
INTRODUCTION

Breast cancer is one of the most commonly diagnosed can-
cers in women [1]. There are well established risk factors for 
breast cancer, such as genetic alterations, age, family history, 
life-style, hormone replacement therapy, and obesity [2]. Ac-
cording to the American Cancer Society, more than two thirds 
of breast cancer at the first diagnosis in women is estrogen 
receptor (ER)-positive [2]. Extended exposure to estrogen 
is epidemiologically and experimentally associated with an 
increased risk of developing breast cancer [1]. This appears 
to be due to the upregulation of genes involved in breast cell 
proliferation that is mediated through the estrogen receptor. 
Development of ER-positive breast cancer depends on estro-
gen for cell growth. Many environmental chemicals are endo-
crine disrupters that can mimic the biological functions of es-
trogen, potentially contributing to the initiation or progression 
of breast cancer.
 Among known environmental estrogens, bisphenol A (BPA) 
is widely used in industry. The National Health and Nutrition 
Examination Survey (NHANES) during 2003 to 2004 indi-
cates widespread exposure to BPA in the US population [3-5]. 
Since then, there is a temporal trend in decreased exposure 

to BPA in the United States from 2011 to 2012 [6]. However, 
in a recent cohort study conducted in the United States, it is 
concluded that higher exposure to BPA is associated with an 
increased risk of long-term mortality including cancer [7]. BPA 
has been well known to have estrogenic activity in animal 
models and in vitro [8-12]. There is a concern for adverse 
effects of the exposure to BPA in regards to developmental 
toxicity for fetuses, infants and children, effects on the mam-
mary gland and early puberty in females, and reproductive 
toxicities [13-15]. Importantly, the health outcomes from envi-
ronmental exposures are highly complex and variable. 
 Many studies looking at the molecular mechanisms through 
which BPA is thought to induce breast cancer have shown 
promising results. However, epidemiological studies aimed 
to uncover a link between BPA exposure and an increased 
breast cancer risk have been largely inconclusive. It is difficult 
to evaluate long term effects of endocrine disruptor exposure 
via retrospective studies, which lack specificity. Prospective 
cohort studies can be more specific, but they may take many 
years to complete. Even still, prospective studies often don’t 
have a sample size large enough to yield significance. Due 
to the relatively low prevalence of breast cancer incidence 
within a normal population, correlation can be very hard to 
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tease out. Additionally, endocrine disrupting compounds have 
been shown to produce differing effects depending on the 
time and duration of exposure, further complicating the study 
of the epidemiology of these compounds throughout a life-
time [16]. BPA was linked to an increased sensitivity to mam-
mary developmental signaling in prenatal rats, suggesting a 
mechanism through which perturbation is dependent on the 
developmental time window [17]. Overall, key mechanisms of 
BPA in promoting breast cancer development remain largely 
unknown.
 BPA has previously been shown to disrupt mammary gland 
development and breast cell morphogenesis, potentially 
leading to breast cell malignancies. In an MCF-12A model, 
low doses of BPA induced disruption of acinar structures and 
lumen invasion, contributing to breast cancer development 
[18]. It has been shown that perinatal exposure to low doses 
of BPA was associated with increased intraductal hyperplasia 
in adult female mice [19]. BPA treatment of normal mammary 
epithelial cells facilitated malignant cellular transformation 
by decreasing tubule formation and increasing the presence 
of spherical masses in an MCF-10F model [20]. Thus, it is 
important that a focus is also placed on testing the carcinoge-
nicity of endocrine disruptors including BPA, as well as poten-
tial prevention measures against endocrine disruptor-induced 
cancers in animal and tissue culture models. From this, we 
can get a better understanding of the molecular mechanisms 
that perhaps contribute to this hypothesized correlation be-
tween endocrine disruptors and reproductive cancers.

BPA AS AN ENVIRONMENTAL 
CONTAMINANT-ENDOCRINE DISRUPTOR

BPA is an industrial synthetic compound found in polycarbon-
ate plastics and epoxy resins. The toxicant can leach from 
plastic upon heating, as well as upon exposure to mild deter-
gents, leading to contamination of food and water supply [21]. 
In fact, biomonitoring the NHANES studies have consistently 
found detectable levels of BPA in the urine and serum of 
study participants [5,22]. As a result, BPA is widely consid-
ered to be ubiquitous.
 The structural similarities between BPA and estrogen allow 
BPA to exert an estrogenic effect physiologically (Fig. 1). It 
has been postulated that the increased incidence of repro-
ductive cancers observed over the past half century can be 
linked to the introduction of synthetic endocrine disruptors into 
the environment through industrial production of compounds 
like BPA and its related alternatives (also shown in Fig. 1) in 
common, daily-use products [23]. In fact, chronic exposure 
to estrogens and estrogen receptor agonists, like BPA, has 
been identified as a risk factor for the development of breast 
cancer [24-26]. Endocrine disruptors can interfere with many 
downstream targets of estrogen signaling, which are related 
to cell cycle regulation and cellular proliferation, and therefore 
posing a mechanism for breast cancer development [26].

