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Abstract

As the current worldwide outbreaks of the SARS-CoV-2, it is urgently needed to develop effective therapeutic agents for
inhibiting the pathogens or treating the related diseases. Antimicrobial peptides (AMP) with functional activity against
coronavirus could be a considerable solution, yet there is no research for identifying anti-coronavirus (anti-CoV) peptides
with the computational approach. In this study, we first investigated the physiochemical and compositional properties of the
collected anti-CoV peptides by comparing against three other negative sets: antivirus peptides without anti-CoV function
(antivirus), regular AMP without antivirus functions (non-AVP) and peptides without antimicrobial functions (non-AMP).
Then, we established classifiers for identifying anti-CoV peptides between different negative sets based on random forest.
Imbalanced learning strategies were adopted due to the severe class-imbalance within the datasets. The geometric mean of
the sensitivity and specificity (GMean) under the identification from antivirus, non-AVP and non-AMP reaches 83.07%,
85.51% and 98.82%, respectively. Then, to pursue identifying anti-CoV peptides from broad-spectrum peptides, we designed
a double-stages classifier based on the collected datasets. In the first stage, the classifier characterizes AMPs from regular
peptides. It achieves an area under the receiver operating curve (AUCROC) value of 97.31%. The second stage is to identify
the anti-CoV peptides between the combined negatives of other AMPs. Here, the GMean of evaluation on the independent
test set is 79.42%. The proposed approach is considered as an applicable scheme for assisting the development of novel
anti-CoV peptides. The datasets and source codes used in this study are available at https://github.com/poncey/PreAntiCoV.
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Introduction
Since the outbreaks of the SARS-CoV-2 in 2019, people have
been in a long and laborious struggle with the severe pandemic
[52]. Till now, there is scarcely any effective treatment for the
novel coronavirus. Antimicrobial peptides (AMPs) are a family
of short-amino acid sequences (usually < 100 residues) which
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have potent effects for inhibiting different kinds of pathogens
[33]. The broad-spectrum inhibition of AMPs mainly comes from
their mechanism of actions, which interact with and cause
the disorders of the microbes’ envelopes. It has been reported
that AMPs are also considered as pivotal therapeutic agents
against coronaviruses. For example, [55] reported the P9, a
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subsequence derived from mouse β-defensin, exhibits potent
activity to inhibit the SARS-CoV and MERS-CoV. Another anti-
viral peptide named Mucroporin-M1, which is an analogue pep-
tide of Mucroporin from the venom of scorpion, also manifest
inhibition against SARS-CoV [28]. Lu et al. [31] discovered that
HR2P, a peptide derived from MERS spike protein, can effectively
inhibit MERS-CoV on both fusion and replication. Besides,
certain AMPs, such as RTD-1, can alleviate the syndromes
related to SARS-CoV by regulating the gene expression levels
associated with the innate and adaptive immunity toward viral
antigens [51].

Numerous researches have been devoted to identifying or
designing novel AMPs with different functional activities and
intense selectivity. Computational design can accelerate the
procedure of developing novel AMPs by integrating databases,
computational tools and machine learning [4]. Several databases
have been developed to store the records of experimental-
validated AMPs. For instance, the well-known APD3 database
[48] contains 2747 AMP records and their functional activities,
amino sequences, nomenclature, peptide classification section.
Several recent AMP repositories, such as DRAMP [23] or dbAMP
[22], are devoted to establishing high-throughput storages
of AMPs data with investigating functional activities and
physiochemical properties of massive AMP collections. Besides,
certain databases or datasets like CancerPPD [44], AntiFP [1]
focus on collecting AMPs with particular functional activities.
Notably, the AVPdb [40] dedicated to collect the experimentally
verified antivirus peptides and their functional activity for
inhibition of different virus strains, such as influenza, hepatitis
C virus and SARS-CoV. Based on the AMP records provided
by the databases, various computer-aided automatic tools for
identifying different functional AMPs have been developed. For
example, the AVPpred [43] made the first attempt to predict
the antivirus peptides with amino acid composition (AAC),
physicochemical features and support vector machine. The
AntiCP [2] is developed for predicting novel peptides with
anticancer functions. The iAMPpred [35] utilizes multiple
compositional and physiochemical peptide descriptors and
support vector machines for predicting the functional activities
of AMP, including antibacteria, antivirus and antifungus. The
iAMP-2L [53] presented a two-level multi-label classifier for
not only classifying the AMPs but also identifying their types
of functional activities toward different pathogens including
bacteria, fungus, virus, cancer cells and HIV. The Antimicrobial
Peptide Scanner [47] is designed for recognizing antimicrobial
activities (mainly antibacterial) with deep learning, which
improves the performance of prediction by considering the
primal sequence information and removing the dependence
of domain experts. For the dbAMP database, it integrated
a classifier to predict AMPs with the consideration of the
related sources [12]. The AMPfun [11] made a thorough analysis
and prediction of several functional peptides, especially for
those who are antiparasitic or target-mammals. However, little
attention has been paid to analyze and identify particular virus
strains with a relatively small size of data.

