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Abstract
Introduction: The detection and monitoring of electrolyte imbalance is essential for 
appropriate management of many metabolic diseases; however, there is no tool that 
detects such imbalances reliably and noninvasively. In this study, we developed a 
deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte 
imbalance and validated its performance in a multicenter study.
Methods and Results: This retrospective cohort study included two hospitals: 92,140 
patients who underwent a laboratory electrolyte examination and an ECG within 
30 min were included in this study. A DLM was developed using 83,449 ECGs of 
48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. 
We conducted an external validation with 31,693 ECGs of 31,693 patients from an-
other hospital, and the result was electrolyte imbalance detection. During internal, 
the area under the receiving operating characteristic curve (AUC) of a DLM using 
a 12-lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hypona-
tremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, 
and 0.901, respectively. The values during external validation of the AUC of hyper-
kalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalce-
mia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped 
to visualize the important ECG region for detecting each electrolyte imbalance, and it 
showed how the P wave, QRS complex, or T wave differs in importance in detecting 
each electrolyte imbalance.
Conclusion: The proposed DLM demonstrated high performance in detecting elec-
trolyte imbalance. These results suggest that a DLM can be used for detecting and 
monitoring electrolyte imbalance using ECG on a daily basis.
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1  | INTRODUC TION

Electrolyte balance is important for maintaining homeostasis 
and protecting cellular function (El-Sharkawy et  al.,  2014; Rhoda 
et al., 2011). Electrolytes are controlled precisely between the intra- 
and extracellular compartments to sustain the normal physiological 
function of the muscles and nerves (Riggs,  2002). Some forms of 
electrolyte imbalance cause fatal arrhythmia and sudden cardiac 
death and require early detection (Goldberg et al., 2004; Klingkowski 
et al., 2019; Soar et al., 2010). As electrolyte imbalance is a common 
indicator for many diseases, its evaluation is a cornerstone for diag-
nosis and proper treatment (Kadri, 2013; Lee et al., 2000). Screening 
critical electrolyte imbalance is crucial for patients with diseases that 
impair the retention and excretion of electrolytes, such as renal fail-
ure, and those who partake medications that affect electrolyte ex-
cretion, such as diuretics (Arampatzis et al., 2013; Pun et al., 2017).

As the symptoms of electrolyte imbalance are vague, it is difficult 
to diagnose with only patient histories and examinations, that is, until 
the condition worsens and complications occur (Kadri, 2013). The gold 
standard for diagnosing electrolyte imbalance is a laboratory test that 
measures the concentration of electrolytes. Laboratory tests are in-
vasive, costly, and require specialized equipment and infrastructure, 
such as trained medical staff for sampling blood and hematology ana-
lyzers for performing assessments with biochemical reagents (Stanifer 
et al., 2014). Evaluation of electrolytes on a daily basis is important in 
order to monitor health status and prevent life-threatening events, but 
using laboratory tests is not optimal for this purpose.

The status of the cardiac cell membrane is dependent upon 
the maintenance of a normal electrolyte balance across the mem-
brane, and it affects cardiac function and electrocardiography (ECG) 
(Noordam et al., 2019). Previous studies have shown that electro-
lyte imbalance alters the shape of the ECG (Noordam et al., 2019). 
It is not easy to make diagnostic tools based on conventional sta-
tistical methods using such subtle ECG changes. Deep learning has 
previously been used in the medical field to identify lesions and is 
currently used to analyze ECGs to diagnose heart failure, valvular 
heart disease, anemia, and coronary artery disease (Attia, Friedman, 
et al., 2019; Attia, Kapa, et al., 2019; Attia, Noseworthy, et al., 2019; 
Cho et al., 2020; Galloway et al., 2019; Jo et al., 2020; Kwon, Cho, 
et al., 2020; Kwon, Kim, et al., 2020; Kwon, Lee, et al., 2020). Recent 
studies have shown that deep learning models can detect dyskale-
mia using ECG (Galloway et  al.,  2019; Lin et  al.,  2020). However, 
these deep learning models only focused on detecting dyskalemia. In 
this study, we developed and validated a deep learning model (DLM) 
to detect electrolyte imbalance.

2  | METHODS

2.1 | Study design and population

We conducted a retrospective, multicenter, diagnostic study in 
which a DLM was developed using ECGs and then internally and 

externally validated. We excluded individuals with missing demo-
graphic, electrocardiographic, and electrolyte laboratory examina-
tion information. Data from Sejong General Hospital (SGH) were 
used for development and internal validation. In SGH, we identified 
patients with at least one standard digital, 10 s, 12-lead ECG acquired 
in the supine position within the study period (October 1, 2016, to 
August 31, 2020) and at least one electrolyte laboratory panel for 
three electrolytes (sodium (Na), potassium (K), and calcium (Ca)) ob-
tained within 30 min of the index ECG. The individuals who visited 
the general health checkup, outpatient department, and emergency 
department and were admitted to SGH were the study population 
for the development and internal validation datasets. As shown in 
Figure 1, patients treated at SGH were randomly split into algorithm 
development (80%) and internal validation (20%) datasets. Data 
from Mediplex Sejong Hospital (MSH) were used for external valida-
tion. The Sejong General Hospital (SGH) is a cardiovascular disease 
teaching hospital, and the Mediplex Sejong Hospital (MSH) is a gen-
eral community hospital. We identified patients who were admitted 
to MSH during the study period (March 1, 2017, to August 31, 2020) 
and who had at least one ECG and one electrolyte laboratory ex-
amination panel obtained within 30 min of the index ECG. Because 
the purpose of the validation data was to assess the accuracy of the 
algorithm, we only used one ECG from each patient for the internal 
and external validation datasets, specifically the electrolyte exami-
nation closest to their most recent ECG in the study period.

This study was approved by the institutional review boards of 
SGH and MSH. Clinical data, including digitally stored ECGs, elec-
trolyte laboratory examination panel values (K, Na, and Ca), age, and 
sex, were obtained from both hospitals. Both institutional review 
boards waived the need for informed consent because of the retro-
spective nature of the study, which used fully anonymized ECG and 
health data and caused minimal harm.

