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Abstract
Introduction: The	detection	and	monitoring	of	electrolyte	imbalance	is	essential	for	
appropriate	management	of	many	metabolic	diseases;	however,	there	is	no	tool	that	
detects	 such	 imbalances	 reliably	 and	 noninvasively.	 In	 this	 study,	we	developed	 a	
deep	learning	model	(DLM)	using	electrocardiography	(ECG)	for	detecting	electrolyte	
imbalance	and	validated	its	performance	in	a	multicenter	study.
Methods and Results: This	retrospective	cohort	study	included	two	hospitals:	92,140	
patients	who	 underwent	 a	 laboratory	 electrolyte	 examination	 and	 an	 ECG	within	
30	min	were	 included	 in	 this	 study.	A	DLM	was	developed	using	83,449	ECGs	of	
48,356	patients;	 the	 internal	 validation	 included	12,091	ECGs	of	12,091	patients.	
We	conducted	an	external	validation	with	31,693	ECGs	of	31,693	patients	from	an-
other	hospital,	and	the	result	was	electrolyte	imbalance	detection.	During	internal,	
the	area	under	 the	 receiving	operating	characteristic	curve	 (AUC)	of	a	DLM	using	
a	 12-	lead	 ECG	 for	 detecting	 hyperkalemia,	 hypokalemia,	 hypernatremia,	 hypona-
tremia,	 hypercalcemia,	 and	 hypocalcemia	were	 0.945,	 0.866,	 0.944,	 0.885,	 0.905,	
and	0.901,	respectively.	The	values	during	external	validation	of	the	AUC	of	hyper-
kalemia,	hypokalemia,	hypernatremia,	hyponatremia,	hypercalcemia,	and	hypocalce-
mia	were	0.873,	0.857,	0.839,	0.856,	0.831,	and	0.813	respectively.	The	DLM	helped	
to	visualize	the	important	ECG	region	for	detecting	each	electrolyte	imbalance,	and	it	
showed	how	the	P	wave,	QRS	complex,	or	T	wave	differs	in	importance	in	detecting	
each electrolyte imbalance.
Conclusion: The	proposed	DLM	demonstrated	high	performance	in	detecting	elec-
trolyte	imbalance.	These	results	suggest	that	a	DLM	can	be	used	for	detecting	and	
monitoring	electrolyte	imbalance	using	ECG	on	a	daily	basis.
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1  | INTRODUC TION

Electrolyte	 balance	 is	 important	 for	 maintaining	 homeostasis	
and	 protecting	 cellular	 function	 (El-	Sharkawy	 et	 al.,	 2014;	 Rhoda	
et	al.,	2011).	Electrolytes	are	controlled	precisely	between	the	intra-		
and	extracellular	compartments	to	sustain	the	normal	physiological	
function	 of	 the	muscles	 and	 nerves	 (Riggs,	 2002).	 Some	 forms	 of	
electrolyte	 imbalance	 cause	 fatal	 arrhythmia	 and	 sudden	 cardiac	
death	and	require	early	detection	(Goldberg	et	al.,	2004;	Klingkowski	
et	al.,	2019;	Soar	et	al.,	2010).	As	electrolyte	imbalance	is	a	common	
indicator	for	many	diseases,	its	evaluation	is	a	cornerstone	for	diag-
nosis	and	proper	treatment	(Kadri,	2013;	Lee	et	al.,	2000).	Screening	
critical	electrolyte	imbalance	is	crucial	for	patients	with	diseases	that	
impair	the	retention	and	excretion	of	electrolytes,	such	as	renal	fail-
ure,	and	those	who	partake	medications	that	affect	electrolyte	ex-
cretion,	such	as	diuretics	(Arampatzis	et	al.,	2013;	Pun	et	al.,	2017).

As	the	symptoms	of	electrolyte	imbalance	are	vague,	it	is	difficult	
to	diagnose	with	only	patient	histories	and	examinations,	that	is,	until	
the	condition	worsens	and	complications	occur	(Kadri,	2013).	The	gold	
standard	for	diagnosing	electrolyte	imbalance	is	a	laboratory	test	that	
measures	 the	concentration	of	electrolytes.	Laboratory	 tests	are	 in-
vasive,	 costly,	 and	 require	 specialized	equipment	 and	 infrastructure,	
such	as	trained	medical	staff	for	sampling	blood	and	hematology	ana-
lyzers	for	performing	assessments	with	biochemical	reagents	(Stanifer	
et	al.,	2014).	Evaluation	of	electrolytes	on	a	daily	basis	is	important	in	
order	to	monitor	health	status	and	prevent	life-	threatening	events,	but	
using	laboratory	tests	is	not	optimal	for	this	purpose.

The	 status	 of	 the	 cardiac	 cell	 membrane	 is	 dependent	 upon	
the	maintenance	of	a	normal	electrolyte	balance	across	 the	mem-
brane,	and	it	affects	cardiac	function	and	electrocardiography	(ECG)	
(Noordam	et	al.,	2019).	Previous	 studies	have	 shown	 that	electro-
lyte	imbalance	alters	the	shape	of	the	ECG	(Noordam	et	al.,	2019).	
It	 is	not	easy	 to	make	diagnostic	 tools	based	on	conventional	 sta-
tistical	methods	using	such	subtle	ECG	changes.	Deep	learning	has	
previously	been	used	in	the	medical	field	to	 identify	 lesions	and	is	
currently	 used	 to	 analyze	ECGs	 to	diagnose	heart	 failure,	 valvular	
heart	disease,	anemia,	and	coronary	artery	disease	(Attia,	Friedman,	
et	al.,	2019;	Attia,	Kapa,	et	al.,	2019;	Attia,	Noseworthy,	et	al.,	2019;	
Cho	et	al.,	2020;	Galloway	et	al.,	2019;	Jo	et	al.,	2020;	Kwon,	Cho,	
et	al.,	2020;	Kwon,	Kim,	et	al.,	2020;	Kwon,	Lee,	et	al.,	2020).	Recent	
studies	have	shown	that	deep	learning	models	can	detect	dyskale-
mia	 using	 ECG	 (Galloway	 et	 al.,	 2019;	 Lin	 et	 al.,	 2020).	 However,	
these	deep	learning	models	only	focused	on	detecting	dyskalemia.	In	
this	study,	we	developed	and	validated	a	deep	learning	model	(DLM)	
to detect electrolyte imbalance.

