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Abstract

Objective—Interstitial fibrosis is a pathological expansion of the heart’s inter-cellular collagen 

matrix. It is a potential complication of nonischemic cardiomyopathy (NICM), a class of diseases 

involving electrical and or mechanical dysfunction of cardiac tissue not caused by atherosclerosis. 

Patients with NICM and interstitial fibrosis often suffer from life threatening arrhythmias, which 

we aim to simulate in this study.
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Methods—Our methodology builds on an efficient discrete finite element (DFE) method which 

allows for the representation of fibrosis as infinitesimal splits in a mesh. We update the DFE 

method with a local connectivity analysis which creates a consistent topology in the fibrosis 

network. This is particularly important in nonischemic disease due to the potential presence of 

large and contiguous fibrotic regions and therefore potentially complex fibrosis networks.

Results—In experiments with an image-based model, we demonstrate that our methodology is 

able to simulate reentrant electrical events associated with cardiac arrhythmias. These reentries 

depended crucially upon sufficient fibrosis density, which was marked by conduction slowing at 

high pacing rates. We also created a 2D test-case which demonstrated that fibrosis topologies can 

modulate transient conduction block, and thereby reentrant activations.

Conclusion—Ventricular arrhythmias due to interstitial fibrosis in NICM can be efficiently 

simulated using our methods in medical image based geometries. Furthermore, fibrosis topology 

modulates transient conduction block, and should be accounted for in electrophysiological 

simulations with interstitial fibrosis.

Significance—Our study provides methodology which has the potential to predict arrhythmias 

and to optimize treatments non-invasively for nonischemic cardiomyopathies.

Index Terms

Arrhythmia; nonischemic; fibrosis; electrophysiology; computational model

I Introduction

NON-ISCHEMIC cardiomyopathies (NICM) are diseases of the heart muscle tissue 

associated with pathological ventricular dilation or hypertrophy which are not caused by 

atherosclerosis. A potential consequence of NICM are areas of increased fibrosis, which are 

detectable by late gadolinium enhanced cardiovascular magnetic resonance imaging (LGE-

CMR) as areas of enhanced image intensity. Clinical studies have shown that patients with 

NICM and fibrosis detectable on LGE-CMR are at an increased risk of cardiac arrhythmias 

[1], [2]. However, the accurate risk stratification and treatment of such patients still presents 

a major challenge [3].

Computational modeling has emerged as a powerful tool in the study of arrythmias. Using a 

combination of patient-specific information from LGE-CMR, and experimental data, an in-

silico representation of a patient’s heart and its pathology can be created. Such 

representations have been applied to determine arrhythmic vulnerability [4], and to optimize 

and plan treatments [5].

While computational modeling has proven useful for patients with ischemic heart disease 

[4], and atrial fibrillation [5]–[9], its impact on NICM has been limited so far. One reason 

for this is that modeling techniques and assumptions about atrial fibrillation and ischemic 

disease do not necessarily translate into the non-ischemic setting. In particular, the division 

of enhanced areas in LGE-CMR into core scar and intermediate intensity border-zone, 

which is commonly used in ischemic disease, is challenged in non-ischemic disease by the 

lack of an absolute reference from which to infer the amount of fibrosis and its electro-
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physiological properties [10]. This motivates the search for new modeling representations of 

late gadolinium enhancement (LGE) which are appropriate for non-ischemic patients with 

fibrosis.

In this study we model LGE as interstitial fibrosis, which has been commonly observed in 

histological examinations of NICM patient tissue [10], [11]. Such fibrosis results from a 

pathological expansion of the collagen matrix between cells, which disrupts lateral electrical 

connectivity and creates a potential substrate for reentrant arrhythmias [12].

We build on our previous image-guided 2D modeling methodology for interstitial fibrosis in 

NICM [13], based on the efficient discrete finite element (DFE) technique of Mendonça 

Costa et al. [14]. In our 2D simulations, we uncovered relationships between fibrosis density, 

activation delays and the likelihood of arrhythmia induction. However, important differences 

in electrotonic loading and electrical activation pathways through fibrosis regions between 

2D and 3D motivate the need to further examine and validate these mechanisms in 3D.

