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INTRODUCTION

Found in >80% of newly diagnosed patients, osteolytic
bone disease is one of the most debilitating manifestations
of myeloma.(1) It dramatically impacts patient quality of
life through severe pain, fractures, and spinal cord com-
pression, with resulting neurological pathologies. The se-
verity of myeloma bone disease is reflected in the fact that
40–60% of patients suffer from a bone fracture during the
course of their disease, higher than that of other major
cancers that metastasize to bone (e.g., breast and prostate
cancer).(2,3) Bone destruction also releases factors that
drive tumor growth, further stimulating disease pro-
gression.(4) Thus, it is not surprising that high levels of
tumor-induced bone resorption is a strong indicator of
poor overall survival of myeloma patients.(5)

Although advances in the understanding of myeloma
bone disease have led to promising new therapies, impor-
tant questions linger. Bone loss in myeloma results from
the uncoupling of the mechanisms that control normal
bone degradation and bone formation. Overall, myeloma-
related bone disease results from the systemic acceleration
of bone turnover together with local suppression of oste-
oblast activity.(6) Early in myeloma progression, there is an
elevation of both bone-degrading (osteoclast) and bone-
forming (osteoblast) activity. However, as the disease
progresses, osteoblast activity is suppressed, shifting the
balance to a net increase in bone loss.(7) Although wide-
spread systemic bone loss in myeloma patients occurs, the
most dramatic manifestation is the focal lesions that appear
as ‘‘holes’’ on X-rays. This results from local suppression of
osteoblasts by myeloma cells leaving only osteoclasts,
which, in the absence of osteoblast activity, damage bone
beyond repair. In contrast, in the small minority of patients
that do not exhibit lytic bone disease, the osteoblasts ad-
jacent to myeloma tumor cells remain active. This review
focuses on the mechanisms that are responsible for bone
loss in myeloma with emphasis on stimulation of osteo-
clastogenesis and inhibition of osteoblastogenesis. Also
included is a brief description of how myeloma bone

disease is diagnosed and a summary of current treatments
for preserving bone in patients with this cancer.

HYPERSTIMULATION OF
OSTEOCLASTOGENESIS

In myeloma, osteoclasts are hyperstimulated pre-
dominantly because of dysregulation of three TNF family
members: RANK, its ligand (RANKL), and osteoprote-
gerin (OPG). The binding of RANKL to RANK that is
present on the surface of myeloid precursors is needed for
differentiation of the precursors into osteoclasts. The ac-
tivation of RANK is antagonized when soluble OPG binds
to RANKL, thereby preventing RANKL activation of
RANK. This dampens the rate of osteoclastogenesis. In
normal bone, the RANK/RANKL/OPG system works in
concert to balance bone turnover and maintain normal
homeostasis. In myeloma, both the tumor cells and the
bone marrow stromal cells can produce osteoclast-
activating factors, thereby shifting the balance toward en-
hanced osteoclastogenesis and bone destruction. This often
occurs within the local tumor microenvironment where
osteoclast numbers are seen to be elevated in areas adja-
cent to myeloma tumor cells. RANKL production is ele-
vated in the bone marrow stroma in myeloma, and in
addition, the tumor cells can also express RANKL(8–13) (Fig.
1). High expression levels of membrane-associated RANKL
on myeloma cells has been correlated with the presence of
multiple bone lesions in myeloma patients.(12,13) In addition,
the membrane form of RANKL can be released by pro-
teases. This released, soluble form of RANKL can diffuse
away from the local tumor environment to promote wide-
spread osteoclast activation, thereby contributing to sys-
temic bone loss in myeloma.(14) Interestingly, although
myeloma cells do not produce OPG, they can diminish the
effect that OPG has on inhibiting osteoclastogenesis. This
occurs when the heparan sulfate proteoglycan syndecan-1
on the surface of myeloma cells binds to OPG, leading to
internalization and degradation of the OPG.(15) Because
syndecan-1 is expressed at high levels on most myeloma
tumor cells, the binding and degradation of OPG may be
a substantial contributor to the bone-degrading phenotype
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of myeloma. Moreover, clipping of the heparan sulfate
chains of syndecan-1 by heparanase is associated with in-
creased syndecan-1 shedding, MMP-9 and VEGF expres-
sion, and elevated angiogenesis, events that may also fuel
osteolysis.(16–18) This is consistent with a reported positive
correlation between MMP-9 and VEGF levels and bone
lesion score in myeloma patients.(19)