2  | METHODS

2.1 | Study design and population

We	 conducted	 a	 retrospective,	 multicenter,	 diagnostic	 study	 in	
which	 a	 DLM	was	 developed	 using	 ECGs	 and	 then	 internally	 and	

externally	 validated.	We	 excluded	 individuals	 with	missing	 demo-
graphic,	 electrocardiographic,	 and	electrolyte	 laboratory	examina-
tion	 information.	 Data	 from	 Sejong	 General	 Hospital	 (SGH)	 were	
used	for	development	and	internal	validation.	In	SGH,	we	identified	
patients	with	at	least	one	standard	digital,	10	s,	12-	lead	ECG	acquired	
in	the	supine	position	within	the	study	period	(October	1,	2016,	to	
August	31,	2020)	and	at	 least	one	electrolyte	 laboratory	panel	for	
three	electrolytes	(sodium	(Na),	potassium	(K),	and	calcium	(Ca))	ob-
tained	within	30	min	of	the	index	ECG.	The	individuals	who	visited	
the	general	health	checkup,	outpatient	department,	and	emergency	
department	and	were	admitted	to	SGH	were	the	study	population	
for	 the	development	and	 internal	validation	datasets.	As	shown	 in	
Figure	1,	patients	treated	at	SGH	were	randomly	split	into	algorithm	
development	 (80%)	 and	 internal	 validation	 (20%)	 datasets.	 Data	
from	Mediplex	Sejong	Hospital	(MSH)	were	used	for	external	valida-
tion.	The	Sejong	General	Hospital	(SGH)	is	a	cardiovascular	disease	
teaching	hospital,	and	the	Mediplex	Sejong	Hospital	(MSH)	is	a	gen-
eral	community	hospital.	We	identified	patients	who	were	admitted	
to	MSH	during	the	study	period	(March	1,	2017,	to	August	31,	2020)	
and	who	had	at	 least	one	ECG	and	one	electrolyte	 laboratory	ex-
amination	panel	obtained	within	30	min	of	the	index	ECG.	Because	
the	purpose	of	the	validation	data	was	to	assess	the	accuracy	of	the	
algorithm,	we	only	used	one	ECG	from	each	patient	for	the	internal	
and	external	validation	datasets,	specifically	the	electrolyte	exami-
nation	closest	to	their	most	recent	ECG	in	the	study	period.

This	 study	was	 approved	by	 the	 institutional	 review	boards	of	
SGH	and	MSH.	Clinical	data,	 including	digitally	 stored	ECGs,	elec-
trolyte	laboratory	examination	panel	values	(K,	Na,	and	Ca),	age,	and	
sex,	 were	 obtained	 from	 both	 hospitals.	 Both	 institutional	 review	
boards	waived	the	need	for	informed	consent	because	of	the	retro-
spective	nature	of	the	study,	which	used	fully	anonymized	ECG	and	
health data and caused minimal harm.

2.2 | Procedures

The	 predictor	 variables	 were	 ECG,	 age,	 and	 sex.	 Digitally	 stored	
12-	lead	ECG	data,	 amounting	 to	5,000	values	 for	each	 lead,	were	
recorded	over	10	s	(500	Hz).	One	second	each	was	removed	at	the	
beginning	and	end	of	each	ECG	because	 they	have	more	artifacts	
than	other	parts.	Because	of	 this,	 the	 length	of	each	ECG	was	8	s	
(4,000	values).	We	created	a	dataset	using	the	entire	12-	lead	ECG	
data.	We	 also	 used	 partial	 datasets	 from	 12-	lead	 ECG	 data,	 such	
as	limb	6-	lead	and	single-	lead	(I)	ECG	data.	We	selected	the	sets	of	
leads because they could easily be recorded by wearable and pad 
devices	in	contact	with	the	hands	and	legs.	Consequently,	when	we	
developed	and	validated	the	DLM	using	12-	lead	ECGs,	a	dataset	of	
two-	dimensional	(2D)	data	of	12	×	4,000	values	was	used.	When	we	
developed	and	validated	an	algorithm	using	6-	lead	ECGs,	we	used	
datasets that were 6 ×	 4,000	 values,	 and	when	 using	 single-	lead	
ECGs,	we	used	datasets	that	were	1	×	4,000	values.

The	objective	of	this	research	was	to	determine	abnormalities	of	
electrolytes,	 defined	by	 serum	electrolyte	 concentrations.	Normal	
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concentration	range	of	K,	Na,	and	Ca	were	3.5–	5.5	mmol/L,	130–	
150	mmol/L,	 and	 8.0–	11.0	mg/dl.	We	 developed	 a	DLM	 for	 each	
electrolyte	 imbalance	 independently,	 because	 the	 model	 trained	
using	the	transfer	 learning	method	was	overfitted	to	 local	optima,	
and	it	showed	poor	performance.

The	sampling	rate	of	the	ECG	data	was	fixed	at	500	Hz.	We	car-
ried	out	a	pre-	processing	step	for	the	ECG	data.	First,	we	eliminated	
high-	frequency	noise,	 such	as	electrical	 line	artifacts,	using	a	 low-	
pass	filter	set	at	150	Hz.	Second,	we	removed	low-	frequency	noise,	
such	 as	 chest	wall	movement	 due	 to	 breathing,	 using	 a	 high-	pass	
filter	set	at	0.05	Hz.	Finally,	we	normalized	the	Z-	score	for	the	ECG	
data.

As	shown	in	Figure	2,	we	developed	a	DLM	based	on	an	ensem-
ble	network.	We	developed	each	DLM	to	determine	the	presence	of	
each	electrolyte	imbalance,	such	as	hyperkalemia,	hypokalemia,	hy-
pernatremia,	hyponatremia,	hypercalcemia,	and	hypocalcemia.	Each	
DLM	was	developed	using	six	residual	blocks	of	the	neural	network	
to	 learn	 complex	 hierarchical	 non-	linear	 representations	 from	 the	
data	(LeCun	et	al.,	2015).	In	a	residual	block	with	four	stages,	there	
were two convolution layers and two batch normalizations layer re-
peated.	The	last	layer	of	the	sixth	residual	block	was	connected	to	a	
flattened	layer,	which	was	fully	connected	to	the	1D	layer	composed	

of	neural	nodes.	The	values	 for	 age	and	 sex	were	 inputted	 to	 the	
input	layer	of	a	multilayer	perceptron	(MLP)	consisting	of	three	1D	
layers.	The	1D	ECG,	obtained	after	passing	the	2D	ECG	data	through	
the	flattened	layer,	and	the	1D	age	and	sex	data	were	concatenated	
and	fully	connected	to	the	1st	ensemble	layer.	The	second	fully	con-
nected	1D	layer	was	connected	to	the	output	layer.	The	output	layer	
was	composed	of	two	nodes.	The	value	of	the	output	node	of	each	
DLM	represented	the	probability	of	each	electrolyte	imbalance,	and	
the	 output	 node	 of	 each	DLM	used	 a	 softmax	 function	 as	 an	 ac-
tivation	 function	because	 the	output	of	 the	softmax	 function	was	
between	0	and	1.	As	a	comparative	model,	we	also	developed	classi-
fication	models	using	conventional	statistical	model	(logistic	regres-
sion)	and	conventional	machine	learning	model	(random	fores).	We	
used glm and randomForest	of	R	to	develop	prediction	models.

As	most	of	the	medical	test	results	are	normal,	medical	data	often	
are	imbalanced	between	normal	and	positive	cases.	In	this	study,	the	
electrolyte imbalanced data were also imbalanced. We used over-
sampling and undersampling simultaneously in the training process. 
When	we	trained	the	DLM,	we	oversampled	the	positive	case,	allow-
ing	duplication	by	3–	5	times,	and	undersampled	the	normal	case	by	
half.	We	determined	the	ratios	for	oversampling	and	undersampling	
using a grid search.

F I G U R E  1  Study	flowchart.	ECG	denotes	electrocardiography
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F I G U R E  2  Architecture	of	deep	
learning-	based	model	for	detecting	
electrolyte	imbalance.	Conv	denotes	
convolutional	neural	network	and	ECG	
electrocardiography
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2.3 | Statistical analysis

Continuous	 variables	 were	 represented	 as	 mean	 values	 (standard	
deviation,	SD)	and	compared	using	the	unpaired	Student's	t-	test	or	
Mann-	Whitney	U-	test.	Categorical	variables	were	expressed	as	fre-
quencies	and	percentages	and	compared	using	the	chi-	square	test.