2.2 | Procedures

The predictor variables were ECG, age, and sex. Digitally stored 
12-lead ECG data, amounting to 5,000 values for each lead, were 
recorded over 10 s (500 Hz). One second each was removed at the 
beginning and end of each ECG because they have more artifacts 
than other parts. Because of this, the length of each ECG was 8 s 
(4,000 values). We created a dataset using the entire 12-lead ECG 
data. We also used partial datasets from 12-lead ECG data, such 
as limb 6-lead and single-lead (I) ECG data. We selected the sets of 
leads because they could easily be recorded by wearable and pad 
devices in contact with the hands and legs. Consequently, when we 
developed and validated the DLM using 12-lead ECGs, a dataset of 
two-dimensional (2D) data of 12 × 4,000 values was used. When we 
developed and validated an algorithm using 6-lead ECGs, we used 
datasets that were 6  ×  4,000 values, and when using single-lead 
ECGs, we used datasets that were 1 × 4,000 values.

The objective of this research was to determine abnormalities of 
electrolytes, defined by serum electrolyte concentrations. Normal 
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concentration range of K, Na, and Ca were 3.5–5.5 mmol/L, 130–
150 mmol/L, and 8.0–11.0 mg/dl. We developed a DLM for each 
electrolyte imbalance independently, because the model trained 
using the transfer learning method was overfitted to local optima, 
and it showed poor performance.

The sampling rate of the ECG data was fixed at 500 Hz. We car-
ried out a pre-processing step for the ECG data. First, we eliminated 
high-frequency noise, such as electrical line artifacts, using a low-
pass filter set at 150 Hz. Second, we removed low-frequency noise, 
such as chest wall movement due to breathing, using a high-pass 
filter set at 0.05 Hz. Finally, we normalized the Z-score for the ECG 
data.

As shown in Figure 2, we developed a DLM based on an ensem-
ble network. We developed each DLM to determine the presence of 
each electrolyte imbalance, such as hyperkalemia, hypokalemia, hy-
pernatremia, hyponatremia, hypercalcemia, and hypocalcemia. Each 
DLM was developed using six residual blocks of the neural network 
to learn complex hierarchical non-linear representations from the 
data (LeCun et al., 2015). In a residual block with four stages, there 
were two convolution layers and two batch normalizations layer re-
peated. The last layer of the sixth residual block was connected to a 
flattened layer, which was fully connected to the 1D layer composed 

of neural nodes. The values for age and sex were inputted to the 
input layer of a multilayer perceptron (MLP) consisting of three 1D 
layers. The 1D ECG, obtained after passing the 2D ECG data through 
the flattened layer, and the 1D age and sex data were concatenated 
and fully connected to the 1st ensemble layer. The second fully con-
nected 1D layer was connected to the output layer. The output layer 
was composed of two nodes. The value of the output node of each 
DLM represented the probability of each electrolyte imbalance, and 
the output node of each DLM used a softmax function as an ac-
tivation function because the output of the softmax function was 
between 0 and 1. As a comparative model, we also developed classi-
fication models using conventional statistical model (logistic regres-
sion) and conventional machine learning model (random fores). We 
used glm and randomForest of R to develop prediction models.

As most of the medical test results are normal, medical data often 
are imbalanced between normal and positive cases. In this study, the 
electrolyte imbalanced data were also imbalanced. We used over-
sampling and undersampling simultaneously in the training process. 
When we trained the DLM, we oversampled the positive case, allow-
ing duplication by 3–5 times, and undersampled the normal case by 
half. We determined the ratios for oversampling and undersampling 
using a grid search.

F I G U R E  1  Study flowchart. ECG denotes electrocardiography
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F I G U R E  2  Architecture of deep 
learning-based model for detecting 
electrolyte imbalance. Conv denotes 
convolutional neural network and ECG 
electrocardiography
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2.3 | Statistical analysis

Continuous variables were represented as mean values (standard 
deviation, SD) and compared using the unpaired Student's t-test or 
Mann-Whitney U-test. Categorical variables were expressed as fre-
quencies and percentages and compared using the chi-square test.

At each input (ECG) of validation data, the DLM calculated 
the probability of electrolyte imbalance in the range from 0 (non-
electrolyte imbalance) to 1 (electrolyte imbalance). To confirm the 
DLM performance, we compared the probability calculated by the 
DLM with the presence of electrolyte imbalance in the internal and 
external validation datasets. For this purpose, we used the area 
under the receiver operating characteristic curve (AUC). Confidence 
intervals (CIs) of 95% were used for all measures of diagnostic per-
formance, except for the AUC. We selected the cutoff point for cal-
culating the sensitivity, specificity, PPV, and NPV of the validation 
dataset when the sensitivity was 90% in the development dataset. 
The purpose of the DLM was to screen for electrolyte imbalance and 
to refer the patient for confirmatory laboratory tests if needed. We 
selected a high-sensitivity point as the cutoff point. The CIs for the 
AUC were determined based on the Sun and Su optimization of the 
De-long method using the pROC package in R (The R Foundation for 
Statistical Computing, Vienna, Austria). A significant difference in 
patient characteristics was defined as a two-sided p-value of <.001. 
Statistical analyses were computed using R software, version 3.4.2. 
In addition, we used PyTorch's open-source software library at the 
backend and Python (version 3.6.11) for the analyses.

2.4 | Visualizing the developed XDM for 
interpretation

To understand the model and draw a comparison with existing medi-
cal knowledge, it was necessary to identify a region that had a sig-
nificant effect on the decision of the developed DLM. We employed 
a sensitivity map using a saliency method. The map was computed 
using the first-order gradients of the classifier probabilities with re-
spect to the input signals; if the probability of a classifier is sensitive 
to a specific region of the signal, the region would be considered 
significant in the model. We used a gradient class activation map 
as a sensitivity map with the gradient backpropagation method 
(Selvaraju et al., 2017, 2020).

3  | RESULTS

The eligible population included 60,479 and 31,704 patients at SGH 
and MSH, respectively. We excluded 32 and 11 patients (from SGH 
and MSH, respectively) because of missing age and sex data, labora-
tory evaluation information, or ECG data (Figure 1). The study in-
cluded 92,140 patients, of whom 4,638 had electrolyte imbalance. 
There were 163, 83, and 241 patients who had electrolyte imbal-
ances “potassium and sodium,” “calcium and sodium,” and “potassium 

and calcium,” respectively. The DLM was developed using a devel-
opment dataset of 83,449 12-lead ECGs for 48,356 patients. Then, 
the performance of the algorithm was examined using 12,091 ECGs 
from the 12,091 patients in the internal validation dataset from SGH 
and 31,693 ECGs from the 31,693 patients in the external validation 
dataset from MSH (Figure 1 and Table 1).

