to unstable substructures
(3.29%). This is consistent with a statistically higher number of intramolecular hydrogen
bonds per residues for S substructures since Thr contains the OH group that participates
in hydrogen bonding. Next, for each substructure, we analyzed the number of conserved
regions in different substructures (Figure 1e). Because substructures have a different num-
ber of amino acid residues, we calculated the number of conserved residues per single
amino acid residue (CSR/residue). The total number of CSR is indicated in parentheses
(Figure 1e). Substructures U3 and S4 do not have any conserved positions. Substructure S1
has the largest proportion of conserved positions per amino acid (0.18), and also it has the
most conserved positions within the S class overall (14 positions). In the U class, U1 has
the largest proportion of the conserved positions per amino acid (0.117) (24 positions).

On average, stable substructures have a slightly higher number of CSR, with S1 sub-
structure as the highest value for CSR/residue. On the other hand, S4 and U3 substructures,
both located in the SBD, do not have any CSR.

A slightly higher CSR/residue may indicate that stable substructures can have addi-
tional constraints; therefore, we extended our analysis by calculating Wu–Kabat variability
for each residue (Figure 1f). The analysis indicates a similarity between profiles of the
U1 substructures and S1 + S2. There is no clear indication that U class have higher vari-
ability compared to S class. Interestingly, the S4 substructure shows large variability and
large oscillations between the variability of the individual residues. Average variability of
the stable and unstable Hsp70 substructures (Figure 1g) points out a large spread of the
residue variability index for S substructures. It should be emphasized that the analysis
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mentioned above is based on a posteriori knowledge of the mechanical behavior of Hsp70
substructures and no prediction model can be develop yet.

3.2. Sequence Context Is Crucial for the Categorization of Residues within Mechanically Stable and
Unstable Substructures

In the last part, post hoc analysis was performed to find structural and phylogenetic
features by which the individual substructure classes can be distinguished. The approach
identified possible differences between stable and unstable substructures and, hence, at
least in theory, differentiation between substructure classes can be learned based on these
properties. Moreover, we further collected another 28 different physico-chemical features
of all proteinogenic amino acids from the list (Table 1).

Table 1. List of features with their respective ID.

ID Name of Feature

A1 Hydropathicity [34]

A2 Hydrophobicity (delta G1/2 cal) [35]

A3 Hydrophobicity (free energy of transfer to surface in kcal/mole) [36]

A4 Hydrophobicity scale based on the free energy of transfer (kcal/mole) [37]

A5 Hydrophobicity scale (contact energy derived from 3D data [38]

A6 Hydrophobicity scale (pi-r) [39]

A7 Hydration potential (kcal/mole) at 25 ◦C [40]

A8 Hydrophilicity [41]

A9 Average surrounding hydrophobicity [42]

A10 Hydrophobicity scale (pi-r) [43]

A11 Membrane buried helix parameter [44]

A12 Antigenicity value X 10 [45]

A13 Hydrophobicity scale (Contribution to the stability of globular proteins) [46]

A14 Free energy of transfer from inside to the outside of a globular protein [47]

A15 The proportion of residues 95% buried (in 12 proteins) [48]

A16 Mean fractional area loss (f) [average area buried/standard state area] [49]

A17 Hydrophobicity of physiological L-alpha amino acids [50]

A18 Optimized matching hydrophobicity [51]

A19 Normalized consensus hydrophobicity scale [52]

A20 Average flexibility index [53]

A21 The atomic weight ratio [54]

A22 Polarity [55]

A23 Molar fraction (%) of 3220 accessible residues [47]

A24 Refractivity [56]

A25 Average area buried on transfer from standard state to folded protein [49]

A26 Bulkiness [55]

A27 Polarity [54]

A28 Relative mutability of amino acids (Ala = 100) [57]