At	 each	 input	 (ECG)	 of	 validation	 data,	 the	 DLM	 calculated	
the	probability	of	electrolyte	 imbalance	 in	 the	 range	 from	0	 (non-	
electrolyte	 imbalance)	 to	1	 (electrolyte	 imbalance).	To	confirm	 the	
DLM	performance,	we	compared	the	probability	calculated	by	the	
DLM	with	the	presence	of	electrolyte	imbalance	in	the	internal	and	
external	 validation	 datasets.	 For	 this	 purpose,	 we	 used	 the	 area	
under	the	receiver	operating	characteristic	curve	(AUC).	Confidence	
intervals	(CIs)	of	95%	were	used	for	all	measures	of	diagnostic	per-
formance,	except	for	the	AUC.	We	selected	the	cutoff	point	for	cal-
culating	the	sensitivity,	specificity,	PPV,	and	NPV	of	 the	validation	
dataset	when	the	sensitivity	was	90%	in	the	development	dataset.	
The	purpose	of	the	DLM	was	to	screen	for	electrolyte	imbalance	and	
to	refer	the	patient	for	confirmatory	laboratory	tests	if	needed.	We	
selected	a	high-	sensitivity	point	as	the	cutoff	point.	The	CIs	for	the	
AUC	were	determined	based	on	the	Sun	and	Su	optimization	of	the	
De-	long	method	using	the	pROC	package	in	R	(The	R	Foundation	for	
Statistical	 Computing,	 Vienna,	 Austria).	 A	 significant	 difference	 in	
patient	characteristics	was	defined	as	a	two-	sided	p-	value	of	<.001. 
Statistical	analyses	were	computed	using	R	software,	version	3.4.2.	
In	addition,	we	used	PyTorch's	open-	source	software	library	at	the	
backend	and	Python	(version	3.6.11)	for	the	analyses.

2.4 | Visualizing the developed XDM for 
interpretation

To	understand	the	model	and	draw	a	comparison	with	existing	medi-
cal	knowledge,	it	was	necessary	to	identify	a	region	that	had	a	sig-
nificant	effect	on	the	decision	of	the	developed	DLM.	We	employed	
a	sensitivity	map	using	a	saliency	method.	The	map	was	computed	
using	the	first-	order	gradients	of	the	classifier	probabilities	with	re-
spect	to	the	input	signals;	if	the	probability	of	a	classifier	is	sensitive	
to	 a	 specific	 region	 of	 the	 signal,	 the	 region	would	 be	 considered	
significant	 in	 the	model.	We	 used	 a	 gradient	 class	 activation	map	
as	 a	 sensitivity	 map	 with	 the	 gradient	 backpropagation	 method	
(Selvaraju	et	al.,	2017,	2020).

3  | RESULTS

The	eligible	population	included	60,479	and	31,704	patients	at	SGH	
and	MSH,	respectively.	We	excluded	32	and	11	patients	(from	SGH	
and	MSH,	respectively)	because	of	missing	age	and	sex	data,	labora-
tory	evaluation	 information,	or	ECG	data	 (Figure	1).	 The	 study	 in-
cluded	92,140	patients,	of	whom	4,638	had	electrolyte	imbalance.	
There	were	163,	83,	 and	241	patients	who	had	electrolyte	 imbal-
ances	“potassium	and	sodium,”	“calcium	and	sodium,”	and	“potassium	

and	calcium,”	respectively.	The	DLM	was	developed	using	a	devel-
opment	dataset	of	83,449	12-	lead	ECGs	for	48,356	patients.	Then,	
the	performance	of	the	algorithm	was	examined	using	12,091	ECGs	
from	the	12,091	patients	in	the	internal	validation	dataset	from	SGH	
and	31,693	ECGs	from	the	31,693	patients	in	the	external	validation	
dataset	from	MSH	(Figure	1	and	Table	1).

In	hyperkalemia	patients,	the	ECGs	had	prolonged	QRS	duration,	
prolonged	QTc,	 rightward	T-	wave	axis,	 prolonged	PR	 interval,	 and	
tachycardia	(Table	2).	Sodium	imbalance	had	correlation	with	heart	
rate,	presence	of	atrial	fibrillation,	PR	interval,	QRS	duration,	QT	in-
terval,	QTc,	 and	T-	wave	 axis.	Calcium	abnormality	had	 correlation	
with	heart	rate,	presence	of	atrial	fibrillation,	QRS	duration,	QT	in-
terval,	QTc,	R-	wave	axis,	and	T-	wave	axis	(Table	2).

During	 internal	 validation,	 the	AUC	 of	 the	DLM	using	 12-	lead	
ECG	 for	 detecting	 hyperkalemia,	 hypokalemia,	 hypernatremia,	 hy-
ponatremia,	 hypercalcemia,	 and	 hypocalcemia	 was	 0.945	 (95%	
confidence	 interval,	 0.931–	0.959),	 0.866	 (0.854–	0.878),	 0.944	
(0.895–	0.993),	 0.885	 (0.869–	0.900),	 0.905	 (0.806–	1.000),	 and	
0.901	 (0.880–	0.922),	 respectively	 (Figure	 3	 and	 Table	 3).	 During	
external	validation,	the	AUC	of	the	DLM	using	12-	lead	ECG	for	de-
tecting	 hyperkalemia,	 hypokalemia,	 hypernatremia,	 hyponatremia,	
hypercalcemia,	 and	hypocalcemia	was	0.873	 (0.843–	0.902),	 0.857	
(0.846–	0.867),	 0.839	 (0.727–	0.951),	 0.856	 (0.831–	0.880),	 0.831	
(0.723–	0.939),	and	0.813	(0.793–	0.834),	respectively	(Figure	3	and	
Table	3).	There	were	no	significant	differences	in	DLM	performance	
between patients with multiple electrolyte imbalances simulta-
neously	and	patients	with	one	electrolyte	 imbalance.	As	shown	 in	
Figure	3,	the	DLM	outperformed	the	logistic	regression	and	random	
forest	models	for	internal	and	external	validation	datasets.

During	 external	 validation,	 the	 AUC	 of	 the	 DLM	 using	 6-	
lead	 ECG	 for	 detecting	 hyperkalemia,	 hypokalemia,	 hypernatre-
mia,	 hyponatremia,	 hypercalcemia,	 and	 hypocalcemia	 was	 0.860	
(0.831–	0.888),	 0.831	 (0.819–	0.843),	 0.833	 (0.738–	0.928),	 0.851	
(0.825–	0.876),	 0.813	 (0.726–	0.900),	 and	 0.812	 (0.792–	0.833),	 re-
spectively	 (Figure	 3	 and	 Table	 3).	 During	 external	 validation,	 the	
AUC	of	the	DLM	using	single-	lead	ECG	for	detecting	hyperkalemia,	
hypokalemia,	hypernatremia,	hyponatremia,	hypercalcemia,	and	hy-
pocalcemia	 was	 0.843	 (0.812–	0.874),	 0.792	 (0.779–	0.804),	 0.806	
(0.690–	0.923),	0.839	(0.813–	0.864),	0.634	(0.522–	0.746),	and	0.798	
(0.777–	0.819),	respectively	(Figure	3	and	Table	3).

The	DLM	 described	 the	 important	 ECG	 region	 to	 detect	 each	
electrolyte	imbalance.	As	shown	in	Figure	4,	the	DLM	focused	on	the	
QRS	complex	for	detecting	hyperkalemia,	hypokalemia,	and	hypona-
tremia.	The	DLM	focused	on	the	T	wave	for	detecting	hyperkalemia	
and	on	the	S	wave	for	detecting	hypernatremia	and	hypercalcemia.	
We	provided	a	full-	size	sensitivity	map	in	the	supplemental	material	
(Figures	S1-	S6).