A number of other effectors have been shown to im-
pact osteolysis including MIP-1a, MIP-1b, SDF-1a/
CXCR4, IL-3, IL-6, IL-11, and hepatocyte growth factor.
Of these, MIP-1a has emerged as a major mediator of
myeloma bone destruction. This chemokine is produced by
myeloma cells and promotes osteoclastogenesis, and its
presence at high levels within the serum of myeloma pa-
tients correlates with extensive bone disease and poor
survival.(20–23) Gene array profiling indicates that MIP-1a

is the gene that is most highly correlated with osteolysis in
myeloma patients.(24) Although the mechanisms of MIP-
1a–stimulated osteoclastogenesis remain unclear, the
finding that RANK knockout mice fail to show enhanced
osteoclast formation in calvariae treated with MIP-1a

suggests that this chemokine may act through modulation
of RANKL.(25) However, another study concluded that
MIP-1a increases osteoclastogenesis independently of
RANKL.(21) Nonetheless, an important role for MIP-1a in
myeloma bone disease has been confirmed by studies in
animal models showing that inhibition of MIP-1a expres-
sion or blocking its function with antibodies significantly
inhibited osteolysis and tumor burden.(26,27)

In addition to osteoclast-mediated destruction of
bone, some tumor cells may have the capacity to directly
degrade bone. It was discovered many years ago that

murine plasmacytoma cells can directly degrade bone in
the absence of osteoclasts.(28) More recently, it was shown
that some human myeloma cells acquire the functional
properties of osteoclasts and degrade bone.(29–31) The
ability of tumor cells to directly degrade bone was found to
correlate with expression of avb3 integrin, and silencing of
b3 integrin inhibited the osteolysis in vitro.(32) This sug-
gests that avb3 integrin on myeloma cells, in addition to
enhancing myeloma cell invasiveness,(33) may also facilitate
osteolysis. It will be important to learn more about direct
tumor cell destruction of bone to better assess the effec-
tiveness of therapies directed toward inhibiting osteoclast-
mediated bone destruction.

Hyperstimulation of osteoclasts in addition to pro-
moting bone destruction also helps drive further tumor
progression. Cell–cell contact between myeloma tumor
cells and osteoclasts causes release of factors such as IL-6
and osteopontin that support myeloma growth.(9,20) Oste-
oclasts also release angiogenic factors (including osteo-
pontin) that work in concert with other bone marrow
factors to enhance angiogenesis.(34) This link between bone
turnover and angiogenesis may be one reason that mye-
loma presents as such a highly angiogenic disease and may
also explain the high rate of relapse and chemoresistance
characteristic of myeloma.

INHIBITION OF OSTEOBLAST
DIFFERENTIATION

Bone formation requires proper differentiation of
bone marrow mesenchymal stem cells into osteoblasts,