First, we applied principal component analysis (PCA) to determine whether we can
spot differences between classes (Figure 2a). The Scree plot shows that the first components
already contain most of the variance. Plotting of PC1 (60.94%) and PC2 (14.98%) shows
many overlapping values for stable and unstable substructures with no apparent separation
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between the categories. There is a minor number of points that U and S substructures
differ from each other. To analyze whether it is possible to find a linear combination of
features that separates two mechanically distinct substructures, we performed a linear
discrimination analysis, LDA (Figure 2b). LDA showed only poor performance; however,
slight differences exist that may be utilized for learning approaches consistent with PCA.
Therefore, we applied the logistic regression method to our original data in our next
endeavor and to transformed data from PCA and LDA. The workflow of the analysis is
shown in Figure 2c.

Figure 2. Application of PCA, LDA, and logistic regression methods to classify residues at 1 aa
window size. (a) The PCA method. Eigenvalues of all PCs (left) and the plot (right) of PC1 (60.94% of
total variance) versus PC2 (14.98% of the total variance). (b) Mean differences of dimension values
between U and S classes were obtained by the LDA method. (c) The workflow for predictive machine
learning model using logistic regression method at 1 aa window size. (d) Confusion matrix of logistic
regression prediction using four different data types (raw data, first two PCs, LDA data, one-hot
encoding data).

Before data were used as an input, a correlation filter was applied (see Methods).
For training, all available distributed positions were used for training and. The logistic
regression (LR) was then used primarily because other ML methods yielded similar results,
and as we will demonstrate later, LR has the best performance among other ML methods
such as random forest and support vector machine. To maximize the accuracy of the
LR method, several rounds of parameter optimization were conducted. The results of
this learning method are shown in the form of a confusion matrix (Figure 2d), including
the corresponding Cohen’s kappa value. Cohen’s kappa shows very low values for all
cases, below 0.125 that indicates poor performance. In the same line, the confusion matrix
results show the failure of logistic regression learning to distinguish residues located in
mechanically distinct substructures.

In a previous part, we used physico-chemical features of amino acids, which may not
be optimal for machine learning because different amino acids may have similar physico-
chemical features. We, therefore, applied an approach where each amino acid is uniquely
described by a matrix consisting of 20 columns that have value 1 for identity or zero for
else. The results of this so-called one-hot encoding are shown in Figure 2d. However,
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even for this encoding, there is no learning possible, and Cohen’s kappa value drops to
0. Our findings indicate that LR fails to learn using context-free features, which means
that the developed machine learning model cannot distinguish the residues located in
U or S substructures. To improve the models, we decided to include the local context
of amino acids. The reason is that residues within the individual substructures differ by
their local sequence and consequently by the physico-chemical context. This context can
be approximated by, e.g., using an average moving procedure to calculate a new set of
features that reflect nearby residues.