Therefore, in this article, we initiated in a seek to construct
a prediction scheme for identifying novel anti-coronavirus
(anti-CoV) peptides. It is based on investigations with several
individual classifications that tend to distinguish the anti-CoV
peptides from different sets of peptides with broader functional
categories, respectively. They are the set of antivirus peptides
without anti-CoV activity (antivirus), the set of AMPs without
antivirus activities (non-AVP), and the set of peptides without
antimicrobial activities (non-AMP). We also investigated on

identifying anti-CoV peptides from the combined set of different
functional peptides above. There were only a few peptide
sequences found to be active against coronavirus, which causes
imbalance affecting the performance of prediction. Hence, we
employed imbalanced learning strategies for inspecting the
improvement to the prediction outcome. Based on the above
works, a double-stages prediction scheme is proposed for
identifying anti-CoV peptides from a broad-spectrum peptide
set. The result shows that imbalanced learning can handle
the identification of anti-CoV peptide. The proposed approach
provides a solution for identifying peptide with dedicated
antimicrobial function on an imbalanced dataset with relatively
insufficient positive data.

Materials and Methodology
Data collection

As stated above, the collected data can be divided into four sets
according to their functionality: anti-CoV, antivirus, non-AVP
and non-AMP. For the anti-CoV peptide set, 137 sequence records
were collected. One hundred peptides are experimentally
validated data, from which 99 sequence records come from the
AVPdb database [40]. The validated dataset includes reported
potent coronavirus inhibitors, such as P9, Mucroporin-M1
and HR2P. The rest of the sequence records are the putative
functional peptides against coronavirus [38]. Antivirus set (1999
sequence records) and non-AVP set (5217 sequence records) were
obtained from several databases or datasets (AVPdb [40], dbAMP
[22], DRAMP [23], CancerPPD [44], AntiFP [1]), with excluding the
sequences that are redundant with anti-CoV set. The collection
of the non-AMP dataset is prepared by following the similar
procedures from [12, 53]. We first extracted protein sequences
by filtering the annotations of ‘membrane’, ‘toxic,’ ‘secretory,’
‘defensive,’ ‘antibiotic,’ ‘anticancer,’ ‘antiviral’ and ‘antifungal’
properties from Uniprot [14]. To reduce the amount of non-
antimicrobial sequences as well as increase their identities,
we adopted the CD-HIT [29] to remove the redundancy and
sequence homology with 40% threshold. Finally, the non-AMP
dataset is consist of 4979 sequence records. In this article, we
only considered short peptides with sequence length less or
equal to 100.

Sequence encoding and peptide descriptor analysis

To pursue a comprehensive analysis of the discrepancy between
the peptide sets with different functional activities, the AAC,
dipeptide composition (DiC), the composition of k-spaced amino
acid group pairs (CKSAAGP), pseudo amino acid composition
(PAAC) and physicochemical features (PHYC) comprised our
entire peptide descriptors.

Amino acid composition

AAC is a simple peptide descriptor with 20-dimensions. Each
dimension denotes the normalized occurrence of a specific
amino acid in the peptide sequence. Take the amino acid
sequence ’KTCENLADTFRGPCFATSNC’ as an example, the
normalized occurrence of alanine (A) is (Number of A)/(Sequence
Length) = 0.1. At last, all the normalized occurrences of the amino
acid residues were taken as the AAC descriptor.

Dipeptide composition

DiC expands the thoughts of AAC. It calculates the normalized
occurrences of paired amino acids. Hence, the dimension of
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DiC descriptor is 20 × 20 = 400. The example is to retrieve
the occurrence of ’LI’ from the sequence ’LFRLIKSLIKRLVSAFK,
which is (Number of LI) / (Sequence length − 1) = 0.125. At last,
the DiC descriptor takes normalized occurrences of all paired
amino acids.

Composition of k-spaced amino acid group pairs

In order to make the feature set abundant, we adopted the
CKSAAGP descriptor, which is a further extension from the DiC.
The descriptor is a modification of the composition of k-spaced
amino acid pairs (CKSAAP), which was adopted in several studies
of protein prediction [8, 45] as an effective descriptor to represent
the short motifs of the peptide sequence. At first, 20 amino acid
residues are categorized into five groups by their physicochem-
ical properties: aliphatic, aromatic, positive-charged, negative-
charged and uncharged residues. For each of the 52 = 25 amino
acid pairs with grouped annotations, the normalized occur-
rences of the pairs were separated by k-residues. That is, for
example, ‘aliphatic.X.X.aromatic,’ where the ‘X’ denotes any
residues is the occurrence of ‘aliphatic & aromatic’ two-spaced
amino acid pairs. Then, for a peptide with length L, if the k-
spaced residue pair appears n times in the peptide, the occur-
rence is n / (L — (k + 1)). We chose k = 2 due to the restriction of
the shortest peptide length. Finally, the occurrences of 0-spaced,
1-spaced, 2-spaced amino acid group pairs are calculated as the
CKSAAGP descriptor with 25 × 3 = 75 dimensions.