In hyperkalemia patients, the ECGs had prolonged QRS duration, 
prolonged QTc, rightward T-wave axis, prolonged PR interval, and 
tachycardia (Table 2). Sodium imbalance had correlation with heart 
rate, presence of atrial fibrillation, PR interval, QRS duration, QT in-
terval, QTc, and T-wave axis. Calcium abnormality had correlation 
with heart rate, presence of atrial fibrillation, QRS duration, QT in-
terval, QTc, R-wave axis, and T-wave axis (Table 2).

During internal validation, the AUC of the DLM using 12-lead 
ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hy-
ponatremia, hypercalcemia, and hypocalcemia was 0.945 (95% 
confidence interval, 0.931–0.959), 0.866 (0.854–0.878), 0.944 
(0.895–0.993), 0.885 (0.869–0.900), 0.905 (0.806–1.000), and 
0.901 (0.880–0.922), respectively (Figure  3 and Table  3). During 
external validation, the AUC of the DLM using 12-lead ECG for de-
tecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, 
hypercalcemia, and hypocalcemia was 0.873 (0.843–0.902), 0.857 
(0.846–0.867), 0.839 (0.727–0.951), 0.856 (0.831–0.880), 0.831 
(0.723–0.939), and 0.813 (0.793–0.834), respectively (Figure 3 and 
Table 3). There were no significant differences in DLM performance 
between patients with multiple electrolyte imbalances simulta-
neously and patients with one electrolyte imbalance. As shown in 
Figure 3, the DLM outperformed the logistic regression and random 
forest models for internal and external validation datasets.

During external validation, the AUC of the DLM using 6-
lead ECG for detecting hyperkalemia, hypokalemia, hypernatre-
mia, hyponatremia, hypercalcemia, and hypocalcemia was 0.860 
(0.831–0.888), 0.831 (0.819–0.843), 0.833 (0.738–0.928), 0.851 
(0.825–0.876), 0.813 (0.726–0.900), and 0.812 (0.792–0.833), re-
spectively (Figure  3 and Table  3). During external validation, the 
AUC of the DLM using single-lead ECG for detecting hyperkalemia, 
hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hy-
pocalcemia was 0.843 (0.812–0.874), 0.792 (0.779–0.804), 0.806 
(0.690–0.923), 0.839 (0.813–0.864), 0.634 (0.522–0.746), and 0.798 
(0.777–0.819), respectively (Figure 3 and Table 3).

The DLM described the important ECG region to detect each 
electrolyte imbalance. As shown in Figure 4, the DLM focused on the 
QRS complex for detecting hyperkalemia, hypokalemia, and hypona-
tremia. The DLM focused on the T wave for detecting hyperkalemia 
and on the S wave for detecting hypernatremia and hypercalcemia. 
We provided a full-size sensitivity map in the supplemental material 
(Figures S1-S6).

4  | DISCUSSION

We developed and validated a DLM for electrolyte imbalance de-
tection using a 12-lead, 6-lead, and single-lead ECG. In addition, we 
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showed the ECG region that had a significant effect on the decision 
of the developed DLM. To the best of our knowledge, this study is 
the first to develop an artificial intelligence algorithm for detect-
ing electrolyte imbalance and to show the interpretable patterns of 
decision making using artificial intelligence in the biosignal domain. 
The purpose of a DLM is to screen the electrolyte imbalance using 
ECG, which is noninvasive, economical, and obtained using wear-
able devices; the DLM refers the patients to conduct confirmative 
laboratory examinations if electrolyte imbalance is suspected. For 
example, renal failure patients can be screened for critical electro-
lyte imbalance using wearable ECG devices and can then visit the 
hospital for confirmative laboratory tests; this is important to pre-
vent deterioration of patients' condition and irreversible disease 
progression.

Electrolyte balance is a cornerstone to evaluate the general con-
dition of patients and conduct proper management of many meta-
bolic disorders (Kadri, 2013; Lee et al., 2000). Detecting electrolyte 
imbalance is important for the diagnosis of new metabolic diseases 
and management of patients with diseases that impair electrolyte 

homeostasis, such as renal failure, diabetes insipidus, severe diar-
rhea, hyperparathyroidism, and diabetes ketoacidosis (Dhondup & 
Qian, 2017; Liamis, 2014; Papi et al., 2014; Priyamvada et al., 2015). 
Monitoring electrolyte imbalance is important for managing patients 
who have medication, which could alter the homeostasis of electro-
lytes such as diuretics (Lim et al., 2016). The symptoms of electro-
lyte imbalance are vague and nonspecific (Kadri, 2013). Diagnostic 
examination is a laboratory examination that requires invasive blood 
sampling and cannot be conducted daily. Because of this, a new tech-
nology is required for detecting electrolyte imbalance using simple 
and noninvasive methods and for daily use. As ECG is a noninvasive 
test and changes with electrolyte imbalance, we developed a DLM 
for detecting electrolyte imbalance using ECG.

In many previous studies, electrolyte imbalance is shown to af-
fect ECG. A progressive change from peaked T waves to wide QRS 
can correlate with hyperkalemia (Littmann & Gibbs, 2018). Increased 
amplitude and width of P wave, T-wave flattening and inversion, 
prominent U waves, and apparent long QR intervals can correlate 
with hypokalemia (Levis,  2012). The most common ECG finding 

TA B L E  1  Study population characteristics

Characteristic
Sejong General Hospital (development and 
internal validation data)

Mediplex Sejong Hospital (external 
validation data) p

Study population 60,447 31,693

Age, year, mean (SD) 59.76 (16.22) 54.57 (16.50) <.001

Male, n (%) 31,634 (52.3) 15,844 (50.0) <.001

Heart rate, bpm, mean (SD) 72.89 (18.54) 69.83 (14.06) <.001

Atrial fibrillation, n (%) 6,483 (10.7) 1,491 (4.7) <.001

PR interval, ms, mean (SD) 171.03 (30.01) 167.13 (26.39) <.001

QRS duration, ms, mean (SD) 96.65 (18.01) 94.97 (14.84) <.001

QT interval, ms, mean (SD) 404.53 (42.35) 404.70 (36.14) .559

QTc, ms, mean (SD) 438.62 (34.92) 431.98 (30.89) <.001

P-wave axis, mean (SD) 43.91 (30.44) 44.04 (27.44) .544

R-wave axis, mean (SD) 39.17 (44.74) 40.74 (39.62) <.001

T-wave axis, mean (SD) 45.60 (49.34) 39.68 (35.50) <.001

Potassium, mmol/L, mean (SD) 4.22 (0.47) 4.08 (0.44) <.001

Sodium, mmol/L, mean (SD) 140.10 (3.07) 141.29 (3.10) <.001

Calcium, mg/dl, mean (SD) 9.37 (0.46) 9.11 (0.45) <.001

Potassium abnormalities <.001

Hypokalemia (<3.5) 2,082 (3.4) 1,052 (3.3)