Furthermore, updating the DFE method to 3D brings the important question of network 

topology, that is how the tissue surrounding the interstitial fibrosis is connected. This is 

particularly relevant to NICM in 3D, due to the potential presence of large and contiguous 

fibrotic areas with complex network topologies. Such large and complex 3D fibrosis 

networks have not been considered in the development of DFE methods to date [13]–[15], 

and consequently, the network topology issue has been neglected.

In the current study we present a graph theory based connectivity analysis to determine the 

3D network topology, and incorporate it into a topologically consistent 3D DFE method for 

interstitial fibrosis. We apply the 3D DFE method in a series of image-derived cardiac tissue 

models, and examine the consequences on patterns of electrical activation and reentry 

induction. We also provide a simple 2D test-case which demonstrates that fibrosis topologies 

can modulate transient conduction block and hence reentry induction. This further motivates 

the need for a topologically consistent DFE method.

II Methods

A Patient MRI Dataset and 3D Geometrical Modeling

LGE-CMR images were acquired at St. Thomas Hospital from a patient with non-ischemic 

dilated cardiomyopathy (NIDCM) and LGE in the basal septum. A 1.5 T scanner (MAG-

NETOM Aera, Siemens Healthcare, Erlangen, Germany) was used with an 18-channel body 

matrix coil and a 32-channel spine coil. Ten minutes after injection of 0.1 mmol/kg of 

gadobutrol (Gadovist, Bayer AG, Leverkusen, Germany), an inversion recovery time (TI) 

scout was obtained in a single mid-ventricular slice and used to determine the optimal 

inversion time. A respiratory navigator-gated 3D ECG-gated inversion recovery prepared 

sequence was acquired (resolution 1.3 × 1.3 × 2.0 mm, balanced steady-state free 

precession; typical TE/TR/a 1.6 ms/3.6 ms/50 degrees; GRAPPA=2) with full myocardial 

coverage. Ethical approval was given by the UK National Research Ethics Service (15/NS/

0030), and the patient gave written informed consent in accordance with the Declaration of 

Helsinki.
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The walls of the left ventricle were segmented using the medical image software Eidolon 

[16], and the LGE was delineated using a semi-automated full-width at half maximum 

technique. Tetrahedral meshes were created using CGAL [17]. For the purposes of limiting 

the computational expense of running detailed simulations, a reduced size mesh was created. 

This mesh consisted of all myocardial tissue within 2 cm of the LGE zone. The maximum 

edge length of the mesh was 0.25 mm within the LGE and 0.4 mm outside of the LGE. Both 

the mesh and example image slices are shown in Fig. 1.

In addition to the reduced mesh, a full mesh of the left ventricle was created for the 

determination of the local myocardial architecture. This architecture consisted of fibre, sheet 

and sheet normal directions, which were assigned to each element according to the rule-

based method of Bayer et al. [18]. The relevant section of the local architecture was then 

transfered onto the reduced mesh via interpolation.

B Estimation of Interstitial Fibrosis Networks From LGE-CMR

The clefts between cardiomyocytes caused by interstitial fibrosis occur on a spatial scale that 

is an order of magnitude below that of our LGE-CMR image resolution. We therefore 

required a way to estimate the location of interstitial clefts in our meshes. One approach to 

this problem is to randomly assign fibrosis to mesh entities [6]–[9], [13]. In our case this 

consisted of assigning each mesh face within the LGE a probability score between 0 and 1. 

This created a fibrosis probability map. Different realizations of the probability map were 

achieved by sampling a random number from a uniform [0,1] distribution for each mesh face 

within the LGE, and assigning the face to be fibrotic if the random number was larger than 

the probability. The selected faces formed a simulated network of interstitial fibrosis, such as 

the one shown in Fig. 1(c). The 0.25 mm edge length used in our network created cleavage 

planes comparable to experimentally observed interstitial fibrosis which separated bundles 

of several cardiomyocytes [19].