Pseudo amino acid composition

PAAC [10] is claimed as an effective peptide descriptor for resolv-
ing many proteins/amino acid sequences related problems [15,
35, 42, 50]. The regular AAC or DiC barely consider the sequence-
order information. PAAC improves the AAC by introducing a set
of discrete factors for handling the sequence order properties.
Detailed mathematical description for calculating PAAC features
can be found at [24]. There are two key parameters for PAAC: the
discrete counted-rank correlation factor λ, and the weight factor
ω. The resulted PAAC descriptor has 20 + λ dimensions. For larger
ω, the descriptor is more inclined to the sequence order effect.
For the restriction of sequence length and ensure the diversity of
different descriptors, we set λ = 4 and ω = 0.4 as the parameters
of generating PAAC descriptor.

Physicochemical features

We selected eight physiochemical peptide features that are
closely related to the antimicrobial/transmembrane functions,
including isoelectric point (IEP), net charge [5, 6], hydrophobicity
[20], hydrophobic moment [16], transmembrane propensity
[54], Boman index [7], aliphatic index [21] and alpha helical
propensity [27].

In this study, feature selection is based on the hypothesis test.
There is a severe imbalance between the positive and negative
samples within the prediction, which makes the parametric
tests, such as t-test, not employable [41]. Hence, we adopted the
Wilcoxon rank-sum test [18]. It is a non-parametric test that
can handle the imbalance between two groups. For investigating
the importance of different peptide descriptors, as well as the
discrepancy between anti-CoV peptides to different negative
sets, we leave only the significant descriptors with a P-value less
than 0.05 given by the rank-sum test.

Model construction with imbalanced learning

Insufficient samples of anti-CoV peptides lead to a dreadful
class-imbalance within the dataset, which affects the perfor-
mance of classifiers. Models without consideration of imbal-
anced data gravitate toward the majority class and take little
notice of the minority. Thus, we introduced imbalanced learning
[19] to this study. We compared the performance of two different
imbalanced strategies, named NearMiss under-sampling and
balanced random forest.

NearMiss under-sampling

A typical scheme for imbalanced learning is called under-
sampling, which is to equilibrate the size of the dataset by
removing part of samples from the majority class. The difference
between the various under-sampling strategies is in how they
remove majority samples. NearMiss [34] is a family of under-
sampling strategies which choose the samples of majority
class based on their distance to the minority class. There are
three versions for NearMiss. The NearMiss-1 selects the samples
from the majority class that has the lowest average distance to
several nearest-neighbors. In contrast, the NearMiss-2 selects the
majority samples with the smallest average distance to some
farthest-neighbors. In NearMiss-3, the algorithm first retains
the p-nearest-neighbors which belongs to the majority for each
sample of the minority class. Then, for those who retained,
they are furthered selected for which have the largest average
distance to the q-nearest-neighbors belonging to the minority.
We illustrated an example of different NearMiss strategies in
Supplementary Figure S1. In this study, we adopted NearMiss-
3 approach since the version would probably be less affected
by interference within the dataset due to the double-steps
selection. Both p and q are set to 3 for the NearMiss-3 algorithm.
After the NearMiss, predictors are constructed by the resampled
datasets with incorporating the conventional random forest
classifier.

Balanced random forest

Random forest [25] is an ensemble learning algorithm derived
from bootstrap aggregating. It can handle the classification
tasks. The bootstrap aggregating, utilizing the thoughts of
resampling, select a certain number of samples from a given
dataset with replacement. For each time of performing bootstrap
aggregating, the selected samples are used for establishing
a base decision-tree classifier. Finally, the classifier with the
best performance is chosen by majority vote. Based on the
bootstrap aggregating, the random forest also randomly selects
part attributes of the nodes in the decision tree as subsets,
and then select the best attributes from the subsets for
classification. Since the random forest classifier is established
based on combining several base classifiers, it has considerable
robustness to the interference. As increasing the number of
base estimators, classifier tends to converge to a low prediction
error. The balanced random forest makes modification by
performing random under-sampling at bootstrap aggregating.
The conventional under-sampling only considers a particular
strategy, for which the different distribution of the positive/neg-
ative samples could affect the results. For the balanced random
forest, it could combine multiple under-sampling results. Hence,
compared to the conventional under-sampling, it may improve
the performance of prediction by ensemble learning.