4  | DISCUSSION

We	developed	and	validated	a	DLM	for	electrolyte	 imbalance	de-
tection	using	a	12-	lead,	6-	lead,	and	single-	lead	ECG.	In	addition,	we	
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showed	the	ECG	region	that	had	a	significant	effect	on	the	decision	
of	the	developed	DLM.	To	the	best	of	our	knowledge,	this	study	is	
the	 first	 to	 develop	 an	 artificial	 intelligence	 algorithm	 for	 detect-
ing	electrolyte	imbalance	and	to	show	the	interpretable	patterns	of	
decision	making	using	artificial	intelligence	in	the	biosignal	domain.	
The	purpose	of	a	DLM	is	to	screen	the	electrolyte	imbalance	using	
ECG,	which	 is	 noninvasive,	 economical,	 and	 obtained	 using	wear-
able	devices;	the	DLM	refers	the	patients	to	conduct	confirmative	
laboratory	examinations	 if	electrolyte	 imbalance	 is	suspected.	For	
example,	renal	failure	patients	can	be	screened	for	critical	electro-
lyte	 imbalance	using	wearable	ECG	devices	and	can	then	visit	 the	
hospital	for	confirmative	laboratory	tests;	this	is	important	to	pre-
vent	 deterioration	 of	 patients'	 condition	 and	 irreversible	 disease	
progression.

Electrolyte	balance	is	a	cornerstone	to	evaluate	the	general	con-
dition	of	patients	and	conduct	proper	management	of	many	meta-
bolic	disorders	(Kadri,	2013;	Lee	et	al.,	2000).	Detecting	electrolyte	
imbalance	is	important	for	the	diagnosis	of	new	metabolic	diseases	
and	management	of	 patients	with	diseases	 that	 impair	 electrolyte	

homeostasis,	 such	 as	 renal	 failure,	 diabetes	 insipidus,	 severe	 diar-
rhea,	 hyperparathyroidism,	 and	diabetes	 ketoacidosis	 (Dhondup	&	
Qian,	2017;	Liamis,	2014;	Papi	et	al.,	2014;	Priyamvada	et	al.,	2015).	
Monitoring	electrolyte	imbalance	is	important	for	managing	patients	
who	have	medication,	which	could	alter	the	homeostasis	of	electro-
lytes	such	as	diuretics	(Lim	et	al.,	2016).	The	symptoms	of	electro-
lyte	imbalance	are	vague	and	nonspecific	(Kadri,	2013).	Diagnostic	
examination	is	a	laboratory	examination	that	requires	invasive	blood	
sampling	and	cannot	be	conducted	daily.	Because	of	this,	a	new	tech-
nology	is	required	for	detecting	electrolyte	imbalance	using	simple	
and	noninvasive	methods	and	for	daily	use.	As	ECG	is	a	noninvasive	
test	and	changes	with	electrolyte	imbalance,	we	developed	a	DLM	
for	detecting	electrolyte	imbalance	using	ECG.

In	many	previous	studies,	electrolyte	imbalance	is	shown	to	af-
fect	ECG.	A	progressive	change	from	peaked	T	waves	to	wide	QRS	
can	correlate	with	hyperkalemia	(Littmann	&	Gibbs,	2018).	Increased	
amplitude	 and	 width	 of	 P	 wave,	 T-	wave	 flattening	 and	 inversion,	
prominent	U	waves,	 and	apparent	 long	QR	 intervals	 can	 correlate	
with	 hypokalemia	 (Levis,	 2012).	 The	 most	 common	 ECG	 finding	

TA B L E  1  Study	population	characteristics

Characteristic
Sejong General Hospital (development and 
internal validation data)

Mediplex Sejong Hospital (external 
validation data) p

Study	population 60,447 31,693

Age,	year,	mean	(SD) 59.76	(16.22) 54.57	(16.50) <.001

Male,	n	(%) 31,634	(52.3) 15,844	(50.0) <.001

Heart	rate,	bpm,	mean	(SD) 72.89	(18.54) 69.83	(14.06) <.001

Atrial	fibrillation,	n	(%) 6,483	(10.7) 1,491	(4.7) <.001

PR	interval,	ms,	mean	(SD) 171.03	(30.01) 167.13	(26.39) <.001

QRS	duration,	ms,	mean	(SD) 96.65	(18.01) 94.97	(14.84) <.001

QT	interval,	ms,	mean	(SD) 404.53	(42.35) 404.70	(36.14) .559

QTc,	ms,	mean	(SD) 438.62	(34.92) 431.98	(30.89) <.001

P-	wave	axis,	mean	(SD) 43.91	(30.44) 44.04	(27.44) .544

R-	wave	axis,	mean	(SD) 39.17	(44.74) 40.74	(39.62) <.001

T-	wave	axis,	mean	(SD) 45.60	(49.34) 39.68	(35.50) <.001

Potassium,	mmol/L,	mean	(SD) 4.22	(0.47) 4.08	(0.44) <.001

Sodium,	mmol/L,	mean	(SD) 140.10	(3.07) 141.29	(3.10) <.001

Calcium,	mg/dl,	mean	(SD) 9.37	(0.46) 9.11	(0.45) <.001

Potassium	abnormalities <.001

Hypokalemia	(<3.5) 2,082	(3.4) 1,052	(3.3)

Normokalemia	(3.5–	5.5) 57,766	(95.6) 30,449	(96.1)

Hyperkalemia	(>5.5) 599	(1.0) 192	(0.6)

Sodium	abnormalities <.001

Hyponatremia	(<130) 605	(1.0) 217	(0.7)

Normonatremia	(130–	150) 59,793	(98.9) 31,448	(99.2)

Hypernatremia	(>150) 49	(0.1) 28	(0.1)

Calcium	abnormalities <.001

Hypocalcemia	(<8.0) 503	(0.8) 397	(1.3)

Normocalcemia	(8.0–	11.0) 59,859	(99.0) 31,268	(98.7)

Hypercalcemia	(>11.0) 85	(0.1) 28	(0.1)
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associated	 with	 hypercalcemia	 is	 shortening	 of	 the	 QR	 interval,	
and	 the	most	 common	ECG	 finding	 associated	with	 hypocalcemia	
is	a	prolonged	QT	 interval	 (Chorin	et	al.,	2016).	Although	the	ECG	

pattern	is	associated	with	electrolyte	imbalance,	diagnostic	criteria	
and methods could not be made based on conventional statistical 
methods.