3.3. Context-Dependent Features Can Be Obtained by the Application of Moving Average

In our initial naïve approach, we considered only individual amino acid properties;
within a polypeptide chain, the physical properties of the individual residues are affected
by the nearby amino acids. Hence, the local chemical context of residues can play a crucial
role in defining that a given substructure will be mechanically stable or not. To include the
local sequence context, a new set of features were re-calculated using the moving average
(MA) procedure that provides a measure of the average local properties for a custom-
defined window’s size. In this algorithm, features of the residues encompassing the central
position were weighted by the central Gaussian method. In the Gaussian method, nearby
amino acids contribute less than distal amino acids (see Methods). The window size defines
the cut-off over which residues are assumed to have zero contribution. MA procedure was
applied for features A1–A19 because the calculated averages have a plausible physical
meaning as local sequence-dependent hydrophobicity. It is physically feasible that for
individual substructures, such calculated hydrophobicity is context-dependent and not
a sole property of individual amino acids. Other features (A20–A28) such as polarity,
refractivity, and mutability were not averaged and considered as not strongly dependent
on a local sequence. As expected, moving average has a significant effect on the feature
variations (Figure 3a). Large oscillations of feature values along the sequence are smoothed,
and each of the positions starts to be context-dependent. Smoothing and averaging of the
A6 and A10 feature values are dependent on window size. The effect of window sizes
on feature values is shown in Figure 3a,b, where the window size was set to 1, 15, and
31 amino acids. In all our further analyses, we limited the maximum value for the window
size to 31. This upper limit is given by the amino acid length limitation of the sequence.
A more extended window size would result in completely neglecting information about
the positions in this shortest substructure. At such large window sizes, residues located in
U3 would not be considered for training or testing purposes. For testing at the window
size 1, N-terminal 40 positions (U class) and 40 C-terminal positions (S class) were used.
For testing at larger window sizes, we kept the total number of trained positions constant.
However, as the window size increased, the moving average was not calculated for the
positions close to the end. To solve this missing end issue, we shifted the positions for
the training set toward protein sequence by the value n-1, where n is the window size.
One crucial point is that hypothetically increasing the window size leads to a smoothing
of individual differences along the sequence and, as a consequence, one would expect
that such smoothing would, even more, reduce the information content of how individual
amino acids relocated in U or S substructures.

However, this is not true. In particular, because the application of moving average
has a profound effect on the overall pairwise correlation between features. Pearsons
correlations between 28 features are shown in Figure 3c. By increasing window size, the
overall correlation among features decreases from 0.61 for 1 aa to 0.42 for 31 aa. The
decrease in the correlation between features results from unequal transformations of
features; A20–A28 did not undergo moving average transformations. The observed loss of
feature correlations can be explained by residues within distinct clusters while hydrophobic
clusters potentiate values of A1–A20 features, the presence of the chemically identical
amino acid at different positions encompassed by the cluster of polar amino acid will lead
to diminishing correlation with A20–A28 features.
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Figure 3. Effect of three different moving average window sizes (1 amino acid (aa), 15 aa, 31 aa) on
feature values. (a,b) Effect of window size 1 aa (grey line), window size 15 aa (red/green dotted
line), and window size 31 aa (red/green full line) on feature A6 and feature A10 values along the
E. coli DnaK sequence. (c) Heat maps showing correlations between features as a function of different
window sizes. Features A20 to A28 characterize the physio-chemical state of a single aa. Their values
and pairwise correlations do not change with window size. Average correlation coefficients are
shown bellows the heat maps. These correlations are the largest between the features at 1 window
size, and the pairwise correlations decrease as the window size increases.

Having a new set of context-dependent features, we applied the PCA method to
question whether MA at a specific window size can provide a possible strategy to categorize
residues within S and U substructures (see also Supplementary Figure S4). Our workflow
consists of the utilization of a new set of amino acid features. Again, a correlation filter
was applied, and highly correlated (r2 more than 0.95) were removed (Supplementary
Table S1, Figure S5). It is important to emphasize that for different window sizes, different
features were selected. After the selection, data were normalized, and PCA was applied,
which yields principal components that can have different informative values. After the
calculation, we found very that the first PCs was not informative in respect class separation.
Informative PC projections were evaluated by the calculating the separation values for
U/S classes.

We found that higher PCs were more informative than the first PCs, even though
the first PCs cover a significant amount of the data variance. For example, for window
size 15, we found that PC18 and PC23 are the most informative projections, while for
window size 31, the projection of PC14 vs. PC17 provides the best separation Figure 4b.
For U and S substructure classes, clusters are visible. However, a significant overlap exists.
Notably, depending on the size of the window used for MA, different PCs are selected,
and we asked whether these different PC share similar features. Loading scores for the PC
components are shown in Figure 4c, and they quantify how the individual features are
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represented in different PCs. Interestingly, even after MA application, features A20–A28
show a progressively smaller but distinct contribution to the PCs with the best informative
projections. The amplitude of the loading score indicates their minor importance for the
separation between categories.