Given that the image intensity of LGE scales with the amount of fibrosis [20], it is 

reasonable to assign higher fibrosis probability scores in regions with higher intensity. We 

achieved this by considering the normalized fibrosis intensity

I∗ = I − Iref
Imax − Iref

, (1)

with I, I max denoting the local, and maximum LGE image intensities. The reference 

intensity I ref is taken to be the mean intensity over all non-LGE voxels.

Furthermore, we assumed that clefts of interstitial fibrosis are most likely to be aligned with 

the local myocardial sheet architecture, due to the substantial presence of connective tissue 

between sheets [21]. We therefore modeled the probability of a mesh face being fibrotic as

p = ρmax(cosθ)I∗ (2)

where θ is the angle between the face normal and the local myocardial sheet normal 

direction. The parameter ρ max represents the global maximum fibrosis density that controls 

the total amount of fibrosis in the mesh. We varied ρ max from 0.1 to 1.0 in increments of 
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0.1, and created 15 different fibrosis network realizations for each density, as well as a 

control model with no fibrosis, giving 151 different models.

C 3D Discrete Finite Element Algorithm With Connectivity Analysis

Once we have selected a network of fibrotic faces we are left with the task of modeling the 

local effect of the fibrosis on electrical propagation. Ex-vivo studies of myocardial tissue 

with NICM [22], [23] have reported small scale conduction barriers due to fibrosis. We 

modeled this effect by creating no-flux boundaries along the fibrotic faces, using a nodal 

decoupling technique based on the method of Mendonça Costa et al. [14]. This method 

consists of creating extra copies of nodes along fibrotic edges/faces that exist in the same 

locations as the originals. The old and new nodes are assigned to different mesh elements, 

thereby creating a local discontinuity. In 2D this discontinuity is typically present along a 

mesh edge, whereas in 3D a mesh face is more appropriate.

We now describe how extra nodes can be created and assigned in a complex 3D network of 

fibrosis in such a way that a consistent topology is achieved. That is elements which are 

disconnected by split faces should not share nodes, giving a tight topology which does not 

leak current. This task is trivial when there is no branching in the network, as each face’s 

vertices can simply be doubled and assigned to elements on opposing sides. However, in the 

presence of branching, a more sophisticated procedure is required to create new nodes and 

assign them to the correct elements.

We propose a vertex based algorithm with a local connectivity analysis to correctly assign 

new nodes to elements. This algorithm consists of looping over every vertex that is located 

on at least one split face, and performing a local connectivity analysis, as shown in Fig. 2. In 

this analysis a graph is built whose nodes are the mesh elements which contain the current 

vertex (e.g. Fig. 2(b). Two elements are connected in the graph if they share a face which is 

not split. The connected components of this local element graph then determine the number 

and assignment of the new vertices needed to achieve the local discontinuity.

It is possible that a particular splitting face does not disconnect the local connectivity graph. 

In 2D this can only occur if the target vertex is connected to a single split edge. 

Consequently, the local graph will only have a single component. In this case we can 

disconnect the connectivity graph along the mesh edge whose angle to the split edge is 

closest to 180 degrees. In 3D the situation is slightly more complicated, and we need to 

check that the elements on opposite sides of a split face are disconnected in the element 

graph. If they are not then we need a set of element faces to form a splitting plane among the 

local elements. This can be achieved by ranking all faces neighboring the current vertex by 

the dot product of the face normals with the normal of the face that we wish to disconnect. 

The faces with the smallest dot product can then be progressively removed from the local 

element connectivity until two disconnected element groups are created. An example of this 

procedure is given in Fig. 3. A flowchart description of the 3D nodal splitting algorithm is 

given in Fig. 4.

A closed surface of disconnected edges/faces may create elements which are electrically 

isolated. Such elements are superfluous and can be removed for computational efficiency. 
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We achieved this by building a global element connectivity graph that is disconnected along 

all split faces, and then removing all connected components expect for the largest one. The 

mesh elements remaining in this graph are electrically connected and therefore necessary for 

simulation.