Normokalemia (3.5–5.5) 57,766 (95.6) 30,449 (96.1)

Hyperkalemia (>5.5) 599 (1.0) 192 (0.6)

Sodium abnormalities <.001

Hyponatremia (<130) 605 (1.0) 217 (0.7)

Normonatremia (130–150) 59,793 (98.9) 31,448 (99.2)

Hypernatremia (>150) 49 (0.1) 28 (0.1)

Calcium abnormalities <.001

Hypocalcemia (<8.0) 503 (0.8) 397 (1.3)

Normocalcemia (8.0–11.0) 59,859 (99.0) 31,268 (98.7)

Hypercalcemia (>11.0) 85 (0.1) 28 (0.1)
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associated with hypercalcemia is shortening of the QR interval, 
and the most common ECG finding associated with hypocalcemia 
is a prolonged QT interval (Chorin et al., 2016). Although the ECG 

pattern is associated with electrolyte imbalance, diagnostic criteria 
and methods could not be made based on conventional statistical 
methods.

TA B L E  2  Study population characteristics stratified by electrolyte abnormalities

Potassium abnormality

Characteristics Hypokalemia Normokalemia Hyperkalemia p

Study population, n 3,134 88,215 791

Age, year, mean (SD) 60.75 (18.02) 57.75 (16.42) 71.58 (13.13) <.001

Male, n (%) 1,260 (40.2) 45,811 (51.9) 407 (51.5) <.001

Heart rate, bpm, mean (SD) 82.16 (21.31) 71.42 (16.81) 77.02 (25.91) <.001

Atrial fibrillation, n (%) 310 (9.9) 7,478 (8.5) 186 (23.5) <.001

PR interval, ms, mean (SD) 171.70 (31.19) 169.43 (28.46) 186.21 (51.41) <.001

QRS duration, ms, mean (SD) 97.51 (18.27) 95.94 (16.82) 104.63 (26.81) <.001

QT interval, ms, mean (SD) 401.14 (50.74) 404.64 (39.66) 412.46 (60.33) <.001

QTc, ms, mean (SD) 459.94 (39.34) 435.36 (33.03) 452.34 (47.21) <.001

P-wave axis, mean (SD) 46.03 (31.65) 43.89 (29.21) 43.50 (39.96) .001

R-wave axis, mean (SD) 37.69 (47.01) 39.83 (42.75) 34.67 (57.45) <.001

T-wave axis, mean (SD) 46.54 (63.76) 43.22 (44.08) 69.44 (62.04) <.001

Sodium abnormality

Characteristics Hyponatremia Normonatremia Hypernatremia p

Study population, n 822 91,241 77

Age, year, mean (SD) 73.18 (12.86) 57.82 (16.46) 73.16 (16.81) <.001

Male, n (%) 347 (42.2) 47,092 (51.6) 39 (50.6) <.001

Heart rate, bpm, mean (SD) 83.68 (23.31) 71.71 (17.07) 94.92 (26.55) <.001

Atrial fibrillation, n (%) 134 (16.3) 7,827 (8.6) 13 (16.9) <.001

PR interval, ms, mean (SD) 179.83 (37.80) 169.56 (28.71) 157.17 (43.76) <.001

QRS duration, ms, mean (SD) 101.51 (24.73) 96.02 (16.90) 101.31 (26.48) <.001

QT interval, ms, mean (SD) 401.86 (58.11) 404.63 (40.09) 383.43 (67.75) <.001

QTc, ms, mean (SD) 461.66 (46.02) 436.08 (33.49) 468.35 (50.71) <.001

P-wave axis, mean (SD) 45.20 (39.27) 43.95 (29.29) 40.28 (35.84) .370

R-wave axis, mean (SD) 36.74 (54.23) 39.73 (42.92) 44.49 (59.59) .089

T-wave axis, mean (SD) 59.76 (67.55) 43.38 (44.81) 83.08 (85.74) <.001

Calcium abnormality

Characteristics Hypocalcemia Normocalcemia Hypercalcemia p

Study population, n 900 91,127 113

Age, year, mean (SD) 68.37 (17.10) 57.86 (16.47) 64.86 (14.11) <.001

Male, n (%) 470 (52.2) 46,965 (51.5) 43 (38.1) .015

Heart rate, bpm, mean (SD) 84.96 (28.76) 71.69 (16.98) 83.80 (23.70) <.001

Atrial fibrillation, n (%) 135 (15.0) 7,822 (8.6) 17 (15.0) <.001

PR interval, ms, mean (SD) 169.98 (36.29) 169.62 (28.75) 173.83 (30.34) .340

QRS duration, ms, mean (SD) 99.07 (22.95) 96.04 (16.93) 100.00 (21.82) <.001

QT interval, ms, mean (SD) 410.59 (58.95) 404.56 (40.06) 382.00 (54.44) <.001

QTc, ms, mean (SD) 474.84 (50.48) 435.95 (33.30) 440.17 (40.41) <.001

P-wave axis, mean (SD) 43.45 (36.32) 43.96 (29.30) 43.88 (41.66) .899

R-wave axis, mean (SD) 34.45 (52.85) 39.77 (42.93) 31.10 (49.77) <.001

T-wave axis, mean (SD) 64.54 (70.93) 43.35 (44.75) 52.04 (60.04) <.001
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F I G U R E  3  Performances of deep learning-based model for detecting electrolyte abnormalities. AUC denotes area under the receiver 
operating characteristic curve, DLM deep learning-based model, and ECG electrocardiography
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Internal validation of DLM using 12−lead ECG, AUC=0.945 (0.931−0.959)
Internal validation of DLM using 6−lead ECG, AUC=0.908 (0.894−0.922)
Internal validation of DLM using 1−lead ECG, AUC=0.903 (0.888−0.918)
Internal validation of Logistic regression, AUC= 0.796 (95%CI:0.745−0.846)
Internal validation of Random forest, AUC= 0.762 (95%CI:0.695−0.829)
External validation of DLM using 12−lead ECG, AUC=0.873 (0.843−0.902)
External validation of DLM using 6−lead ECG, AUC=0.860 (0.831−0.888)
External validation of DLM using 1−lead ECG, AUC=0.843 (0.812−0.874)
External validation of Logistic regression, AUC= 0.786 (95%CI:0.751−0.821)
External validation of Random forest, AUC= 0.796 (95%CI:0.761−0.831)
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Internal validation of DLM using 12−lead ECG, AUC=0.944 (0.895−0.993)