Figure 4. The application of the PCA method on data using feature values at different window sizes.
(a) The workflow for the PCA method. (b) Best informative projections for classification of U/S at
different window sizes. (c) Corresponding loading scores (from PCs in b) for all features used for the
PCA method. Different features were used due to the fact that some of them did not pass through
the correlation filter (see a).

In summary, the PCA method shows low performance in categorizing positions for
the U and S substructure classes, and no clear cluster separation can be found. Using MA
and algorithm for the finding of informative projections, the performance of PCA is slightly
improved but still inefficient for a precise categorization. In the next step, supervised
machine learning methods are applied.

3.4. Linear Discriminant Analysis Can Be Used to Find Differences between the Positions within U
and S Categories

In our previous effort, the performance of the unsupervised PCA method can be
improved by the finding of the informative projection. The result indicates that a small but
significant difference between positions in U and S substructure classes exists. Hence, we
decided to apply LDA to maximize differences between categories.

The workflow consists of identical steps as described before (Figure 5a). Here,
two categories of residues located in U and S substructures are described by 28 features.
The LDA results in n-1 dimension reduction, where n is the number categories, and the



Nanomaterials 2021, 11, 2198 12 of 19

data are represented by a 1D data array that can be used to classify the given residue to U
or S substructure classes. The application of moving average has increased the differences
between categories. The performance of LDA can be visualized by comparing differences
in dimension values for U and S classes, which is shown in Figure 5c. As mentioned earlier,
in the absence of MA, the performance is inferior. This increase shows a roughly linear
dependence on the window size (Figure 5b). For window size 15 and 31 amino acids,
the difference in dimension values for U and S increases, indicating a better classification
of the data. A closer look at eigenvectors for LDA at 31 aa window size is shown in
Figure 5d. Here, the features A20–A28 show values close to zero, indicating their weak
contribution, consistent with loading scores of the informative projections from PCA. The
effect of moving average is a clear benefit for the LDA, and many MA-treated features show
high magnitudes of eigenvector. Among the highest absolute values belong the features
A6 and A10.

Figure 5. The application of the LDA method on data using feature values at different window
sizes. (a) Workflow for the LDA method. (b) LDA mean differences of U and S classes—dimensions
values as a function of window size. LDA difference increases with window size. (c) A closer look
at dimension values at 1, 15, and 31 window size. (d) Eigenvectors values for the features at 31 aa
window size.

3.5. Supervised Machine Learning Models

Based on the improvement of the data classification using the LDA method, we
employed other supervised machine learning models: logistic regression (LR), random
forest (RF), and support vector machine (SVM).

First, we divided our dataset into a training and a testing set. We took 40 amino acids
located at the very N-terminal part (U class) and 40 amino acids from C-terminal part (S
class) for testing. For training, positions were taken at a minimal distance from the border
of the testing positions; the distance is equal to the size of the window used for the MA.
This distance was necessary to eliminate overlap between the values in the train/test sets
and ensure that used positions are genuinely independent.

A naive application of ML models resulted in a coin-flip performance at any window
size and model used, i.e., the accuracy of ca. 0.5–0.56. A more elaborate strategy was
needed to maximize the accuracy, including the feature selection step followed by the
brute force parameter optimization. Specifically, we used the forward feature selection
method, and consistently with our previous results, no improvement could be found for
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context-free features (see also Supplementary Figure S6) and the application of moving
average improved the accuracy. For window size 31, the results of feature selections are
shown in Figure 6b. For LR, the maximum accuracy of 0.925 is found using 22 features (see
Figure 6b, and after parameter optimization 6d). For RF, 0.738 is the maximum accuracy
found using five features. For the SVM, 14 features are the optimum number that yields an
accuracy of 0.875. First, not all features were used for learning by different ML methods;
some features are shared among learning methods, and some features are unique for a
given method (Figure 6c).