TA B L E  2  Study	population	characteristics	stratified	by	electrolyte	abnormalities

Potassium abnormality

Characteristics Hypokalemia Normokalemia Hyperkalemia p

Study	population,	n 3,134 88,215 791

Age,	year,	mean	(SD) 60.75	(18.02) 57.75	(16.42) 71.58	(13.13) <.001

Male,	n	(%) 1,260	(40.2) 45,811	(51.9) 407	(51.5) <.001

Heart	rate,	bpm,	mean	(SD) 82.16	(21.31) 71.42	(16.81) 77.02	(25.91) <.001

Atrial	fibrillation,	n	(%) 310	(9.9) 7,478	(8.5) 186	(23.5) <.001

PR	interval,	ms,	mean	(SD) 171.70	(31.19) 169.43	(28.46) 186.21	(51.41) <.001

QRS	duration,	ms,	mean	(SD) 97.51	(18.27) 95.94	(16.82) 104.63	(26.81) <.001

QT	interval,	ms,	mean	(SD) 401.14	(50.74) 404.64	(39.66) 412.46	(60.33) <.001

QTc,	ms,	mean	(SD) 459.94	(39.34) 435.36	(33.03) 452.34	(47.21) <.001

P-	wave	axis,	mean	(SD) 46.03	(31.65) 43.89	(29.21) 43.50	(39.96) .001

R-	wave	axis,	mean	(SD) 37.69	(47.01) 39.83	(42.75) 34.67	(57.45) <.001

T-	wave	axis,	mean	(SD) 46.54	(63.76) 43.22	(44.08) 69.44	(62.04) <.001

Sodium abnormality

Characteristics Hyponatremia Normonatremia Hypernatremia p

Study	population,	n 822 91,241 77

Age,	year,	mean	(SD) 73.18	(12.86) 57.82	(16.46) 73.16	(16.81) <.001

Male,	n	(%) 347	(42.2) 47,092	(51.6) 39	(50.6) <.001

Heart	rate,	bpm,	mean	(SD) 83.68	(23.31) 71.71	(17.07) 94.92	(26.55) <.001

Atrial	fibrillation,	n	(%) 134	(16.3) 7,827	(8.6) 13	(16.9) <.001

PR	interval,	ms,	mean	(SD) 179.83	(37.80) 169.56	(28.71) 157.17	(43.76) <.001

QRS	duration,	ms,	mean	(SD) 101.51	(24.73) 96.02	(16.90) 101.31	(26.48) <.001

QT	interval,	ms,	mean	(SD) 401.86	(58.11) 404.63	(40.09) 383.43	(67.75) <.001

QTc,	ms,	mean	(SD) 461.66	(46.02) 436.08	(33.49) 468.35	(50.71) <.001

P-	wave	axis,	mean	(SD) 45.20	(39.27) 43.95	(29.29) 40.28	(35.84) .370

R-	wave	axis,	mean	(SD) 36.74	(54.23) 39.73	(42.92) 44.49	(59.59) .089

T-	wave	axis,	mean	(SD) 59.76	(67.55) 43.38	(44.81) 83.08	(85.74) <.001

Calcium abnormality

Characteristics Hypocalcemia Normocalcemia Hypercalcemia p

Study	population,	n 900 91,127 113

Age,	year,	mean	(SD) 68.37	(17.10) 57.86	(16.47) 64.86	(14.11) <.001

Male,	n	(%) 470	(52.2) 46,965	(51.5) 43	(38.1) .015

Heart	rate,	bpm,	mean	(SD) 84.96	(28.76) 71.69	(16.98) 83.80	(23.70) <.001

Atrial	fibrillation,	n	(%) 135	(15.0) 7,822	(8.6) 17	(15.0) <.001

PR	interval,	ms,	mean	(SD) 169.98	(36.29) 169.62	(28.75) 173.83	(30.34) .340

QRS	duration,	ms,	mean	(SD) 99.07	(22.95) 96.04	(16.93) 100.00	(21.82) <.001

QT	interval,	ms,	mean	(SD) 410.59	(58.95) 404.56	(40.06) 382.00	(54.44) <.001

QTc,	ms,	mean	(SD) 474.84	(50.48) 435.95	(33.30) 440.17	(40.41) <.001

P-	wave	axis,	mean	(SD) 43.45	(36.32) 43.96	(29.30) 43.88	(41.66) .899

R-	wave	axis,	mean	(SD) 34.45	(52.85) 39.77	(42.93) 31.10	(49.77) <.001

T-	wave	axis,	mean	(SD) 64.54	(70.93) 43.35	(44.75) 52.04	(60.04) <.001
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F I G U R E  3  Performances	of	deep	learning-	based	model	for	detecting	electrolyte	abnormalities.	AUC	denotes	area	under	the	receiver	
operating	characteristic	curve,	DLM	deep	learning-	based	model,	and	ECG	electrocardiography
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Internal validation of DLM using 6−lead ECG, AUC=0.866 (0.854−0.877)
Internal validation of DLM using 1−lead ECG, AUC=0.797 (0.782−0.811)
Internal validation of Logistic regression, AUC= 0.709 (95%CI:0.678−0.740)
Internal validation of Random forest, AUC= 0.691 (95%CI:0.661−0.721)
External validation of DLM using 12−lead ECG, AUC=0.857 (0.846−0.867)
External validation of DLM using 6−lead ECG, AUC=0.831 (0.819−0.843)
External validation of DLM using 1−lead ECG, AUC=0.792 (0.779−0.804)
External validation of Logistic regression, AUC= 0.728 (95%CI:0.716−0.739)
External validation of Random forest, AUC= 0.706 (95%CI:0.694−0.718)

Validation for detecting hyponatremia

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Internal validation of DLM using 12−lead ECG, AUC=0.885 (0.869−0.900)
Internal validation of DLM using 6−lead ECG, AUC=0.869 (0.852−0.885)
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Validation for detecting hypocalcemia

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Internal validation of DLM using 12−lead ECG, AUC=0.901 (0.880−0.922)
Internal validation of DLM using 6−lead ECG, AUC=0.876 (0.858−0.894)
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TA B L E  3  Performances	of	deep	learning-	based	model	for	detecting	electrolyte	imbalance	using	electrocardiography

Deep learning- based 
models (DLMs)

Internal validation (95% confidence interval) External validation (95% confidence interval)

AUC SEN SPE PPV NPV AUC SEN SPE PPV NPV

Hyperkalemia

DLM	using	12-	lead	ECG 0.945	(0.931–	0.959) 0.901	(0.807–	0.959) 0.850	(0.843–	0.856) 0.038	(0.030–		0.049) 0.999	(0.998–	1.000) 0.873	(0.843–	0.902) 0.896	(0.848–	0.934) 0.599	(0.594–		0.604) 0.014	(0.012–		0.016) 0.999	(0.998–	1.000)

DLM	using	6-	lead	ECG 0.908	(0.894–	0.922) 0.915	(0.825–		0.968) 0.829	(0.822–	0.836) 0.034	(0.027–	0.044) 0.999	(0.998–	1.000) 0.860	(0.831–	0.888) 0.892	(0.842–	0.930) 0.568	(0.560–	0.570) 0.012	(0.011–	0.014) 0.999	(0.998–	1.000)

DLM	using	1-	lead	ECG 0.903	(0.888–	0.918) 0.887	(0.790–		0.950) 0.866	(0.859–	0.872) 0.042	(0.033–	0.054) 0.999	(0.998–	1.000) 0.843	(0.812–	0.874) 0.897	(0.848–	0.934) 0.413	(0.407–	0.418) 0.009	(0.008–	0.011) 0.998	(0.998–	0.999)

Hypokalemia

DLM	using	12-	lead	ECG 0.866	(0.854–	0.878) 0.893	(0.858–	0.922) 0.704	(0.695–	0.713) 0.100	(0.091–	0.111) 0.994	(0.992–	0.996) 0.857	(0.846–	0.867) 0.896	(0.882–	0.908) 0.560	(0.554–	0.565) 0.120	(0.115–	0.125) 0.988	(0.986–	0.989)

DLM	using	6-	lead	ECG 0.866	(0.854–	0.877) 0.896	(0.861–	0.924) 0.647	(0.638–	0.656) 0.086	(0.077–	0.095) 0.994	(0.992–	0.996) 0.831	(0.819–	0.843) 0.914	(0.901–	0.925) 0.435	(0.430–	0.440) 0.098	(0.094–	0.102) 0.987	(0.985–	0.989)