Internal validation of DLM using 6−lead ECG, AUC=0.903 (0.807−0.999)
Internal validation of DLM using 1−lead ECG, AUC=0.895 (0.816−0.973)
Internal validation of Logistic regression, AUC= 0.826 (95%CI:0.676−0.977)
Internal validation of Random forest, AUC= 0.685 (95%CI:0.487−0.883)
External validation of DLM using 12−lead ECG, AUC=0.839 (0.727−0.951)
External validation of DLM using 6−lead ECG, AUC=0.833 (0.738−0.928)
External validation of DLM using 1−lead ECG, AUC=0.806 (0.690−0.923)
External validation of Logistic regression, AUC= 0.773 (95%CI:0.684−0.861)
External validation of Random forest, AUC= 0.777 (95%CI:0.700−0.854)

Validation for detecting hypercalcemia
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Internal validation of DLM using 12−lead ECG, AUC=0.901 (0.880−0.922)
Internal validation of DLM using 6−lead ECG, AUC=0.876 (0.858−0.894)
Internal validation of DLM using 1−lead ECG, AUC=0.860 (0.839−0.882)
Internal validation of Logistic regression, AUC= 0.721 (95%CI:0.625−0.817)
Internal validation of Random forest, AUC= 0.548 (95%CI:0.421−0.675)
External validation of DLM using 12−lead ECG, AUC=0.813 (0.793−0.834)
External validation of DLM using 6−lead ECG, AUC=0.812 (0.792−0.833)
External validation of DLM using 1−lead ECG, AUC=0.798 (0.777−0.819)
External validation of Logistic regression, AUC= 0.793 (95%CI:0.734−0.852)
External validation of Random forest, AUC= 0.653 (95%CI:0.572−0.734)

Validation for detecting hypokalemia
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Internal validation of DLM using 12−lead ECG, AUC=0.866 (0.854−0.878)
Internal validation of DLM using 6−lead ECG, AUC=0.866 (0.854−0.877)
Internal validation of DLM using 1−lead ECG, AUC=0.797 (0.782−0.811)
Internal validation of Logistic regression, AUC= 0.709 (95%CI:0.678−0.740)
Internal validation of Random forest, AUC= 0.691 (95%CI:0.661−0.721)
External validation of DLM using 12−lead ECG, AUC=0.857 (0.846−0.867)
External validation of DLM using 6−lead ECG, AUC=0.831 (0.819−0.843)
External validation of DLM using 1−lead ECG, AUC=0.792 (0.779−0.804)
External validation of Logistic regression, AUC= 0.728 (95%CI:0.716−0.739)
External validation of Random forest, AUC= 0.706 (95%CI:0.694−0.718)

Validation for detecting hyponatremia
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Internal validation of DLM using 12−lead ECG, AUC=0.885 (0.869−0.900)
Internal validation of DLM using 6−lead ECG, AUC=0.869 (0.852−0.885)
Internal validation of DLM using 1−lead ECG, AUC=0.834 (0.814−0.853)
Internal validation of Logistic regression, AUC= 0.830 (95%CI:0.787−0.873)
Internal validation of Random forest, AUC= 0.805 (95%CI:0.762−0.848)
External validation of DLM using 12−lead ECG, AUC=0.856 (0.831−0.880)
External validation of DLM using 6−lead ECG, AUC=0.851 (0.825−0.876)
External validation of DLM using 1−lead ECG, AUC=0.839 (0.813−0.864)
External validation of Logistic regression, AUC= 0.817 (95%CI:0.791−0.843)
External validation of Random forest, AUC= 0.835 (95%CI:0.811−0.858)

Validation for detecting hypocalcemia
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Internal validation of DLM using 12−lead ECG, AUC=0.901 (0.880−0.922)
Internal validation of DLM using 6−lead ECG, AUC=0.876 (0.858−0.894)
Internal validation of DLM using 1−lead ECG, AUC=0.860 (0.839−0.882)
Internal validation of Logistic regression, AUC= 0.814 (95%CI:0.762−0.867)
Internal validation of Random forest, AUC= 0.897 (95%CI:0.867−0.926)
External validation of DLM using 12−lead ECG, AUC=0.813 (0.793−0.834)
External validation of DLM using 6−lead ECG, AUC=0.812 (0.792−0.833)
External validation of DLM using 1−lead ECG, AUC=0.798 (0.777−0.819)
External validation of Logistic regression, AUC= 0.783 (95%CI:0.762−0.805)
External validation of Random forest, AUC= 0.798 (95%CI:0.777−0.820)

TA B L E  3  Performances of deep learning-based model for detecting electrolyte imbalance using electrocardiography

Deep learning-based 
models (DLMs)

Internal validation (95% confidence interval) External validation (95% confidence interval)

AUC SEN SPE PPV NPV AUC SEN SPE PPV NPV

Hyperkalemia

DLM using 12-lead ECG 0.945 (0.931–0.959) 0.901 (0.807–0.959) 0.850 (0.843–0.856) 0.038 (0.030– 0.049) 0.999 (0.998–1.000) 0.873 (0.843–0.902) 0.896 (0.848–0.934) 0.599 (0.594– 0.604) 0.014 (0.012– 0.016) 0.999 (0.998–1.000)

DLM using 6-lead ECG 0.908 (0.894–0.922) 0.915 (0.825– 0.968) 0.829 (0.822–0.836) 0.034 (0.027–0.044) 0.999 (0.998–1.000) 0.860 (0.831–0.888) 0.892 (0.842–0.930) 0.568 (0.560–0.570) 0.012 (0.011–0.014) 0.999 (0.998–1.000)

DLM using 1-lead ECG 0.903 (0.888–0.918) 0.887 (0.790– 0.950) 0.866 (0.859–0.872) 0.042 (0.033–0.054) 0.999 (0.998–1.000) 0.843 (0.812–0.874) 0.897 (0.848–0.934) 0.413 (0.407–0.418) 0.009 (0.008–0.011) 0.998 (0.998–0.999)