FIG. 1. Mechanisms of myeloma-mediated bone destruction. The cartoon depicts a myeloma lesion and the events that occur, leading to
formation of an osteolytic lesion. (1) Myeloma cells secrete DKK1 and FRP2 that inhibit Wnt pathway signaling, thus blocking
osteoblastogenesis. (2) RANKL (blue triangles) expression on the surface of osteoblasts and bone marrow stromal cells is elevated, and
expression of OPG (orange circles) is suppressed. In addition, OPG binds to syndecan-1 on the surface of myeloma cells and is
internalized and degraded further shifting the balance toward osteoclastogenesis. (3) Myeloma cells express high levels of either cell
surface or soluble RANKL. (4) The high levels of RANKL in the lesion lead to hyperstimulation of myeloid precursor differentiation
into osteoclasts. Once mature, the osteoclasts degrade bone and release factors (green triangles) that stimulate myeloma growth. The net
effect of these processes is extensive loss of bone at sites of myeloma foci leading to radiologically identifiable osteolytic lesions as shown
in the X-ray on the right (arrow points to lesion).
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a process that is dependent on the canonical wingless
(Wnt) signaling pathway.(35) Signaling occurs when Wnt
binds to receptors on the cell surface, leading to stabiliza-
tion of b-catenin in the cell cytoplasm. b-catenin is trans-
located to the nucleus and stimulates expression of target
genes that drive differentiation of the cells into osteo-
blasts.(36) Enhancement of Wnt signaling by lithium chlo-
ride treatment or by overexpression of Wnt3a in bone
inhibited bone destruction and reduced tumor burden in
a murine models of myeloma.(37,38) Myeloma cells interfere
with Wnt-mediated bone formation by secreting DKK-1,
a protein that binds to Wnt receptors and competes with
Wnt binding to its receptor (Fig. 1). Interestingly, in ad-
dition to inhibiting osteoblast differentiation, DKK-1 can
also facilitate osteoclastogenesis by enhancing RANKL/
RANK and macrophage-colony stimulating factor (M-
CSF)/c-Fms interactions.(39,40) Indeed, the ratios of
RANKL/OPG in myeloma patients correlate with the ex-
tent of bone disease and predict survival.(41,42) DKK-1 is
elevated in the bone marrow and blood of myeloma pa-
tients with osteolytic lesions.(43) Serum DKK-1 levels cor-
relate with the extent of lytic bone lesions, and patients
without bone lesions were found to have lower DKK-1
levels than patients having bone lesions.(44) Beyond these
correlative studies, there is mounting evidence that DKK-1
plays a crucial role in regulating bone loss in vivo. For
example, transgenic mice overexpressing DKK-1 exhibit
osteopenia, whereas reduction of DKK-1 expression in-
creases bone mass.(45,46) Also, antibodies to DKK-1 have
been shown to reduce osteolytic lesions and tumor burden
in animal models of myeloma, thereby confirming the im-
portant negative regulatory effect that DKK-1 has on os-
teoblastogenesis.(47,48)

In addition to DKK-1, there is evidence that myeloma
cells also secrete another soluble Wnt inhibitor, frizzled-
related protein-2 (FRP-2), that may play a role in dysre-
gulation of osteoblast differentiation.(49) Secretion of
soluble FRP-2 (sFRP-2) was often found in patients having
advanced bone lesions. In vitro, exogenous sFRP-2 sup-
presses BMP-2–induced osteoblast differentiation, whereas
immunodepletion of sFRP-2 restores mineralized nodule
formation by osteoblasts.(49)

DIAGNOSIS

As mentioned above, lytic bone disease in myeloma
can be systemic (general osteopenia) and focal. Whereas
biochemical markers have been suggested as diagnostic
parameters of myeloma-associated osteolysis,(50–55) these
cannot differentiate between focal and systemic bone loss.
Systemic bone loss can be diagnosed with bone densitom-
etry measurements or even routine metastatic bone surveys
(MBSs). The standard of diagnosis of myeloma bone dis-
ease is by means of radiography. Focal osteolytic lesions
develop in areas of focal myeloma growth, which are visi-
ble on MRI even before the identification of focal osteol-
ysis by standard MBS.(56) Standard MBS has the low
sensitivity of standard x-radiographs, which require loss of
at least 30% of the bone matrix before osteolysis can be

recognized. In contrast, helical CT, because of its superior
contrast resolution, has the sensitivity to identify focal
bone loss in the majority of cases where MBS failed.(56) CT
is thus the modality of choice to diagnose focal bone loss in
myeloma.(57–59)

TREATMENT

Myeloma-associated osteolytic lesions do not repair,
even in patients in complete remission for many years. The
bisphosphonates, which continue to be the standard of care
for the treatment of myeloma bone disease, prevent further
bone loss by inhibiting osteoclast activity, but these decrease
skeletal related events by only 50%. In addition, 4–6% of
patients receiving bisphosphonates develop osteonecrosis of
the jaw, and often treatment has to be stopped because of
kidney toxicity.(4,60) Thus, treatments with better efficacy
and fewer side effects than bisphosphonates are needed.