We have made our implementation of the mesh splitting method, along with the topology 

analysis, publicly available at [Online]. Available: https://github.com/

GabrielBalabanResearch/lgemri_interstitial.

D Electrophysiology Simulation

Electrical activity was simulated with the standard monodomain representation, and 

piecewise linear basis functions. Cellular kinetics were specified by the 2006 Ten-Tusscher 

model [24] of the human ventricular action potential, integrated with step size 20 μs. Both 

monodomain and cellular kinetics were implemented in the software package CARP [25]. 

The primary output of interest from the monodomain model was the transmembrane 

potential vm. Activation times were recorded at the first time that vm crossed 0 mV with a 

positive temporal derivative.

Conductivities were tuned to match experimentally observed conduction velocities [23], and 

accounted for the two different elements sizes (0.4 mm, 0.25 mm). In the non-LGE areas 

fibre conduction velocity (CVF) was 84 cm/s and transverse conduction velocity (CVT) was 

23 cm/s. LGE areas were assigned reduced conductivities as in our previous study [13], that 

is regions in the intensity range 0–25% and 25–50% above the reference intensity, I ref, had 

CVT reduced by 25% and 50% respectively, with normal CVF. Regions in the intensity 

ranges 50–75% and 75–100% above I ref had CVF reduced by 25% and 50% respectively, 

and CVT reduced by 50%.

All electrical stimuli were applied with a strength of 500 μA/cm2 for 2 ms. A pacing 

location central to the fibrosis region was chosen, based on our previous results which 

showed that such a location maximizes reentry incidence [13].

E Simulated Programmed Electrical Stimulation

Simulated programmed electrical stimulation was used to test for the possibility of each 3D 

model to initiate an electrical reentry. The protocol consisted of a preconditioning cycle of 3 

beats at 600 ms intervals, followed by up to 3 beats with dynamically determined intervals. 

The timing of the dynamic beats was determined by algorithmically finding the local 

effective refractory period using a binary search. This search began with the coupling 

intervals (CI) {200 ms, 450 ms} and ended when two consecutive CI were found such that 

the second CI initiated a new wave of activation whereas the first CI did not. A new wave 

was detected by the presence of any activations within 4.2 cm of the stimulus site at 110–

120 ms after the stimulus initiation. After each dynamic beat 800 ms of electrical activity 

were simulated and a reentry was determined if any activations were present within 1 cm of 

the stimulus site after 300 ms.
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F 2D Test Meshes With Differing Fibrosis Topology

To demonstrate the need for a topologically correct DFE algorithm we created a simple 2D 

test case consisting of 2 meshes with the same arrangement of split edges, but with differing 

element topologies. Each mesh had dimensions 9.5 mm × 9.5 mm, and was divided into 38 

× 38 boxes, with each box consisting of two triangular elements sharing a diagonal line 

going from left to right. Fibrotic edges were designated in a row of 10 crosses spaced 1 

element apart (see Fig. 5). In the tight topology each cross separated the surrounding 

elements into 4 groups, whereas in the leaky topology there were diagonal connections 

resulting in only 2 separate element groups. Conductivities were assigned to both meshes 

corresponding to an effective conduction velocity of 17 cm/s.

III Results

A Fibrosis Topology Modulated Transient Conduction Block

We stimulated the tight and leaky test meshes twice each, with a CI of 340 ms. This timing 

meant that the second wave traveled through tissue that had only partially recovered 

excitability, and would be therefore more susceptible to conduction block. Both stimuli were 

located halfway across the bottom edge.

After stimulation, the first wave crossed the row of fibrotic crosses in both meshes. The 

second wave however, was stopped by the tight topology but not by the leaky topology (see 

Fig. 5). This demonstrates that the presence of transient conduction block (a known 

precursor to reentry) is influenced by fibrosis topology. Using a topologically correct 

algorithm to model fibrosis networks is therefore an important consideration. All of the 

results in the next sections use a tight topology as described in Section II-C.