Figure 6. The application of supervised ML methods (random forest—RF, support vector machine—
SVM, logistic regression—LR) to data at 31 aa window size. (a) Workflow for the ML methods.
(b) The number of features, inputs for the learning, as a function of the accuracy for U/S prediction
of three ML algorithms using the forward feature selection method. Based on the accuracy criterion,
LR was the best ML method (0.913). Here, the methods are before the parameter optimization.
(c) Selected features for the ML models were chosen based on their usage for the models with the
highest accuracy. Only feature A1 was used in all three models. (d) Models accuracy after features
selections and parameter optimizations at window sizes 1, 15, and 31 aa window size MA. The LR
model showed the best accuracy (0.925).

Only one feature, A1, is presented in all optimized ML methods. Two learning models
shared 14 out of 28 features. Three features were not used in any learning model (A10,
A14, A16).

A high accuracy may be due to overfitting. To assess whether overfitting can be an
issue in our analysis, we calculated Cohen’s kappa, which was reasonably high for all
methods: 0.85 for LR, 0.75 for SVM, and 0.48 for RF. High Cohen’s kappa values for LR
and SVM indicate that we can rule out the overfitting. The high accuracy of different
ML methods for a window size of 31 was further analyzed by reducing the window size
and performing feature selection/parameter optimization rounds. As expected, reducing
window size led to a decrease in the accuracy of the models in all methods (Figure 6d).
Overall, LR slightly outperforms all of the other methods. Therefore, we continue further
with a validation of the LR method. To validate the LR model, we designed a so-called
shuffling test. In this test, we took all 22 features identified in the feature selection process
for the LR model and shuffled the values for individual amino acids within each feature.
Hence, here we would like to estimate how the physico-chemical properties of amino acids
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contribute to the performance of the LR model (Table 2). Namely, amino acids with similar
chemical structures do have similar values of their features. The shuffling of the values
naturally results in a decreased overall correlation between them—from 0.422 to 0.156 for
shuffled data at window size 31. Hence, features used in the shuffled test are much more
unique and more diverse. Using shuffled features, the accuracy of the LR model decreases
to 0.3875 and Cohen´s kappa decreases to −0.225. Such values indicate the very poor
performance of the LR model with shuffled features.

Table 2. Comparison of LR model on real versus synthetic features (see also Supplementary Figure S7).

Set
(Window Size 31 AA) Category Recall Precision F-Measure Accuracy Cohen’s Kappa

Real features

U 0.85 1 0.9189 - -

S 1 0.8696 0.9302 - -

Overall - - - 0.925 0.85

Synthetic
features

U 0.25 0.3448 0.2899 - -

S 0.525 0.4118 0.4615 - -

Overall - - - 0.3875 −0.225

3.6. Cross-Validation of the LR Method

The LR model with 22 features at a window size of 31 amino acids showed the highest
accuracy (0.925), and therefore the LR method was used for cross-validation (see also
Supplementary Table S2). In the cross-validation approach, the size of the test set was
57–58 positions, which were distributed equally between U and S categories. The procedure
was repeated 10 times (10-folds) and we found that the standard deviation of k-fold errors
is 3.63% which indicates a high robostness. After cross-validation, the LR model reached
an accuracy of 0.879 and Cohen´s kappa of 0.741 (Table 3). The precision of the residue
classification was 0.863 and 0.884. The analysis of misidentified positions showed that most
of the misidentified residues were located between the borders of U and S substructures
(Figure 7). In general, there are more misidentified positions in U substructures compared
to positions within S substructures, and more misidentified positions are in the nucleotide-
binding domain of DnaK. In this approach, caution is needed because test/train sets are
not explicitly separated.

Table 3. The statistic of the LR model after cross-validation.