With the collected data, for each peptide set with a dedi-
cated function, 70% is divided for training the predictors while

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data


4 Y. Pang et al.

Table 1. Summary of data within the investigated classifications.

Positive class Negative class Training set Test set

(+) (−) (+) (−)

Anti-CoV Antivirus 95 1399 42 600
non-AVP 3746 1566
non-AMP 3485 1494
Antivirus, non-AVP, non-AMP 8535 3660
Antivirus, non-AVP 5050 2166

Anti-CoV, antivirus, non-AVP non-AMP 5145 3485 2208 1494

remaining are utilized for evaluating the prediction outcome. A
summary of the positive and negative dataset for all classifica-
tion investigated in this article is given in Table 1. We adopted
model selection with 5-fold cross-validation on the training set
to obtain the best model with the highest sensitivity.

Evaluation

Under the circumstance of imbalanced learning, the regular
error rate is not capable of evaluating the performance. We use
Sensitivity (SEN), Specificity (SPEC), F2-measure (F2), Geometric
mean (GMean) and Matthew’s correlation coefficient (MCC) to
evaluate the prediction results. Denote TP as the number of true
positives, TN as the number of true negatives, FP as the false
positives, FN as the false negatives, the metrics mentioned above
are defined as follows:

SEN = TP
TP + FN

(1)

SPEC = TN
TN + FP

(2)

F2 = 5 × PREC × SEN
4 × PREC + SEN

(3)

MCC = TP × TN − FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

GMean = √
SEN × SPEC (5)

where the precision score (PREC) is defined as:

PREC = TP
TP + FP

(6)

In this study, the MCC and F2-measure are adopted for com-
parison of different imbalanced learning strategies within the
same investigated task. However, those measurements consider
the negative and positive samples in the same or near weights,
which result in a curse of bias evaluation in the severe label-
imbalance circumstances. For measuring the pragmatic per-
formance of identifying anti-CoV with different negative sets,

sensitivity, specificity and geometric mean are more precise in
consideration of the unbiased evaluation.

There is no apparent class-imbalanced issue within the last
classification in Table 1. Hence, we also give the regular accuracy
(ACC), the precision, and the MCC for evaluation. We also plot
the receiver operating curves (ROC) [17, 49] and calculate the area
under the curves (AUCROC) for assessing the performance of the
balanced prediction and making comparison of the state-of-art
models.

Implementation

The analysis and model construction were implemented at a
server with CentOS Linux 7.6 and python 3.6.10. Some of the
methods were completed based on integrating computational
biology or machine learning packages, which are mentioned
as follows. For peptide sequence encoding, the calculation of
PAAC, CKSAAGP descriptors were executed by the codes within
the iFeature [9]; in the eight physiochemical features, IEP and
net charge were calculated by the Biopython 1.75 [13] and the
remaining were implemented by the modlAMP 4.1.2 [37]. For
the classification, we applied the random forest classifier by the
scikit-learn 0.22.1 [39]; the two imbalanced learning strategies
were executed with imbalanced learn 0.6.2 [26].

Results
Investigations on sequence-based descriptors
of different functional AMPs

The distribution of amino acid sequence length among four
different sets of peptides is shown in Figure 1. AMPs tend to
have shorter amino acid sequences than non-AMPs. There is no
significant difference in the length distribution among AMPs, yet
the antivirus peptide sequences (not include anti-CoV) are con-
centrated in < 20 amino acids length. Besides, the sources and
targets of the collected anti-CoV sequence records are shown in
Supplementary Figure S2. Dimensional reduction with t-SNE [46]
is performed to inspect the distribution under different source or
target domains.

The bar chart of mean AACs among different sets of pep-
tides is given in Figure 2. Amino acids are categorized into five
groups by their chemical properties [30]. It is illustrated that
the acidic amino acids of non-AMPs, including aspartic acid (D)
and glutamic acid (E), are more than those of AMPs. For alkaline
amino acids, including arginine (R), histidine (H), and lysine (K),
those of the non-AMPs are less than those of the antiviruses and
non-AVPs, but more than the anti-CoVs. The asparagine (N) and
arginine (R) of anti-CoVs differ slightly from those of the others.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
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Table 2. Summary (mean ± SD) of eight physiochemical features, significant features apart from anti-CoV are marked as ‘∗’