Hypokalemia

DLM using 12-lead ECG 0.866 (0.854–0.878) 0.893 (0.858–0.922) 0.704 (0.695–0.713) 0.100 (0.091–0.111) 0.994 (0.992–0.996) 0.857 (0.846–0.867) 0.896 (0.882–0.908) 0.560 (0.554–0.565) 0.120 (0.115–0.125) 0.988 (0.986–0.989)

DLM using 6-lead ECG 0.866 (0.854–0.877) 0.896 (0.861–0.924) 0.647 (0.638–0.656) 0.086 (0.077–0.095) 0.994 (0.992–0.996) 0.831 (0.819–0.843) 0.914 (0.901–0.925) 0.435 (0.430–0.440) 0.098 (0.094–0.102) 0.987 (0.985–0.989)

DLM using 1-lead ECG 0.797 (0.782–0.811) 0.930 (0.899–0.953) 0.465 (0.455–0.475) 0.060 (0.054–0.067) 0.994 (0.992–0.996) 0.792 (0.779–0.804) 0.888 (0.874–0.901) 0.437 (0.432–0.443) 0.096 (0.092–0.100) 0.983 (0.981–0.985)

Hypernatremia

DLM using 12-lead ECG 0.944 (0.895–0.993) 0.923 (0.640–0.998) 0.634 (0.625–0.643) 0.003 (0.002–0.005) 1.000 (0.999–1.000) 0.839 (0.727–0.951) 0.870 (0.751–0.946) 0.649 (0.644–0.654) 0.004 (0.003–0.005) 1.000 (0.999–1.000)

DLM using 6-lead ECG 0.903 (0.807–0.999) 0.923 (0.640–0.998) 0.488 (0.478–0.497) 0.002 (0.001–0.004) 1.000 (0.999–1.000) 0.833 (0.738–0.928) 0.889 (0.774–0.958) 0.456 (0.451–0.461) 0.003 (0.002–0.003) 1.000 (0.999–1.000)

DLM using 1-lead ECG 0.895 (0.816–0.973) 0.846 (0.546–0.981) 0.347 (0.338–0.357) 0.002 (0.001–0.003) 0.999 (0.998–1.000) 0.806 (0.690–0.923) 0.907 (0.797–0.969) 0.253 (0.249–0.258) 0.002 (0.001–0.002) 0.999 (0.999–1.000)

Hyponatremia

DLM using 12-lead ECG 0.885 (0.869–0.900) 0.901 (0.821–0.954) 0.820 (0.812–0.827) 0.041 (0.033–0.051) 0.999 (0.998–1.000) 0.856 (0.831–0.880) 0.887 (0.845–0.921) 0.629 (0.624–0.634) 0.020 (0.017–0.022) 0.998 (0.998–0.999)

DLM using 6-lead ECG 0.869 (0.852–0.885) 0.890 (0.807–0.946) 0.797 (0.789–0.805) 0.036 (0.029–0.045) 0.999 (0.998–0.999) 0.851 (0.825–0.876) 0.887 (0.845–0.921) 0.599 (0.594–0.604) 0.018 (0.016–0.021) 0.998 (0.998–0.999)

DLM using 1-lead ECG 0.834 (0.814–0.853) 0.912 (0.834–0.961) 0.686 (0.677–0.694) 0.024 (0.019–0.030) 0.999 (0.998–1.000) 0.839 (0.813–0.864) 0.915 (0.877–0.944) 0.477 (0.472–0.483) 0.015 (0.013–0.016) 0.998 (0.998–0.999)

Hypercalcemia

DLM using 12-lead ECG 0.905 (0.806–1.000) 0.909 (0.708–0.989) 0.521 (0.511–0.530) 0.004 (0.002–0.006) 1.000 (0.999–1.000) 0.831 (0.723–0.939) 0.852 (0.738–0.930) 0.794 (0.790–0.798) 0.007 (0.005–0.009) 1.000 (0.999–1.000)

DLM using 6-lead ECG 0.878 (0.791–0.966) 0.864 (0.651–0.971) 0.605 (0.596–0.615) 0.004 (0.003–0.007) 1.000 (0.999–1.000) 0.813 (0.726–0.900) 0.885 (0.778–0.953) 0.690 (0.685–0.695) 0.005 (0.004–0.006) 1.000 (0.999–1.000)

DLM using 1-lead ECG 0.875 (0.786–0.965) 0.909 (0.708–0.989) 0.352 (0.343–0.361) 0.003 (0.002–0.004) 0.999 (0.998–1.000) 0.634 (0.522–0.746) 0.918 (0.819–0.973) 0.592 (0.587–0.597) 0.004 (0.003–0.005) 1.000 (0.999–1.000)

Hypocalcemia

DLM using 12-lead ECG 0.901 (0.880–0.922) 0.891 (0.809–0.947) 0.847 (0.84–0.854) 0.048 (0.038–0.059) 0.999 (0.998–0.999) 0.813 (0.793–0.834) 0.905 (0.877–0.929) 0.551 (0.546–0.557) 0.031 (0.028–0.033) 0.997 (0.996–0.998)

DLM using 6-lead ECG 0.876 (0.858–0.894) 0.902 (0.822–0.954) 0.777 (0.769–0.785) 0.034 (0.027–0.042) 0.999 (0.998–1.000) 0.812 (0.792–0.833) 0.928 (0.902–0.948) 0.473 (0.467–0.478) 0.027 (0.024–0.029) 0.998 (0.997–0.998)

DLM using 1-lead ECG 0.860 (0.839–0.882) 0.913 (0.836–0.962) 0.752 (0.744–0.760) 0.031 (0.025–0.038) 0.999 (0.998–1.000) 0.798 (0.777–0.819) 0.883 (0.853–0.909) 0.547 (0.541–0.552) 0.030 (0.027–0.032) 0.997 (0.996–0.997)
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The most important aspect of deep learning is its ability to ex-
tract features and develop an algorithm using various types of data, 
such as images, 2D data, and waveforms. In previous studies, Attia 
and colleagues and our study group developed a deep learning-
based model to screen for heart failure, arrhythmia, valvular heart 
disease, left ventricular hypertrophy, and anemia (Attia, Friedman, 
et al., 2019; Attia, Kapa, et al., 2019; Attia, Noseworthy, et al., 2019; 
Cho et al., 2020; Galloway et al., 2019; Jo et al., 2020; Kwon, Cho, 
et al., 2020; Kwon, Kim, et al., 2020; Kwon, Lee, et al., 2020). In re-
cent studies, Attia and colleagues showed that hyperkalemia and 
hypokalemia could be detected using ECG based on a deep learning 
model (Galloway et al., 2019). However, the studies focused only on 
the imbalance of potassium and could not detect other electrolyte 
imbalances. Therefore, we developed a DLM for detecting electro-
lyte imbalance, including potassium, sodium, and calcium.