Set
(Window Size 31 AA) Category Recall Precision F-Measure Accuracy Cohen’s Kappa

All positions

U 0.8037 0.8713 0.8361 - -

S 0.9268 0.8844 0.9051 - -

Overall - - - 0.8797 0.7414

We applied cross-validation to other machine learning methods (see Section 3.5). Even
though these approaches had slightly weaker performance, yet they support our overall
concept of learning. Cross-validation statistics are summarized in Supplementary Table S2.
Overall, and for both SVM and RF methods, the residues of the S class showed a higher
F-score indicating a higher accuracy of classification.
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Figure 7. Cross-validation of the LR model on residues in the U/S substructure classes of E. coli
DnaK. (a) The percentage of misidentified positions according to total numbers of the analyzed
positions in U/S classes. Approximately more than 2/3 of all misidentified positions are U-class
positions. (b) The percentage of misidentified positions in NBD and SBD. It shows that ca. 50% of
misidentified positions are in the NBD. (c) The LR model accuracy was visualized on the 3D closed
structure (2KHO) of DnaK E. coli. Non-analyzed positions are in black, and misidentified positions
are turquoise. Misidentified positions are mainly localized on borders between substructures of
different classes.

4. Discussion

Machine learning models have been used to solve biological problems such as pre-
dicting solubility of proteins, targeting subcellular localizations, folding and more [58–63].
In this paper, we develop a machine learning model that utilizes protein sequence infor-
mation, which can classify residues in mechanically stable and unstable substructures.
The best performance was achieved with a logistic regression, which showed the highest
accuracy, 0.922, and a high Cohen’s kappa parameter, 0.85. Two factors were essential for
the development of a successful model.

The first factor is to use physico-chemical parameters of the individual amino acids.
We were not able to develop an accurate machine learning model employing one-hot
encoding, which indicates that the physico-chemical information encoded in amino acids is
crucial. The most significant difference between one-hot encoding versus physico-chemical
parameters is the values for individual amino acids. In one-hot encoding, the values
for individual amino acids are binary: 0 or 1. However, the physico-chemical values for
individual amino acids have a broader range of values. Additionally, the values are not
randomly distributed; instead, chemically similar amino acids tend to be grouped together
and have similar physico-chemical values, which results in grouping amino acids as polar,
charged, hydrophobic, etc. In one-hot encoding, such grouping is not present. Note
that grouping chemically similar amino acids is also observable in evolutionary relations
between amino acids, such as in BLOSUM substitutions matrices. These relations indicate
that an amino acid can easily replace a chemically similar amino acid in a protein sequence.
Successful development of the machine learning model demonstrates that a significant
amount of information is captured in the similarities of the physico-chemical parameters of
amino acids. To test these conclusions, we generated artificial physico-chemical parameters,
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where the values for the individual amino acids were shuffled and hence different amino
acids, some of them highly chemically dissimilar, were grouped. Using these artificial
parameters, we were not able to develop an accurate learning model, which also rules out
overfitting due to a large number of features.

The second factor is to include the local sequence context in the learning, which can be
realized by including the moving average algorithm. In this algorithm, increasing window
sizes improved the performance of our machine learning model. The moving average
window generates locally averaged values and simultaneously provides a unique value
specific to a given residue in the polypeptide chain. Increasing window sizes thus progres-
sively generates unique physico-chemical values that facilitate learning. This approach,
however, has a limitation: the number of non-overlapping positions used for learning and
training sets decreases proportionally. Classifying residues in the short substructures has
an additional intrinsic problem that large window sizes locally average over different sub-
structures eventually over various classes of substructures. We used the moving average
algorithm in unsupervised and supervised methods. In PCA, as an unsupervised method,
the most informative projections (the largest difference between U/S classes) were found
at very high PC numbers (PC14 and PC17—in the case of window size 31), which suggests
that the difference between U/S classes is quite small and presents an only tiny fraction of
the total variance (0.4659% for PC14, and 0.152% for PC17). The progress in the learning is
clearly seen in the LDA (Figure 5); the increase in the difference between the residues in the
S and U class has non-trivial dependence likely due to compensation of the features. Here,
context-dependent features showed the highest impact. Next, three different machine
learning methods, logistic regression, random forest, and support vector machine, were
applied and processed through the several rounds of the feature selection and optimization.
From the three ML methods, logistic regression showed the best performance and an accu-
racy of 0.92. Again, increasing the window size of the moving average up to 30 residues
has improved the accuracy of the predictions.