B Activation Delays were Increased by Fibrosis and Faster Pacing

We tested the effects of increased interstitial fibrosis on patterns of electrical activation in 

our 3-D models, using a sequence of stimuli with decreasing CI. The CI were 3 × 600 ms, 

350 ms, and finally 270 ms. Activation times were measured for the final three beats, in a 

plane parallel to the valves and passing through the stimulus location (see Fig. 6(b). These 

activation maps are displayed in Fig. 6(a) for example models with fibrosis densities 1.0, 0.5 

and 0 (control). The maps show that activation was progressively slowed as the CI decreased 

and the amount of fibrosis increased. Furthermore these effects stacked, that is both 

decreased CI and increased fibrosis contributed to the activation delays. Finally, we noted 

that activation times in the control model smoothly increased with the distance to the 

stimulus site. In contrast to this the activation patterns in the models with fibrosis were more 

irregular. This irregularity was exacerbated by faster pacing as activation pathways became 

more convoluted.

C Transmural Activation Times Correlated With Reentry Incidence

Using the same stimulus location and pacing sequence as in the previous section, we 

measured the transmural activation time (TAT) in each model, that is the time for each wave 

to reach a site on the epicardium opposite to the stimulus (see Fig. 7(d). In Fig. 7(a) we 

display the mean and 95% confidence region of TAT for 15 models at each level of fibrosis 
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density. We note that the mean and variance of TAT increased with the level of fibrosis, 

indicating a greater influence of the fibrosis network on electrical propagation. This increase 

was very modest at the 600 ms CI, but became more pronounced with the 350 ms and 270 

ms CI. Indeed the difference in mean TAT between the models with fibrosis density 1.0 and 

the control model was 34 ms at the 270 ms CI.

Using the simulated programmed electrical stimulation protocol, we tested each model for 

the possibility of generating an electrical reentry. That is a signal that reactivated the tissue 

after the initial wave of activation was complete. The number of reentries that we observed 

for each fibrosis density level is given in Fig. 7(c). We note that there are two peaks of 

reentry incidence, one centered around density 0.4 and the second at densities 0.8–1.0. The 

first peak gave a mild reentry incidence (6/15 at density 0.4), whereas the second peak had a 

high reentry incidence (13/15). By comparing Fig. 7(a) and Fig. 7(c) we can see a 

correlation of higher TAT values with the second reentry peak.

D The Mechanism of Reentry

We examined videos of the dynamics of the transmembrane potential vm for the models that 

reentered to ascertain the mechanism of reentry. We noted a micro-reentry mechanism in all 

cases, which consistently exhibited the following phenomena: increasingly rapid pacing 

caused a slowing of activation and the formation of widespread conduction block in the 

fibrotic zone. Consequently, electrical propagation via fibrosis was forced into increasingly 

convoluted pathways. Finally, a reentry was initiated by one or more wavefronts meandering 

in the fibrosis meeting neighboring excitable tissue. Explanatory snapshots of this process, 

following the final extra-stimulus, are depicted in Fig. 8, a video is available in the 

supplement.

E Computational Efficiency

We tested the computational efficiency of our DFE method by comparing the run-times and 

total number of Krylov iterations that we obtained from the activation delay experiments of 

Section III-B. The resulting data are displayed in Fig. 9. We note that increasing the fibrosis 

density added extra nodes to the meshes (via the fibrosis networks), and that the run-time 

and number of Krylov iterations scaled close to linearly with the number of nodes. There 

was some variation in the run-time and Krylov iterations beyond linear scaling, which we 

attribute to differences in the solution complexity, that is stochastic variation in the presence 

and size of independent wavelets caused by the fibrosis networks. The run-time per Krylov 

iteration was fairly stable, around 6–8 ms in all cases.