We adopted a sensitivity map to describe the abnormal finding 
that affects the decision of DLM for detecting electrolyte imbalance. 
Using this methodology, we could confirm an ECG region that was 
associated with each electrolyte imbalance. In conventional meth-
ods, the research process was started based on the hypothesis of 
researchers. For example, in the association between hyperkalemia 
and ECG, researchers made a hypothesis based on researchers' ex-
perience of reading the ECG of hyperkalemia patients. This meth-
odology limited the opportunity to discover knowledge in human 
perception. In deep learning methods, such as DLM and sensitivity 

map in this study, the findings were not based on previous medi-
cal knowledge of humans but data itself. Because of this, we could 
have the opportunity to discover new knowledge from the data itself 
without human prejudice. Deep learning could discover the complex 
hierarchical non-linear representation that could not be discovered 
using conventional statistical methods, such as logistic regression. In 
this study, we could confirm the important ECG region for detecting 
each electrolyte imbalance from waveform data. For example, the 
DLM focused on T wave and QRS complex for detecting hyperkale-
mia and hypokalemia. These findings were in agreement with those 
in previous studies (Levis, 2012; Littmann & Gibbs, 2018).

In a previous multicenter study, Galloway et al. showed the 
performance of DLM-enabled ECG for detecting hyperkalemia 
(Galloway et  al.,  2019). Following this, there were several studies 
conducted for detecting potassium imbalance using ECG based on a 
DLM. In the present study, we developed a DLM to detect not only 
potassium imbalance, but also sodium and calcium imbalances. As 
sodium and calcium imbalances are also important in the diagnosis 
of hidden disease and the management of patients, the results of 
the present study will be the basis for further studies. This is the 
first study to use a sensitivity map for electrolyte imbalance analysis. 
Using the proposed method, we clarified the important ECG lesion 
for a DLM to detect electrolyte imbalance. We also compared our 
results with previous medical knowledge regarding the correlation 
between electrolyte imbalance and ECG. As deep learning models 

TA B L E  3  Performances of deep learning-based model for detecting electrolyte imbalance using electrocardiography

Deep learning-based 
models (DLMs)

Internal validation (95% confidence interval) External validation (95% confidence interval)

AUC SEN SPE PPV NPV AUC SEN SPE PPV NPV

Hyperkalemia

DLM using 12-lead ECG 0.945 (0.931–0.959) 0.901 (0.807–0.959) 0.850 (0.843–0.856) 0.038 (0.030– 0.049) 0.999 (0.998–1.000) 0.873 (0.843–0.902) 0.896 (0.848–0.934) 0.599 (0.594– 0.604) 0.014 (0.012– 0.016) 0.999 (0.998–1.000)

DLM using 6-lead ECG 0.908 (0.894–0.922) 0.915 (0.825– 0.968) 0.829 (0.822–0.836) 0.034 (0.027–0.044) 0.999 (0.998–1.000) 0.860 (0.831–0.888) 0.892 (0.842–0.930) 0.568 (0.560–0.570) 0.012 (0.011–0.014) 0.999 (0.998–1.000)

DLM using 1-lead ECG 0.903 (0.888–0.918) 0.887 (0.790– 0.950) 0.866 (0.859–0.872) 0.042 (0.033–0.054) 0.999 (0.998–1.000) 0.843 (0.812–0.874) 0.897 (0.848–0.934) 0.413 (0.407–0.418) 0.009 (0.008–0.011) 0.998 (0.998–0.999)

Hypokalemia

DLM using 12-lead ECG 0.866 (0.854–0.878) 0.893 (0.858–0.922) 0.704 (0.695–0.713) 0.100 (0.091–0.111) 0.994 (0.992–0.996) 0.857 (0.846–0.867) 0.896 (0.882–0.908) 0.560 (0.554–0.565) 0.120 (0.115–0.125) 0.988 (0.986–0.989)

DLM using 6-lead ECG 0.866 (0.854–0.877) 0.896 (0.861–0.924) 0.647 (0.638–0.656) 0.086 (0.077–0.095) 0.994 (0.992–0.996) 0.831 (0.819–0.843) 0.914 (0.901–0.925) 0.435 (0.430–0.440) 0.098 (0.094–0.102) 0.987 (0.985–0.989)

DLM using 1-lead ECG 0.797 (0.782–0.811) 0.930 (0.899–0.953) 0.465 (0.455–0.475) 0.060 (0.054–0.067) 0.994 (0.992–0.996) 0.792 (0.779–0.804) 0.888 (0.874–0.901) 0.437 (0.432–0.443) 0.096 (0.092–0.100) 0.983 (0.981–0.985)

Hypernatremia

DLM using 12-lead ECG 0.944 (0.895–0.993) 0.923 (0.640–0.998) 0.634 (0.625–0.643) 0.003 (0.002–0.005) 1.000 (0.999–1.000) 0.839 (0.727–0.951) 0.870 (0.751–0.946) 0.649 (0.644–0.654) 0.004 (0.003–0.005) 1.000 (0.999–1.000)

DLM using 6-lead ECG 0.903 (0.807–0.999) 0.923 (0.640–0.998) 0.488 (0.478–0.497) 0.002 (0.001–0.004) 1.000 (0.999–1.000) 0.833 (0.738–0.928) 0.889 (0.774–0.958) 0.456 (0.451–0.461) 0.003 (0.002–0.003) 1.000 (0.999–1.000)

DLM using 1-lead ECG 0.895 (0.816–0.973) 0.846 (0.546–0.981) 0.347 (0.338–0.357) 0.002 (0.001–0.003) 0.999 (0.998–1.000) 0.806 (0.690–0.923) 0.907 (0.797–0.969) 0.253 (0.249–0.258) 0.002 (0.001–0.002) 0.999 (0.999–1.000)