DLM	using	1-	lead	ECG 0.797	(0.782–	0.811) 0.930	(0.899–	0.953) 0.465	(0.455–	0.475) 0.060	(0.054–	0.067) 0.994	(0.992–	0.996) 0.792	(0.779–	0.804) 0.888	(0.874–	0.901) 0.437	(0.432–	0.443) 0.096	(0.092–	0.100) 0.983	(0.981–	0.985)

Hypernatremia

DLM	using	12-	lead	ECG 0.944	(0.895–	0.993) 0.923	(0.640–	0.998) 0.634	(0.625–	0.643) 0.003	(0.002–	0.005) 1.000	(0.999–	1.000) 0.839	(0.727–	0.951) 0.870	(0.751–	0.946) 0.649	(0.644–	0.654) 0.004	(0.003–	0.005) 1.000	(0.999–	1.000)

DLM	using	6-	lead	ECG 0.903	(0.807–	0.999) 0.923	(0.640–	0.998) 0.488	(0.478–	0.497) 0.002	(0.001–	0.004) 1.000	(0.999–	1.000) 0.833	(0.738–	0.928) 0.889	(0.774–	0.958) 0.456	(0.451–	0.461) 0.003	(0.002–	0.003) 1.000	(0.999–	1.000)

DLM	using	1-	lead	ECG 0.895	(0.816–	0.973) 0.846	(0.546–	0.981) 0.347	(0.338–	0.357) 0.002	(0.001–	0.003) 0.999	(0.998–	1.000) 0.806	(0.690–	0.923) 0.907	(0.797–	0.969) 0.253	(0.249–	0.258) 0.002	(0.001–	0.002) 0.999	(0.999–	1.000)

Hyponatremia

DLM	using	12-	lead	ECG 0.885	(0.869–	0.900) 0.901	(0.821–	0.954) 0.820	(0.812–	0.827) 0.041	(0.033–	0.051) 0.999	(0.998–	1.000) 0.856	(0.831–	0.880) 0.887	(0.845–	0.921) 0.629	(0.624–	0.634) 0.020	(0.017–	0.022) 0.998	(0.998–	0.999)

DLM	using	6-	lead	ECG 0.869	(0.852–	0.885) 0.890	(0.807–	0.946) 0.797	(0.789–	0.805) 0.036	(0.029–	0.045) 0.999	(0.998–	0.999) 0.851	(0.825–	0.876) 0.887	(0.845–	0.921) 0.599	(0.594–	0.604) 0.018	(0.016–	0.021) 0.998	(0.998–	0.999)

DLM	using	1-	lead	ECG 0.834	(0.814–	0.853) 0.912	(0.834–	0.961) 0.686	(0.677–	0.694) 0.024	(0.019–	0.030) 0.999	(0.998–	1.000) 0.839	(0.813–	0.864) 0.915	(0.877–	0.944) 0.477	(0.472–	0.483) 0.015	(0.013–	0.016) 0.998	(0.998–	0.999)

Hypercalcemia

DLM	using	12-	lead	ECG 0.905	(0.806–	1.000) 0.909	(0.708–	0.989) 0.521	(0.511–	0.530) 0.004	(0.002–	0.006) 1.000	(0.999–	1.000) 0.831	(0.723–	0.939) 0.852	(0.738–	0.930) 0.794	(0.790–	0.798) 0.007	(0.005–	0.009) 1.000	(0.999–	1.000)

DLM	using	6-	lead	ECG 0.878	(0.791–	0.966) 0.864	(0.651–	0.971) 0.605	(0.596–	0.615) 0.004	(0.003–	0.007) 1.000	(0.999–	1.000) 0.813	(0.726–	0.900) 0.885	(0.778–	0.953) 0.690	(0.685–	0.695) 0.005	(0.004–	0.006) 1.000	(0.999–	1.000)

DLM	using	1-	lead	ECG 0.875	(0.786–	0.965) 0.909	(0.708–	0.989) 0.352	(0.343–	0.361) 0.003	(0.002–	0.004) 0.999	(0.998–	1.000) 0.634	(0.522–	0.746) 0.918	(0.819–	0.973) 0.592	(0.587–	0.597) 0.004	(0.003–	0.005) 1.000	(0.999–	1.000)

Hypocalcemia

DLM	using	12-	lead	ECG 0.901	(0.880–	0.922) 0.891	(0.809–	0.947) 0.847	(0.84–	0.854) 0.048	(0.038–	0.059) 0.999	(0.998–	0.999) 0.813	(0.793–	0.834) 0.905	(0.877–	0.929) 0.551	(0.546–	0.557) 0.031	(0.028–	0.033) 0.997	(0.996–	0.998)

DLM	using	6-	lead	ECG 0.876	(0.858–	0.894) 0.902	(0.822–	0.954) 0.777	(0.769–	0.785) 0.034	(0.027–	0.042) 0.999	(0.998–	1.000) 0.812	(0.792–	0.833) 0.928	(0.902–	0.948) 0.473	(0.467–	0.478) 0.027	(0.024–	0.029) 0.998	(0.997–	0.998)

DLM	using	1-	lead	ECG 0.860	(0.839–	0.882) 0.913	(0.836–	0.962) 0.752	(0.744–	0.760) 0.031	(0.025–	0.038) 0.999	(0.998–	1.000) 0.798	(0.777–	0.819) 0.883	(0.853–	0.909) 0.547	(0.541–	0.552) 0.030	(0.027–	0.032) 0.997	(0.996–	0.997)
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The	most	 important	aspect	of	deep	learning	is	 its	ability	to	ex-
tract	features	and	develop	an	algorithm	using	various	types	of	data,	
such	as	images,	2D	data,	and	waveforms.	In	previous	studies,	Attia	
and	 colleagues	 and	 our	 study	 group	 developed	 a	 deep	 learning-	
based	model	to	screen	for	heart	failure,	arrhythmia,	valvular	heart	
disease,	 left	ventricular	hypertrophy,	and	anemia	 (Attia,	Friedman,	
et	al.,	2019;	Attia,	Kapa,	et	al.,	2019;	Attia,	Noseworthy,	et	al.,	2019;	
Cho	et	al.,	2020;	Galloway	et	al.,	2019;	Jo	et	al.,	2020;	Kwon,	Cho,	
et	al.,	2020;	Kwon,	Kim,	et	al.,	2020;	Kwon,	Lee,	et	al.,	2020).	In	re-
cent	 studies,	 Attia	 and	 colleagues	 showed	 that	 hyperkalemia	 and	
hypokalemia	could	be	detected	using	ECG	based	on	a	deep	learning	
model	(Galloway	et	al.,	2019).	However,	the	studies	focused	only	on	
the	imbalance	of	potassium	and	could	not	detect	other	electrolyte	
imbalances.	Therefore,	we	developed	a	DLM	for	detecting	electro-
lyte	imbalance,	including	potassium,	sodium,	and	calcium.