PHYC features Anti-CoV Antivirus Non-AVP Non-AMP

IEP 7.03 ± 2.421 7.75 ± 2.703∗ 9.34 ± 1.882∗ 7.60 ± 2.374∗
Net charge −0.04 ± 3.312 0.98 ± 3.074∗ 4.14 ± 4.419∗ 1.01 ± 6.771
Hydrophobic moment 0.25 ± 0.137 0.25 ± 0.169 0.26 ± 0.185 0.12 ± 0.065∗
Hydrophobicity −0.06 ± 0.404 −0.04 ± 0.537 −0.01 ± 0.458 0.11 ± 0.332∗
Transmembrane propensity −0.43 ± 0.374 −0.44 ± 0.494 −0.44 ± 0.476 −0.55 ± 0.305∗
Alpha helical propensity 1.02 ± 0.068 1.03 ± 0.083 1.02 ± 0.079 1.04 ± 0.049∗
Aliphatic index 90.47 ± 34.571 87.66 ± 45.079 86.72 ± 46.392∗ 82.09 ± 23.219∗
Boman index 1.43 ± 1.120 1.47 ± 1.714 1.29 ± 1.653 1.82 ± 0.874∗

Figure 1. The distribution of amino acid sequence length among four different

sets of peptides.

We made three investigations that distinguish anti-CoV pep-
tides from a peptide set with dedicated function (anti-CoV ver-
sus antivirus, anti-CoV versus non-AVP, anti-CoV versus non-
AMP). For each investigation, we selected the significant features
between anti-CoVs and each of the negative sets by 0.05 P-
value threshold of the Wilcoxon rank-sum test. Feature selec-
tions are conducted on the training sets only. The summary of
physiochemical features is presented in Table 2. Supplementary
Table S1 tabulated the P-values of physiochemical features under
different investigated classifications. Isoelectric point and net
charge of anti-CoVs tend to differ from those of the antiviruses
and non-AVPs. The aliphatic index also has a difference between
the anti-CoVs and non-AVPs. All physiochemical features except
for net charge have a significant difference between anti-CoVs
and non-AMPs. The number of distinct physiochemical fea-
tures conforms to the intuition of their discrepancies: peptides
with anti-CoV function shared similar physiochemical proper-
ties with antiviruses/non-AVP peptides. The anti-CoV peptides
tend to have a similar mode of actions to the antivirus peptides
or regular AMPs.

The summary of the feature importance of different peptide
descriptors under the rank-sum results of three investigations
is illustrated in Figure 3. The number of selected features within
different descriptor categories are tabulated in Supplementary
Table S2. The negative-logarithmic P-value can represent the
importance of each feature. It is observed that the negative-
log P-value under anti-CoV versus non-AMP can reach up to >

40. The same indexes under anti-CoV versus non-AVP and anti-
CoV versus antivirus are < 20 and < 15. The overall negative-
logarithmic P-value also confirms their different discrepancies
to the anti-CoV.

The peptide descriptors present different importance and
influence on each of the different investigations. It is observed
that the relative proportion of selected PAAC after the rank-sum
ranks high under each of the three comparisons, while many
selected PAAC features have high negative-log p-value under
the rank-sum of antivirus and non-AMP. For physiochemical
features, relative proportion after the rank-sum is low for
the antivirus and non-AVP, but high in the case of non-AMP.
Nonetheless, two of the physiochemical features, isoelectric
point and net charge rank the highest negative-log P-value in
the non-AVP case. The DiC has the lowest relative ratio after the
feature selection, yet the remaining features still compose the
most in the descriptor set. It is observed that the AAC might
be an informative descriptor for distinguishing the anti-CoV
peptide from AMPs without antivirus function since the relative
proportion of the descriptor ranks the highest. Besides, the
number of selected AAC features ranks under the non-AVP is
more than that of the antivirus and non-AMP. For CKSAAGP,
relative ratio after rank-sum is not much as the AAC and PAAC
under each investigation, yet part of the features still gives a
high negative-log P-values, especially within the non-AVP case.

Performance analysis of identifying anti-CoV peptides
from different peptide sets

One of the strategies for identifying functional peptides is to
directly distinguish it from a set of peptides with other ded-
icated characteristics. Hence, the classifier should be built on
a positive dataset comprised of the anti-CoV peptides and a
negative dataset. The critical issue is to decide an appropri-
ate negative dataset, which should be representative to agree
with a pragmatic identification. In this section, we established
several classifiers with different negative datasets for identi-
fying anti-CoV peptides. We considered four negative datasets
here: antivirus peptides without anti-CoV function, peptides
with various antimicrobial functions except for antivirus (non-
AVP), regular peptides without any microbial functions (non-
AMP) and the combination of three together (All-Neg). Due to the
class-imbalance, all the classifiers are built based on imbalanced
learning algorithms. Here, we made a comparative analysis of
two different imbalanced learning strategies: NearMiss under-
sampling and balanced random forest. Tables 3–5 present the
performances of the predictions constructed by anti-CoV and
three other individual sets: antivirus, non-AVP and non-AMP. We
also assessed the predictions built with features selected by the
rank-sum test.