The proteasome inhibitors, particularly bortezomib
(Velcade; Millennium Pharmaceuticals, Cambridge, MA,
USA), have emerged as important bone-preserving agents
in myeloma. Although introduced as a therapeutic strategy
to inhibit myeloma growth, bortezomib has an important
positive impact on bone, and this might contribute to the
overall antimyeloma affect of the compound. Bortezomib
was shown to reduce tumor burden and enhance BMD in an
animal model of myeloma(61) and to promote osteoblast
differentiation through Wnt-independent activation of
b-catenin.(62) In clinical studies of relapsed myeloma pa-
tients, bortezomib was shown to reduce DKK-1 and
RANKL levels, reflecting its potential for mediating im-
portant bone protective effects even in advanced dis-
ease.(63) Proteasome inhibitors can have important ana-
bolic effects on bone as supported by patients that show an
increase in markers of osteoblast activity such as alkaline
phosphatase and osteocalcin.(64–66) A recent report showed
that the hydroxamate-based histone deacetylase inhibitor
JNJ-26481585, when used in combination with bortezomib,
significantly reduced tumor burden, angiogenesis, and
myeloma bone disease, including a pronounced reduction
of osteoclasts and increase of osteoblasts, trabecular bone
volume, and trabecular number.(67) This underscores the
need to explore bortezomib in combination with various
anticancer therapies to find the best therapeutic approach
for preserving and building bone.

Another promising approach for treating myeloma
bone disease is anti-RANKL therapy using the humanized
monoclonal antibody denosumab. This antibody is highly
specific for RANKL and effectively blocks the interaction
of RANKL with RANK, thereby diminishing osteoclas-
togenesis. A phase I clinical trial of denosumab in myeloma
patients indicated that the antibody suppresses bone re-
sorption without obvious negative side effects.(68) Further
studies that include larger numbers patients and longer
follow-up are needed to determine the usefulness of this
antibody against myeloma bone disease.

As described above, DKK1 is central to myeloma
bone disease. The lack of repair of myeloma-induced
osteolytic lesions likely reflects the continued secretion of
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DKK1 by dormant myeloma cells in focal lesions, even in
patients in complete remission and after resolution of MRI
focal lesions.(56) Inhibition of Dkk1 by monoclonal anti-
body effectively increased osteoblast numbers and activity
in mouse models of myeloma, increased BMD of mouse
bones and human bone implants, and reduced tumor bur-
den in most experiments.(47,48,69) These results raise hope
for a treatment that will repair myeloma osteolytic lesions.
Antibodies against DKK1 are currently in early clinical
trials. Regarding repair of osteolytic lesions, there is also
potential for use of mesenchymal stem cells. These cells,
when injected into bone, have been shown to inhibit my-
eloma tumor growth and increase BMD in an animal
model.(70) This type of cell-based therapy could be of great
value to treat myeloma patients, particularly if the cells
could be engineered to home specifically to myeloma bone
lesions after intravenous delivery.

SUMMARY

Bone disease is a characteristic feature of myeloma and
causes devastating side effects that impact patient quality of
life and survival. New findings over the last several years
have led to a better understanding of the molecular mech-
anisms regulating bone disease including the understanding
that myeloma bone disease results from hyperstimulation
of osteoclastogenesis and inhibition of osteoblastogenesis.
From these mechanistic findings, promising new therapies
including bortezomib and denosumab have evolved and give
hope for lessening the impact of osteolytic bone disease in
myeloma. New therapies such as anti-DKK1 antibodies are
on the horizon. Despite these advances, lingering questions
remain that need to be addressed. Why in a small minority
of patients do osteoblasts near tumor foci continue to sur-
vive and proliferate, whereas in most patients osteoblasto-
genesis is inhibited? Can combinations of bone preserving
and bone forming therapies lead to repair of osteolytic le-
sions in myeloma? To what extent do myeloma tumor cells
exhibit direct osteolytic effects separate from osteoclasts,
and how can these effects be diminished? Tackling these and
other remaining mechanistic questions will lead to even
better therapeutic approaches to controlling myeloma bone
disease.
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