IV Discussion

We introduced a 3D DFE method with a tight topology of interstitial fibrosis through which 

current cannot leak. We applied this method in an image-based model of NICM with 

fibrosis, and demonstrated reentrant electrical patterns in the presence of sufficient fibrosis 

density. Furthermore, we showed that a leaky topology may fail to simulate a transient 

conduction block, and hence a dangerous reentrant electrical activation. This has 
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implications for the creation of 3D image-based models of non-ischemic fibrosis for patient 

risk stratification and therapy planning.

A Fibrosis Representations

We modeled LGE as interstitial fibrosis. However, histological studies of heart tissue in 

NICM [10], [11] have noted a variety of other fibrosis architectures, including diffuse, 

patchy and compact, with multiple architectures existing in the same patient. In [13] we 

employed a modeling methodology for replacement fibrosis based on mesh element 

removal. This methodology is directly applicable in the 3D setting, and could be combined 

with the current interstitial model to represent mixed fibrosis architectures.

Other methodologies for representing interstitial fibrosis have been proposed [26], [27]. The 

method of Hooks et al. [26] is appropriate for small tissue samples and does not scale well to 

the organ level. However, the method of Trew et al. [27] is a comparable alternative to our 

method. Trew et al. proposed a finite-volume based formulation with disconnected element 

faces which automatically generates a tight fibrosis topology without requiring any 

connectivity analysis. However, finite element methods are very widely used for simulating 

cardiac electro-physiology, and the effort of adopting our method into a finite element 

framework is very minor. This is because all the necessary processing can be performed on 

the mesh before simulation, so that no changes to the finite element code are required.

B The Importance of Fibrosis Topology

Alonso et al. [28] considered 2D models of cardiac tissue with a fibrotic zone with differing 

fibrosis representations and topologies. They found specific ranges of fibrosis density for 

which a reentrant activation could occur, and that these ranges depended greatly upon the 

type of fibrosis and its topology. Our 2D testcase with tight vs leaky topology confirms the 

importance of fibrosis topology. We also provide a method that creates a consistently tight 

topology in 3D for even the most complex networks. This method is therefore particularly 

applicable for future studies with multiple image-based models, which will require 

consistent fibrosis representations to make valid comparisons.

C Reentry Mechanisms

The reentry mechanism in our simulations involved small activation waves propagating 

through narrow pathways in the fibrosis which survived long enough for the surrounding 

tissue to become re-excitable. Such mechanisms have been noted in previous theoretical 

studies on electrical percolation in excitable tissue [28], [29], in the fibrotic atria [30], after 

myocardial infarction [31], and in our previous 2D NICM fibrosis study [13].

Pogwizd et al. [32] noted focal reentrant mechanisms centered around sites with varying 

amounts of fibrosis in ex-planted hearts with NICM and heart failure. It is possible that 

microreentries could have occurred in the fibrotic zones of the Pogwizd study with a 

mechanism similar to what we have simulated. These would have appeared as focal 

activations in the sparse arrangement of electrodes that was used. Subsequent clinical studies 

of patients with NICM [33], [34] have observed reentrant mechanisms using catheter 

mapping techniques, in agreement with our simulated mechanism.
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We previously noted a greater prevalence of macro and rotor reentry mechanisms rather than 

micro-reentries with interstitial fibrosis in our 2D study [13]. In contrast to this, we have 

now observed micro-reentry as the sole mechanism in our 3D models. This is most likely 

due to differences in fibrosis morphology between the two patients. In the current study the 

LGE zone was almost completely transmural. This may have prevented the formation of 

macro-reentries and rotors, as activation waves were forced to travel through the fibrosis 

rather than around it, leading to the break up of wavefronts and a micro-reentry mechanism. 

Further studies with greater numbers of patients are needed to confirm which reentry 

mechanisms are prevalent in the greater NICM population.

D Implications for the in-vivo Identification of Arrhythmogenic Substrate

Kawara et al. [12] studied activation delays in tissue samples from ex-planted hearts. They 

concluded that fibrosis architecture greatly influences the size of activation delays, and that 

the largest delays are caused by patchy fibrosis with long strands rather than by diffuse 

fibrosis with short strands.