Anti-CoV versus antivirus

For the identification of anti-CoV peptides from normal
antivirus, the performance achieved 78.57% sensitivity at the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
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Figure 2. Mean AAC of different sets of peptides. The amino acids are categorized by their physiochemical features.

Figure 3. Summarized feature importance of three investigations. For each investigation, (A) is the absolute proportions of different descriptors after rank-sum; (B)

ranks the ratio of selected features relative to their dimension of the descriptors before rank-sum (C) depicts the top-100 features ranked by their negative logarithm

of the P-value.

Table 3. Performance of the predictions under anti-CoV versus antivirus

ML approach Rank-sum SEN(%) SPEC(%) GMean(%) F2(%) MCC(%)

NearMiss+RF No 80.95 57.83 68.42 37.36 19.29
Yes 78.57 87.83 83.07 60.22 44.22

Balanced RF No 78.57 84.33 81.40 55.93 39.05
Yes 76.19 84.17 80.08 54.24 37.46

random forest classifier with NearMiss under-sampling and
feature selection. For the same machine learning approach
without feature selection, however, the low specificity suggests

that it failed to predict the antivirus samples. The performances
under whether adopting feature selection tend to be closer to
each other under the balanced random forest, though their
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Table 4. Performance of the predictions under anti-CoV versus non-AVP

ML approach Rank-sum SEN(%) SPEC(%) GMean(%) F2(%) MCC(%)

NearMiss + RF No 85.71 79.18 82.38 33.96 24.78
Yes 80.95 80.97 80.96 34.00 24.40

Balanced RF No 85.71 85.31 85.51 41.47 30.49
Yes 76.19 84.61 80.29 36.28 25.83

Table 5. Performance of the predictions under anti-CoV versus non-AMP

ML approach Rank-sum SEN(%) SPEC(%) GMean(%) F2(%) MCC(%)

NearMiss + RF No 100 96.99 98.48 82.35 68.43
Yes 100 97.66 98.82 85.71 72.98

Balanced RF No 100 95.78 97.87 76.92 61.90
Yes 100 94.78 97.35 72.92 57.60

Figure 4. Framework of the proposed scheme for computational-assisted anti-

CoV peptide design.

accuracies are slightly lower than the NearMiss approach. We
also attempted to search for the common subsequences of the
collected anti-CoV peptides by MEME [3] and compared to the
common subsequences of the regular antivirus peptides. The
results are shown in Supplementary Figure S3. Several functional
motifs identified in Supplementary Figure S3(a) may be related
to some specific anti-CoV mode of actions. Moreover, there is
no similarity of obtained sequence motifs between the anti-CoV
and antivirus, which suggests the feasibility of distinguishing
between each other.

Anti-CoV versus non-AVP

All performance metrics achieve the best level under the bal-
anced random forest with all the peptide descriptors. Perfor-
mances of feature selection are closed to those of all-descriptors
prediction with observed about 80% sensitivity, specificity, and
geometric mean, which indicates that the selected features are
capable of capturing the discrepancies between anti-CoV pep-
tides and the non-antivirus AMP. Note that the F2 and MCC are
low here. It is because of the drastic imbalance within the dataset
(42 positives, 1566 negatives). The number of negative samples
increase the false negatives and affects the precision.

Anti-CoV versus non-AMP

It is observed that the specificity and geometric mean is >94%
for each of the four approaches. All methods achieve 100%

sensitivities, indicated that all anti-CoV peptides are success-
fully identified from non-AMP. The performance reached the
highest level under the NearMiss with random forest and feature
selection.

The result of the predictions above also concurs with the
different discrepancies between the anti-CoV peptides and three
other different types of peptides. Classifiers reached superior
performance under the circumstance of anti-CoV and non-AMP
due to the significant disparity between two classes. Classifiers
could not identify the anti-CoV peptides as well from antivirus
and non-AVP since the peptides share similar physiochemical
properties among different sets. Besides, the overall sensitivities
under anti-CoV versus antivirus are lower than those versus
non-AVP, which indicates that classifiers are more capable of
predicting the anti-CoV peptides from non-AVP, rather than the
antivirus. It is in accordance with that anti-CoV peptides share
the most physicochemical properties with antivirus peptides.