Next, using the cross-validation procedure, we observed that there are several and
systematic misclassified residues. In particular, misclassified residues around the positions
182–183 can be due to the original assignment of the domain borders; exact borders are
difficult to identify. Hence, misclassified residues must not be truly misclassified and can be
that they are correctly predicted by the model and wrongly assigned by the experimental
results. Cross-validation showed that positions between borders are problematic, possibly
due to the moving average method that includes positions from the S class and vice versa.
We conclude that the U/S classes can be distinguished by their contextual features.

In the SBD, more misclassified residues are likely due to higher variability, as shown
by Wu–Kabat variability analysis. Phylogenetic analysis of Hsp70s showed an increased
Wu–Kabat variability of the SBD compared to the NBD. High variability of the SBD is
independent of the U/S class found in E. coli, which indicates that either (i) mechanical
stability of the given substructure is not evolutionarily conserved for other Hsp70, or (ii) if
it is conserved, then there are no significant sequence restrictions on sequence space for
U/S class. Similarly, for the NBD, there are no differences in variability profiles of the
substructures of U/S class. The absence of evolutionary conservation of the mechanically
stable substructures can be rationalized by the greater importance of the function over the
mechanical stability of individual substructures, given the overall structure is stable enough.
The absence of sequence space restrictions for stable substructures appears less probable.

Here we show that we can classify residues to U/S class at a reasonable accuracy;
however, the model’s capacity is limited to Hsp70, and the number of predicted sub-
structures is low. Predicting mechanically stable structures would be highly beneficial for
protein engineering and design because it would identify stable building blocks needed for
complex structures.

The robustness of our concept is reflected by the results of cross-validation and by
comparison of the different methods used: logistic regression, random forest, and support
vector machine (Supplementary Tables S3–S6). We would like to emphasize that in the
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presented case study, the number of mechanically stable substructures is low, and hence
the algorithm will show a much weaker performance in other cases. The major weakness
of our approach is to take a constant window size as a proxy for a local context, which
is due to a small testing set. Using adaptive window size—as a part of a reinforced
learning algorithm—may provide a more physically realistic approximation of the local
effects. Hence, our approach provides a conceptual framework based on single-molecule
mechanics data, which can be further improved by extending the testing set.

In summary, predicting the mechanical stability of proteins is challenging due to an
insufficient amount of experimental testing data. To speed up the progress, one possibility
would be applying a more targeted approach—massively parallel design synthesis and
testing strategy—to develop robust machine learning models to improve the accuracy and
efficiency of predictions of stable substructures [2].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11092198/s1, Figure S1: DnaK subdomains. Figure S2: Average length of hydrogen bonds
in DnaK from E. coli (pdb: 2KHO). Figure S3: Pairwise sequence identity of Hsp70s based on multiple
sequence alignment. Figure S4: PCA eigenvalues at different window sizes. Figure S5: Correlation
filter for 28 features. Figure S6: Forward feature selection used on three different ML methods at
window size 1 AA and 15 AA. Figure S7: Heat maps of feature correlations for real feature values
and for synthetic feature values at window sizes 1 AA and 31 AA respectively. Table S1: Correlation
filter at different window sizes. Table S2: 10-folds Cross-validation of LR on whole data set. Table S3:
10-folds Cross-validation of SVM on whole data set. Table S4: Statistics of SVM model on whole data
set. Table S5: 10-folds Cross-validation of RF on whole data set. Table S6: Statistics of RF model on
whole data set.
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