We	adopted	a	sensitivity	map	to	describe	the	abnormal	finding	
that	affects	the	decision	of	DLM	for	detecting	electrolyte	imbalance.	
Using	this	methodology,	we	could	confirm	an	ECG	region	that	was	
associated with each electrolyte imbalance. In conventional meth-
ods,	 the	 research	process	was	started	based	on	 the	hypothesis	of	
researchers.	For	example,	in	the	association	between	hyperkalemia	
and	ECG,	researchers	made	a	hypothesis	based	on	researchers'	ex-
perience	of	 reading	 the	ECG	of	hyperkalemia	patients.	This	meth-
odology	 limited	 the	 opportunity	 to	 discover	 knowledge	 in	 human	
perception.	In	deep	learning	methods,	such	as	DLM	and	sensitivity	

map	 in	 this	 study,	 the	 findings	were	not	 based	on	previous	medi-
cal	knowledge	of	humans	but	data	itself.	Because	of	this,	we	could	
have	the	opportunity	to	discover	new	knowledge	from	the	data	itself	
without	human	prejudice.	Deep	learning	could	discover	the	complex	
hierarchical	non-	linear	representation	that	could	not	be	discovered	
using	conventional	statistical	methods,	such	as	logistic	regression.	In	
this	study,	we	could	confirm	the	important	ECG	region	for	detecting	
each	electrolyte	 imbalance	 from	waveform	data.	For	example,	 the	
DLM	focused	on	T	wave	and	QRS	complex	for	detecting	hyperkale-
mia	and	hypokalemia.	These	findings	were	in	agreement	with	those	
in	previous	studies	(Levis,	2012;	Littmann	&	Gibbs,	2018).

In	 a	 previous	 multicenter	 study,	 Galloway	 et	 al.	 showed	 the	
performance	 of	 DLM-	enabled	 ECG	 for	 detecting	 hyperkalemia	
(Galloway	 et	 al.,	 2019).	 Following	 this,	 there	were	 several	 studies	
conducted	for	detecting	potassium	imbalance	using	ECG	based	on	a	
DLM.	In	the	present	study,	we	developed	a	DLM	to	detect	not	only	
potassium	 imbalance,	but	 also	 sodium	and	calcium	 imbalances.	As	
sodium and calcium imbalances are also important in the diagnosis 
of	 hidden	disease	 and	 the	management	of	 patients,	 the	 results	 of	
the	present	 study	will	 be	 the	basis	 for	 further	 studies.	This	 is	 the	
first	study	to	use	a	sensitivity	map	for	electrolyte	imbalance	analysis.	
Using	the	proposed	method,	we	clarified	the	important	ECG	lesion	
for	a	DLM	to	detect	electrolyte	 imbalance.	We	also	compared	our	
results	with	previous	medical	knowledge	regarding	the	correlation	
between	electrolyte	 imbalance	and	ECG.	As	deep	 learning	models	

TA B L E  3  Performances	of	deep	learning-	based	model	for	detecting	electrolyte	imbalance	using	electrocardiography

Deep learning- based 
models (DLMs)

Internal validation (95% confidence interval) External validation (95% confidence interval)

AUC SEN SPE PPV NPV AUC SEN SPE PPV NPV

Hyperkalemia

DLM	using	12-	lead	ECG 0.945	(0.931–	0.959) 0.901	(0.807–	0.959) 0.850	(0.843–	0.856) 0.038	(0.030–		0.049) 0.999	(0.998–	1.000) 0.873	(0.843–	0.902) 0.896	(0.848–	0.934) 0.599	(0.594–		0.604) 0.014	(0.012–		0.016) 0.999	(0.998–	1.000)

DLM	using	6-	lead	ECG 0.908	(0.894–	0.922) 0.915	(0.825–		0.968) 0.829	(0.822–	0.836) 0.034	(0.027–	0.044) 0.999	(0.998–	1.000) 0.860	(0.831–	0.888) 0.892	(0.842–	0.930) 0.568	(0.560–	0.570) 0.012	(0.011–	0.014) 0.999	(0.998–	1.000)

DLM	using	1-	lead	ECG 0.903	(0.888–	0.918) 0.887	(0.790–		0.950) 0.866	(0.859–	0.872) 0.042	(0.033–	0.054) 0.999	(0.998–	1.000) 0.843	(0.812–	0.874) 0.897	(0.848–	0.934) 0.413	(0.407–	0.418) 0.009	(0.008–	0.011) 0.998	(0.998–	0.999)

Hypokalemia

DLM	using	12-	lead	ECG 0.866	(0.854–	0.878) 0.893	(0.858–	0.922) 0.704	(0.695–	0.713) 0.100	(0.091–	0.111) 0.994	(0.992–	0.996) 0.857	(0.846–	0.867) 0.896	(0.882–	0.908) 0.560	(0.554–	0.565) 0.120	(0.115–	0.125) 0.988	(0.986–	0.989)

DLM	using	6-	lead	ECG 0.866	(0.854–	0.877) 0.896	(0.861–	0.924) 0.647	(0.638–	0.656) 0.086	(0.077–	0.095) 0.994	(0.992–	0.996) 0.831	(0.819–	0.843) 0.914	(0.901–	0.925) 0.435	(0.430–	0.440) 0.098	(0.094–	0.102) 0.987	(0.985–	0.989)

DLM	using	1-	lead	ECG 0.797	(0.782–	0.811) 0.930	(0.899–	0.953) 0.465	(0.455–	0.475) 0.060	(0.054–	0.067) 0.994	(0.992–	0.996) 0.792	(0.779–	0.804) 0.888	(0.874–	0.901) 0.437	(0.432–	0.443) 0.096	(0.092–	0.100) 0.983	(0.981–	0.985)

Hypernatremia

DLM	using	12-	lead	ECG 0.944	(0.895–	0.993) 0.923	(0.640–	0.998) 0.634	(0.625–	0.643) 0.003	(0.002–	0.005) 1.000	(0.999–	1.000) 0.839	(0.727–	0.951) 0.870	(0.751–	0.946) 0.649	(0.644–	0.654) 0.004	(0.003–	0.005) 1.000	(0.999–	1.000)

DLM	using	6-	lead	ECG 0.903	(0.807–	0.999) 0.923	(0.640–	0.998) 0.488	(0.478–	0.497) 0.002	(0.001–	0.004) 1.000	(0.999–	1.000) 0.833	(0.738–	0.928) 0.889	(0.774–	0.958) 0.456	(0.451–	0.461) 0.003	(0.002–	0.003) 1.000	(0.999–	1.000)

DLM	using	1-	lead	ECG 0.895	(0.816–	0.973) 0.846	(0.546–	0.981) 0.347	(0.338–	0.357) 0.002	(0.001–	0.003) 0.999	(0.998–	1.000) 0.806	(0.690–	0.923) 0.907	(0.797–	0.969) 0.253	(0.249–	0.258) 0.002	(0.001–	0.002) 0.999	(0.999–	1.000)

Hyponatremia

DLM	using	12-	lead	ECG 0.885	(0.869–	0.900) 0.901	(0.821–	0.954) 0.820	(0.812–	0.827) 0.041	(0.033–	0.051) 0.999	(0.998–	1.000) 0.856	(0.831–	0.880) 0.887	(0.845–	0.921) 0.629	(0.624–	0.634) 0.020	(0.017–	0.022) 0.998	(0.998–	0.999)

DLM	using	6-	lead	ECG 0.869	(0.852–	0.885) 0.890	(0.807–	0.946) 0.797	(0.789–	0.805) 0.036	(0.029–	0.045) 0.999	(0.998–	0.999) 0.851	(0.825–	0.876) 0.887	(0.845–	0.921) 0.599	(0.594–	0.604) 0.018	(0.016–	0.021) 0.998	(0.998–	0.999)