Anti-CoV versus all-Neg

The above predictors investigated are focus on identifying anti-
CoV peptides from another peptide set with dedicated functions.
They may be employable for some specific circumstances (e.g.
identifying the capability of eliminating coronavirus for a pep-
tide with known antivirus function). Nonetheless, they may fail
to correctly predict an anti-CoV peptide from a set composed
of different functional peptides. To develop a comprehensive
predictor that recognizes the anti-CoV peptides from broad-
spectrum amino acid sequences, we first attempt to construct
the negative dataset that combined antiviral, non-AVP and non-
AMP for prediction. The results of the predictions are shown in
Table 6. The balanced random forest with all peptide descriptors
achieves the best geometric mean, while NearMiss with random
forest and feature extraction achieves the best specificity, F2

and MCC. Then, we also investigated the classification errors
under different subnegative classes. Subclass specificity, true
negatives and false positives of NearMiss with random forest
and balanced random forest are presented in Supplementary
Table S3. Although the total specificity can reach >80%, all
the predictors failed to classify antivirus peptides. Most of the
subclass specificity of antivirus dropped to <60%, especially for
the NearMiss with random forest under entire feature set, which
has the highest sensitivity for predicting anti-CoV but only 32%
specificity for antivirus. The failure of predicting antivirus pep-
tides might cause by the relatively small data size of antivirus

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
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Table 6. Performance of predictions under anti-CoV versus all-negative combined set

ML approach Rank-sum SEN(%) SPEC(%) GMean(%) F2(%) MCC(%)

NearMiss + RF No 88.10 75.98 81.82 17.07 15.73
Yes 76.19 88.01 81.89 25.04 20.40

Balanced RF No 85.71 81.64 83.65 20.55 18.14
Yes 80.95 79.75 80.35 18.03 15.80

Table 7. Performance of the first-stage characterization

Rank-sum ACC(%) SEN(%) SPEC(%) PREC(%) MCC(%) AUCROC(%)

No 91.19 91.26 91.1 93.81 81.87 97.31
Yes 91.33 91.17 91.57 94.11 82.18 97.21

Table 8. Performance of the second-stage identification

ML approach Rank-sum SEN(%) SPEC(%) GMean(%) F2(%) MCC(%)

NearMiss + RF No 83.33 71.14 77.00 17.07 16.26
Yes 73.81 74.28 74.05 25.04 14.86

Balanced RF No 73.81 85.46 79.42 20.55 22.27
Yes 71.43 80.70 75.92 18.03 17.71

compared to other negative sets, and their similarity to the
anti-CoV peptides.

Moreover, we also perform all the classifications above under
random forest without imbalanced learning approach (default
strategy). The resulting sensitivities are shown in Supplemen-
tary Table S6. It is observed that the classifiers without imbal-
anced learning failed to predict the positive samples. It is the
imbalanced learning strategies that relieve the error of predict-
ing anti-CoV peptides.

Double-stages classifier for identifying anti-CoV
peptides from broad-spectrum peptides

To relieve the biased results of broad-spectrum prediction, we
adopted a double-stages classification scheme. The first stage is
to characterize the AMPs, which use the combined set of anti-
CoV, antivirus and non-AVP set as the positive dataset, non-AMP
as the negative dataset. The second stage classifier identifies
the anti-CoV peptides from AMPs, which use the anti-CoV as the
positive set. The negative dataset in the second-stage classifier
is comprised of antivirus and non-AVP.

First-stage characterization

Since the prediction task here does not suffer from class-
imbalance, we adopted the random forest classier without
imbalanced learning. We also evaluate the performance of
the prediction under the feature selection. The results of
the classifier on the test dataset are shown in Table 7. It is
observed that the regular accuracy, sensitivity and specificity
are >91%, precision is >93%, MCC is >81% for the random forest
classifier in this task. Subclasses true positives, false negatives
and sensitivities for the characterization are tabulated in
Supplementary Table S4. Sensitivities of anti-CoV and antivirus
reached >96%, while that of non-AVP is about 89%. The predictor
has an excellent capability of characterizing the AMPs with
and without feature selection. For the first-stage classification,
the classifier is designed for distinguishing between regular

peptides and peptides with antimicrobial functions, including
anti-CoV, regular antivirus and other AMPs. Hence, we made
a comparison with state-of-art AMP predictors. The proposed
classifiers achieve the best performance with the highest
AUCROC scores, with 97.31% under the normal (entire feature
set) and 97.21% under the rank-sum. The receiver operating
curves for different classifiers are given in Supplementary Figure
S4(a). Supplementary Figure S4(b-e) shows the sensitivities
of the anti-CoV, antivirus and non-AVP test sets and the
specificities of the non-AMP test set. It is observed that the
performances of dbAMP-integrated predictor [12] and AMPfun
[11] bias toward positive samples and have low specificities in
predicting regular peptides. The iAMP-2L [53] has high specificity
but low sensitivities for positive subclasses. The APScanner
[47] performs well at only non-AVP test set, considering that
it mainly focuses on the prediction of antibacterial peptides.
Our proposed classifiers have more balanced results toward
both AMPs and regular peptides, and they are the most suitable
preclassification models for this study. Besides, the paired
scatter plot of the eight physiochemical features for comparing
the positive/negative sets in the first-stage characterization
is shown in Supplementary Figure S5. It is observed that the
physiochemical properties of the AMPs are quite different from
the regular peptides.