Hyponatremia

DLM using 12-lead ECG 0.885 (0.869–0.900) 0.901 (0.821–0.954) 0.820 (0.812–0.827) 0.041 (0.033–0.051) 0.999 (0.998–1.000) 0.856 (0.831–0.880) 0.887 (0.845–0.921) 0.629 (0.624–0.634) 0.020 (0.017–0.022) 0.998 (0.998–0.999)

DLM using 6-lead ECG 0.869 (0.852–0.885) 0.890 (0.807–0.946) 0.797 (0.789–0.805) 0.036 (0.029–0.045) 0.999 (0.998–0.999) 0.851 (0.825–0.876) 0.887 (0.845–0.921) 0.599 (0.594–0.604) 0.018 (0.016–0.021) 0.998 (0.998–0.999)

DLM using 1-lead ECG 0.834 (0.814–0.853) 0.912 (0.834–0.961) 0.686 (0.677–0.694) 0.024 (0.019–0.030) 0.999 (0.998–1.000) 0.839 (0.813–0.864) 0.915 (0.877–0.944) 0.477 (0.472–0.483) 0.015 (0.013–0.016) 0.998 (0.998–0.999)

Hypercalcemia

DLM using 12-lead ECG 0.905 (0.806–1.000) 0.909 (0.708–0.989) 0.521 (0.511–0.530) 0.004 (0.002–0.006) 1.000 (0.999–1.000) 0.831 (0.723–0.939) 0.852 (0.738–0.930) 0.794 (0.790–0.798) 0.007 (0.005–0.009) 1.000 (0.999–1.000)

DLM using 6-lead ECG 0.878 (0.791–0.966) 0.864 (0.651–0.971) 0.605 (0.596–0.615) 0.004 (0.003–0.007) 1.000 (0.999–1.000) 0.813 (0.726–0.900) 0.885 (0.778–0.953) 0.690 (0.685–0.695) 0.005 (0.004–0.006) 1.000 (0.999–1.000)

DLM using 1-lead ECG 0.875 (0.786–0.965) 0.909 (0.708–0.989) 0.352 (0.343–0.361) 0.003 (0.002–0.004) 0.999 (0.998–1.000) 0.634 (0.522–0.746) 0.918 (0.819–0.973) 0.592 (0.587–0.597) 0.004 (0.003–0.005) 1.000 (0.999–1.000)

Hypocalcemia

DLM using 12-lead ECG 0.901 (0.880–0.922) 0.891 (0.809–0.947) 0.847 (0.84–0.854) 0.048 (0.038–0.059) 0.999 (0.998–0.999) 0.813 (0.793–0.834) 0.905 (0.877–0.929) 0.551 (0.546–0.557) 0.031 (0.028–0.033) 0.997 (0.996–0.998)

DLM using 6-lead ECG 0.876 (0.858–0.894) 0.902 (0.822–0.954) 0.777 (0.769–0.785) 0.034 (0.027–0.042) 0.999 (0.998–1.000) 0.812 (0.792–0.833) 0.928 (0.902–0.948) 0.473 (0.467–0.478) 0.027 (0.024–0.029) 0.998 (0.997–0.998)

DLM using 1-lead ECG 0.860 (0.839–0.882) 0.913 (0.836–0.962) 0.752 (0.744–0.760) 0.031 (0.025–0.038) 0.999 (0.998–1.000) 0.798 (0.777–0.819) 0.883 (0.853–0.909) 0.547 (0.541–0.552) 0.030 (0.027–0.032) 0.997 (0.996–0.997)
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suffer from a black box limitation, the proposed method would prove 
to be helpful for other researchers to conduct their medical research 
using artificial intelligence.

For detecting hypokalemia, the performance of the DLM using 
12-lead ECG and 6-lead ECG was almost the same. We had two 
hypotheses. First, in some tasks, the information about precordial 
6-lead ECG is not needed to detect the disease. As a result, add-
ing the information about the precordial 6-lead to limb 6-lead did 
not enhance the performance of the DLM. The second hypothesis 
is that limb 6-lead ECG already had information on precordial 6-
lead ECG. In previous studies, Cho et al. have already developed a 
model to generate precordial 6-lead ECG from limb 6-lead ECG (Cho 
et al., 2020). In some tasks, information about the specific disease 
of precordial 6-lead is already reflected in limb 6-lead ECG. As the 
exact decision process of deep learning has not been discovered, we 
could explore this topic in the near future.

There were several limitations to this study. First, we devel-
oped a DLM for detecting electrolyte imbalances, including Na, 
K, and Ca. Although we selected three electrolytes because the 
four electrolytes are most commonly used in the clinical field, 
we need to develop DLM for including other electrolytes such 

as magnesium and phosphorus. Second, we validated DLM using 
retrospective data; therefore, we need to validate DLM with pro-
spective studies and daily data. In this study, the performance of 
the DLM using single-lead ECG was evaluated using partial Lead I 
data from 12-lead ECG data. As a result of this, further studies are 
needed to apply the DLM to diverse wearable life-style devices 
and to confirm the performance of the DLM using ECG devices. 
Studies related to the clinical significance of the new technology 
are required to apply it in clinical practice. In our next study, we will 
verify DLM performance and significance with a prospective study 
in daily clinical practice. Third, this study was only conducted in 
two hospitals in Korea, and it is necessary to validate the DLM 
with patients in other countries. As shown in Figure  3, the per-
formance differences of the DLM between internal and external 
validation for hypernatremia and hypocalcemia were significant. 
As pitfall of deep learning is overfitting, we need a diverse data-
set for enhanced performance of the DLM in robust situations. 
Therefore, we plan to conduct a large multicenter study involving 
multiple hospitals in other countries. Fourth, as the characteris-
tics and comorbidities of patients could affect the performance 
of the DLM, further studies are needed to develop a robust DLM 

F I G U R E  4  Sensitivity map of DLM for detecting electrolyte imbalance. DLM denoted deep learning-based model
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for preserving the performance for a more diverse population. As 
the performance in specific populations could not be determined 
in this study, further studies are needed to determine the perfor-
mance by patient's characteristics and comorbidities. Fifth, we 
experiment with only three combinations of ECG leads, namely, 
12-lead, limb 6-lead, and single-lead (Lead I). As some ECG infor-
mation can be calculated using the other ECG lead, we need to 
experiment with diverse combinations of lead information of ECG. 
In the near future, we will conduct the research on this topic and 
gain new insights for clinical use.
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