In the current study we show that electrical reentries are correlated with activation delays, 

and modulated by fibrosis density, which is in agreement with our previous 2D results [13]. 

This means that microstructural characteristics of fibrosis, such as its architecture and 

density are important factors influencing whether or not a fibrotic area is an arrhythmogenic 

substrate. The identification of such substrates is crucial for patient risk stratification, as well 

as for the targeting of catheter ablation therapy, a common treatment for cardiac arrhythmias.

Due to the limitations of current scan resolutions, the in-vivo identification of fibrosis 

architecture and its density is currently not possible with LGE-CMR. A potential way to 

circumvent this limitation is the consideration of functional electrical measurements. TAT is 

one such measurement and is obtainable in the ventricular septum with an opposite wall 

catheter technique [35]. We previously showed that abnormally high TAT values predicted 

reentry in 2D [13]. Our current results in Fig. 7 provide evidence for this concept in 3D, with 

the caveat of the first peak of reentry incidence in Fig. 7(c), which appeared at fibrosis 

densities that did not increase the TAT values very much. The decline in reentry incidence 

around density 0.6 could be due to reentrant pathways that are more likely to be closed at 

these densities as compared to lower fibrosis densities. Whether reentries are possible and or 

commonly occurring for fibrosis patterns with little to no transmural activation delay is open 

for future investigation.

E Limitations

Several modeling assumptions were made in the construction of our image-based models. 

We assumed a completely interstitial fibrosis architecture, though a mixed architecture is 

more likely given histological evidence. This simplification allowed us to test our 3D DFE 

method in a controlled setting, thereby paving the way for its use in more complicated mixed 

architecture scenarios.

Experimental evidence suggests that the excitability of surviving cardiomyocytes is 

preserved in areas of non-ischemic fibrosis [23], [36]. This justifies the use of a model with 

a healthy action potential upstroke, such as the Ten-Tusscher 2006 model [24] that we use. 
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However the experimental evidence does not rule out other kinds of pathological changes in 

membrane kinetics. The choice of membrane kinetics model for fibrotic areas in NICM is 

therefore an open question.

We also did not include any epi-endocardial differences in our cellular model [36], as the 

role of such differences in the acute phase of NICM (where modeling is relevant), as 

opposed to end stage heart failure (for which ex-vivo data are available), is currently 

unknown.

Our use of LGE-CMR to estimate fibrosis distributions introduces the voxel size as a 

potential influence on model outputs. This is because each voxel represents a block of 

fibrosis with similar characteristics. The fibrosis block size has been shown to influence 

reentry susceptibility in 2D [37], but has not yet been studied in 3D. Image voxel size may 

have influenced our results.

We assumed non-leaking networks of interstitial fibrosis in our LGE-CMR derived 

simulations, though we cannot rule out the possibility of surviving myocytes creating leaks 

in the network. Such a scenario could be modeled in future studies with our topology 

analysis by deliberately introducing leaks instead of preventing them.

Only a single image-based geometry was considered. More cases are required to generalize 

our results. Finally, a validation of our 3D splitting method with histological data, as in [14], 

[27], is lacking in the present study.

V Conclusion

We presented a novel 3D DFE methodology which generates a consistent fibrosis topology 

for patients with interstitial fibrosis and NICM. Simulations in an image-derived model 

demonstrate that this methodology can simulate fibrosis mediated conduction delays and 

reentrant activations.
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Fig. 1. 
(a) Subsection of an LGE-CMR image stack of a patient left ventricle with a fibrotic zone 

near the valve plane. (b) Segmentation of the ventricular myocardium (gray) and fibrotic 

zone (white) (c) Computational mesh of all tissue within 2 cm of the fibrotic zone with split 

faces highlighted. (d) Close up of the split face network. (e) Projection of a section of the 

face network onto a plane perpendicular to the tissue walls.
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Fig. 2. 
An example of local connectivity analysis to create a topologically consistent set of extra 