Second-stage identification

Classifiers in the second-stage identification are applied the
same imbalanced learning strategies as the mentioned individ-
ual classifications. Performances under the feature selection are
also evaluated. The evaluation results of classifiers on the test
dataset is presented in Table 8. The sensitivity of predicting anti-
CoV is about 71–84%, which are lower than those of the predic-
tion with combined negatives. This is because of the difficulty of
recognizing the anti-CoV peptides from a peptide set with simi-
lar physiochemical properties. We summarized subclass perfor-
mances of the near-miss with random forest and the balanced

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa423#supplementary-data
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random forest in Supplementary Table S5. Although the near-
miss with random forest classifier without feature selection has
the highest 83.33% sensitivity for predicting anti-CoV, it failed to
classify the antivirus. The highest overall/subclass specificity is
achieved by the balanced random forest without feature selec-
tion. It tends to be more unbiased for the prediction of each class
than the combined-negative classification.

Besides, we also give the resulting sensitivity without imbal-
anced learning approach in Supplementary Table S6. The default
classifier also failed to identify the anti-CoV peptides, which
implicates the necessity of employing imbalanced learning.

Conclusion
On the basis of the above works, we provide an integrated
approach for pragmatically assisting the design of anti-CoV
peptides, which is illustrated in Figure 4. For a given peptide, the
major prediction uses the double-stages classification scheme
to decide the anti-CoV function. Simultaneously, the auxiliary
prediction use three investigated classifiers to measure how it
is distinguished from different negative sets if considering the
given peptide as an anti-CoV peptide. Moreover, an example of
applying the approach for predicting anti-CoV peptides with a
sequence record from the anti-CoV test set is given in Supple-
mentary Figure S6. We also use the SHAP explainer [32] to make
an attempt for interpreting the prediction result of the anti-CoV
peptide characterization.

AMPs are potential therapeutic agents for treating the infec-
tions of coronavirus. Computational models for identifying anti-
CoV peptides can accelerate the development of these novel drug
candidates [36]. In this study, we first investigated several clas-
sifications for identifying the anti-CoV peptides from three pep-
tide sets with different functional activities and their combina-
tion. Among them, some of the compositional and physiochem-
ical features are highlighted as having significant difference
for which might be a considerable descriptor for distinguishing
the anti-CoV peptides. Besides, the descriptors can reveal the
discrepancies from anti-CoV peptides to other functional amino
acid sequences. Due to the drastic class-imbalance of prediction
tasks, classifications are based on imbalanced learning strate-
gies. The developed classifiers have shown their capabilities for
identifying the anti-CoV peptides from certain broad categories
of functional peptides, which may be applicable for some cir-
cumstances of identifying novel anti-CoV peptides. The accu-
racies of different classifiers are affected by the discrepancies
between the different positive/negative sets. For distinguish-
ing anti-CoV peptides from the combined datasets, classifier
failed to correctly predict the regular antivirus peptides with low
specificity. Then, for the purpose of making the classification
capable of identifying anti-CoV peptides from broad-spectrum
amino acid sequences with a balanced accuracy, we developed
a double-stages classification scheme. The proposed scheme
relives the prediction error of regular antivirus peptides within
the negative sets, although there is a tradeoff of sacrificing cer-
tain performance at the positive prediction. In brief, each of the
classification proposed in this study has its inclination of predic-
tion. In pragmatic tasks for identifying novel anti-CoV peptides,
users can adopt a specific classification scheme by their definite
intention. The proposed study succeeds in an attempt to make
identification for dedicated functional peptides with small size
of data. Nevertheless, with developing more amounts of peptides
with validated anti-CoV function, there are more prospects of
machine-learning-aided identification of anti-CoV peptides or
effective therapeutic agents for other particular virus strains.

Key Points
• The proposed approach investigated the physiochem-

ical and compositional properties of anti-coronavirus
peptides (anti-CoV) by comparing with other peptide
sets of different functional activities: antivirus pep-
tides without anti-coronavirus functions (antivirus);
antimicrobial peptides without antivirus functions
(non-AVP); and regular non-antimicrobial peptides
(non-AMP).

• Based on the investigations, we conducted ML-based
classification to identify the anti-coronavirus peptides
from other peptides sets. Samples of anti-coronavirus
peptides are relatively deficient. Hence, we adopted
the imbalanced learning strategies to relieve the curse
of class-imbalance.

• By integrating above works, we established a double-
stages classification scheme for predicting anti-
coronavirus peptides from broad-spectrum peptide
sets. The results show that computational methods
are capable for identifying anti-coronavirus peptides.
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