DLM	using	1-	lead	ECG 0.834	(0.814–	0.853) 0.912	(0.834–	0.961) 0.686	(0.677–	0.694) 0.024	(0.019–	0.030) 0.999	(0.998–	1.000) 0.839	(0.813–	0.864) 0.915	(0.877–	0.944) 0.477	(0.472–	0.483) 0.015	(0.013–	0.016) 0.998	(0.998–	0.999)

Hypercalcemia

DLM	using	12-	lead	ECG 0.905	(0.806–	1.000) 0.909	(0.708–	0.989) 0.521	(0.511–	0.530) 0.004	(0.002–	0.006) 1.000	(0.999–	1.000) 0.831	(0.723–	0.939) 0.852	(0.738–	0.930) 0.794	(0.790–	0.798) 0.007	(0.005–	0.009) 1.000	(0.999–	1.000)

DLM	using	6-	lead	ECG 0.878	(0.791–	0.966) 0.864	(0.651–	0.971) 0.605	(0.596–	0.615) 0.004	(0.003–	0.007) 1.000	(0.999–	1.000) 0.813	(0.726–	0.900) 0.885	(0.778–	0.953) 0.690	(0.685–	0.695) 0.005	(0.004–	0.006) 1.000	(0.999–	1.000)

DLM	using	1-	lead	ECG 0.875	(0.786–	0.965) 0.909	(0.708–	0.989) 0.352	(0.343–	0.361) 0.003	(0.002–	0.004) 0.999	(0.998–	1.000) 0.634	(0.522–	0.746) 0.918	(0.819–	0.973) 0.592	(0.587–	0.597) 0.004	(0.003–	0.005) 1.000	(0.999–	1.000)

Hypocalcemia

DLM	using	12-	lead	ECG 0.901	(0.880–	0.922) 0.891	(0.809–	0.947) 0.847	(0.84–	0.854) 0.048	(0.038–	0.059) 0.999	(0.998–	0.999) 0.813	(0.793–	0.834) 0.905	(0.877–	0.929) 0.551	(0.546–	0.557) 0.031	(0.028–	0.033) 0.997	(0.996–	0.998)

DLM	using	6-	lead	ECG 0.876	(0.858–	0.894) 0.902	(0.822–	0.954) 0.777	(0.769–	0.785) 0.034	(0.027–	0.042) 0.999	(0.998–	1.000) 0.812	(0.792–	0.833) 0.928	(0.902–	0.948) 0.473	(0.467–	0.478) 0.027	(0.024–	0.029) 0.998	(0.997–	0.998)

DLM	using	1-	lead	ECG 0.860	(0.839–	0.882) 0.913	(0.836–	0.962) 0.752	(0.744–	0.760) 0.031	(0.025–	0.038) 0.999	(0.998–	1.000) 0.798	(0.777–	0.819) 0.883	(0.853–	0.909) 0.547	(0.541–	0.552) 0.030	(0.027–	0.032) 0.997	(0.996–	0.997)
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suffer	from	a	black	box	limitation,	the	proposed	method	would	prove	
to	be	helpful	for	other	researchers	to	conduct	their	medical	research	
using	artificial	intelligence.

For	detecting	hypokalemia,	the	performance	of	the	DLM	using	
12-	lead	 ECG	 and	 6-	lead	 ECG	was	 almost	 the	 same.	We	 had	 two	
hypotheses.	First,	 in	 some	 tasks,	 the	 information	about	precordial	
6-	lead	ECG	 is	 not	 needed	 to	detect	 the	disease.	As	 a	 result,	 add-
ing	 the	 information	about	 the	precordial	6-	lead	 to	 limb	6-	lead	did	
not	enhance	the	performance	of	the	DLM.	The	second	hypothesis	
is	 that	 limb	 6-	lead	 ECG	 already	 had	 information	 on	 precordial	 6-	
lead	ECG.	In	previous	studies,	Cho	et	al.	have	already	developed	a	
model	to	generate	precordial	6-	lead	ECG	from	limb	6-	lead	ECG	(Cho	
et	al.,	2020).	 In	some	tasks,	 information	about	the	specific	disease	
of	precordial	6-	lead	is	already	reflected	in	limb	6-	lead	ECG.	As	the	
exact	decision	process	of	deep	learning	has	not	been	discovered,	we	
could	explore	this	topic	in	the	near	future.

There	were	 several	 limitations	 to	 this	 study.	 First,	we	devel-
oped	 a	DLM	 for	 detecting	 electrolyte	 imbalances,	 including	Na,	
K,	 and	Ca.	Although	we	selected	 three	electrolytes	because	 the	
four	 electrolytes	 are	 most	 commonly	 used	 in	 the	 clinical	 field,	
we	 need	 to	 develop	 DLM	 for	 including	 other	 electrolytes	 such	

as	magnesium	and	phosphorus.	Second,	we	validated	DLM	using	
retrospective	data;	therefore,	we	need	to	validate	DLM	with	pro-
spective	studies	and	daily	data.	In	this	study,	the	performance	of	
the	DLM	using	single-	lead	ECG	was	evaluated	using	partial	Lead	I	
data	from	12-	lead	ECG	data.	As	a	result	of	this,	further	studies	are	
needed	 to	 apply	 the	DLM	 to	 diverse	wearable	 life-	style	 devices	
and	 to	confirm	 the	performance	of	 the	DLM	using	ECG	devices.	
Studies	related	to	the	clinical	significance	of	the	new	technology	
are	required	to	apply	it	in	clinical	practice.	In	our	next	study,	we	will	
verify	DLM	performance	and	significance	with	a	prospective	study	
in	daily	clinical	practice.	Third,	 this	 study	was	only	conducted	 in	
two	 hospitals	 in	 Korea,	 and	 it	 is	 necessary	 to	 validate	 the	DLM	
with	 patients	 in	 other	 countries.	As	 shown	 in	 Figure	 3,	 the	 per-
formance	differences	of	 the	DLM	between	 internal	and	external	
validation	 for	 hypernatremia	 and	 hypocalcemia	were	 significant.	
As	pitfall	of	deep	learning	is	overfitting,	we	need	a	diverse	data-
set	 for	 enhanced	 performance	 of	 the	 DLM	 in	 robust	 situations.	
Therefore,	we	plan	to	conduct	a	large	multicenter	study	involving	
multiple	 hospitals	 in	 other	 countries.	 Fourth,	 as	 the	 characteris-
tics	 and	 comorbidities	 of	 patients	 could	 affect	 the	 performance	
of	the	DLM,	further	studies	are	needed	to	develop	a	robust	DLM	

F I G U R E  4  Sensitivity	map	of	DLM	for	detecting	electrolyte	imbalance.	DLM	denoted	deep	learning-	based	model
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for	preserving	the	performance	for	a	more	diverse	population.	As	
the	performance	in	specific	populations	could	not	be	determined	
in	this	study,	further	studies	are	needed	to	determine	the	perfor-
mance	 by	 patient's	 characteristics	 and	 comorbidities.	 Fifth,	 we	
experiment	with	 only	 three	 combinations	 of	 ECG	 leads,	 namely,	
12-	lead,	limb	6-	lead,	and	single-	lead	(Lead	I).	As	some	ECG	infor-
mation	 can	 be	 calculated	 using	 the	 other	 ECG	 lead,	we	 need	 to	
experiment	with	diverse	combinations	of	lead	information	of	ECG.	
In	the	near	future,	we	will	conduct	the	research	on	this	topic	and	
gain	new	insights	for	clinical	use.
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