vertices. (a) The vertex 6 in the middle of the mesh is visited by the algorithm, with 

neighboring elements e 1 – e 5. The edges between e 2 – e 3, e 3 – e 4 and e 1 – e 5 are to be 

split and are marked in red. (b) The local element connectivity graph. (c) Mesh with 

elements colored according to their connectivity. (d) Two extra vertices are added (7, 8) and 

assigned to elements according to the local connectivity. (e) Later iterations of the algorithm 

visit nodes 2,3,5 and complete the discontinuities along the red edges.
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Fig. 3. 
Example disconnection of a 3D connectivity graph in a tetrahedralized geometry. (a) The 

vertex 6 is visited by the algorithm. The split face (4, 5, 6) removes the link between e 1 and 

e 4. However, e 1 and e 4 are still connected via e 2 and e 3. (b) Face (2, 4, 6) is selected 

because the dot product of its normal with the normal of face (4,5,6) is minimal among all 

faces containing vertex 6. Elements e 1 and e 4 can now be isolated into two components e 1 

– e 2 and e 3 – e 4. In general, several additional faces may be needed to split a 3D 

connectivity graph.
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Fig. 4. Flowchart of the 3D vertex disconnection algorithm with a modification to the local 
connectivity in the case that a split face does not disconnect its neighboring elements into 
separate groups.
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Fig. 5. 
Transmembrane voltage (vm) maps demonstrating how the topology of a fibrosis network 

influences the formation of transient block. In the tight topology each fibrotic cross divides 

the space around it into 4 regions, whereas in the leaky topology the regions are connected 

diagonally, resulting in only 2 separate regions and the potential for current to leak across 

the fibrosis. During sinus rhythm (top row) both topologies allow an electrical wave to cross. 

With a premature stimulus (bottom row), 340 ms after the 1st wave, only the tight topology 

experiences a transient block.
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Fig. 6. 
(a) Local activation time (LAT) maps in a transmural tissue slice around the stimulus 

location. Activation delays are larger with increased fibrosis and decreased coupling interval 

(Cl). The black lines represent the projection of the 3D split face network onto the LAT map 

plane. White areas are electrically isolated elements which were removed during 

preprocessing. (b) Endocardial view of the tissue geometry with the green symbol showing 

the location of the stimulus site. (c) Timing of stimuli with blue lines indicating stimuli 

whose activation maps are displayed.
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Fig. 7. 
The relationship between transmural activation times (TAT) and reentries inducible by 

simulated programmed electrical stimulation. (a) The mean and 95% confidence region of 

the TAT values from 15 random fibrosis networks for each level of maximum fibrosis 

density. (b) Timing of stimuli used to calculate TAT scores. The blue lines indicate stimuli 

for which TAT was measured. (c) The number of random fibrosis networks for which reentry 

could be simulated at each density level. (d) Epicardial view of the ventricular geometry 

with TAT measurement location (yellow sphere).
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Fig. 8. 
Endocardial view of transmembrane voltage (vm) maps after an extrastimulus that triggers 

an electrical reentry. The numbers at the top of each voltage map are the simulation time in 

ms, green arrows highlight directions of activation. 2450) The extrastimulus (green symbol) 

arrives into a heterogeneous repolarization landscape created by the previous stimuli. 2580, 

2650) The extrastimulus spreads unevenly, first activating the tissue to the left and then later 

to the right. 2725, 2800) Most of the tissue repolarises. 2900) Islands of activated tissue 
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remain in the fibrotic areas. 3000) Reentrant wavefronts emerge out of the fibrosis. 3120) 

Most of the tissue has been reactivated due to the reentry.
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Fig. 9. 
Number of mesh nodes, run-time, and Krylov iterations used to calculate the solution of the 

transmural activation simulations in Section III-B. The lines represent the mean over 15 

simulations, whereas the shaded areas represent the 95% confidence region. Measurements 

in the left panel are relative to the control case, whereas the right panel shows the number of 

ms run-time per Krylov iteration.
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