 Studies looking at the epidemiology of endocrine disruptor 
exposure as a risk factor for reproductive cancers often do 
not take into account the age-dependent constrictions as-
sociated with developmental endocrine systems [27]. It has 
been suggested that low dose exposures to endocrine dis-
ruptors during reproductive development, when the body is 
more sensitive to endocrine signaling, could increase cancer 
incidence later in life. This makes it more difficult to correlate 
endocrine-disruptor exposure with cancer development in 
retrospective epidemiological studies. Therefore, mechanistic 
studies on whole animal or in vitro models are useful in eluci-
dating the involvement of BPA and other endocrine disruptors 
in breast cancer risk early in development. 
 Of particular concern, BPA-induced cancers show in-
creased resistance against widely used chemotherapeutic 
agents, such as doxorubicin and cisplatin [28]. Huang et 
al. [29] found that low doses of BPA reversed the effects of 
tamoxifen-induced cell apoptosis and cell cycle regulation 
in MCF-7 cells through an estrogen receptor signaling path-
way. Another study revealed that low doses of BPA reduced 
the cytotoxicity of doxorubicin, cisplatin, and vinblastine in 
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both ERα positive and ERα negative breast cancer cell lines 
through increased expression of anti-apoptotic proteins [30]. 
A mechanistic understanding of BPA’s estrogenic effects is 
required to elucidate the pathway through which chemothera-
py resistance is conferred to breast cancer cells. 

MOLECULAR MECHANISMS OF BPA IN 
BREAST CANCER

Established mechanisms of estrogen/ 
ER-mediated BPA action
BPA’s structural similarity to estrogen allows it to bind estro-
gen receptor α and β, as well as the membrane bound estro-
gen receptor G-protein-coupled receptor 30 (GPR30) [31,32]. 
In addition to its binding affinity, BPA has also been demon-
strated to have intrinsic activity for ERα. Agonistic binding of 
BPA to ERα was found to activate the same apoptotic regula-
tion pathways as estrogen using RT-PCR and chromatin im-
munoprecipitation assays in an MCF-7 model [33]. Because 
of its ability to bind and activate ERα, BPA is thought to mod-
ulate the expression of estrogen responsive genes, leading 
to the induction of downstream signaling pathways involved 
in cell cycle regulation and proliferation [34]. 
 BPA was found to modulate cell cycle and apoptosis reg-
ulating proteins downstream of various estrogen signaling 
pathways, ultimately leading to increased cell proliferation 
in an MCF-7 model [35]. A unique in-vitro in-vivo model us-
ing MCF-10F cells exposed to BPA showed increased ex-
pression of genes involved in DNA repair, notably BRCA1, 
BRCA2, BARD1, CtIP, RAD51, and BRCC3, and decreased 
expression of genes involved in apoptosis, notably PDCD5 
and BCL2L11. These observations were comparable to 
estrogen exposure, exhibiting the estrogenic effects of BPA 
[36]. Signaling through estrogenic pathways is the primary 
mechanism through which BPA is suggested to induce its 
cancer-causing effects. However, downstream pathways ul-
timately leading to the initiation, proliferation, and metastasis 
of breast cancer through BPA induced ERα signaling is highly 
contested, and new pathways and mechanisms are constant-
ly being suggested.
 p53, a key regulator of the cell cycle that functions as the 
“guardian of the genome” is an important downstream sig-
naling target of estrogen. Both BPA and β-estradiol induced 
p53 and ERα expression, as well as cellular proliferation, in 
cultured MCF-7 cells [37]. These findings suggest that BPA 
modulates expression and function of p53 through an estro-
gen receptor-mediated pathway. Vascular endothelial growth 
factor (VEGF) plays an important role in tumor angiogenesis, 
and increased expression of VEGF signaling is associated 
with cancer incidence and metastasis. BPA induced VEGF 
expression in a dose-dependent manner in estrogen-receptor 
positive MELN (derived from MCF-7 cells by stably express-
ing the estrogen-responsive ERE-luciferase) cell culture [38]. 
Additionally, VEGF has been identified as a target gene of 

estrogen signaling, suggesting BPA’s induction of VEGF ex-
pression is perhaps ERα-mediated [39].
 STAT3 is an oncogene important to breast cancer metas-
tasis that has been linked to the estrogen signaling pathways 
[40]. Zhang et al. [41] found that BPA increased cell prolifer-
ation in MCF-7 cells through upregulation of STAT3 expres-
sion. When STAT3 was silenced using RNA interference, 
BPA did not induce cellular proliferation, indicating a potential 
role of the Epidermal growth factor receptor (EGFR)-STAT3-
STAT3 pathway in mediating BPA’s role in breast cancer 
[41]. Interestingly, recent studies have suggested that STAT3 
signaling might induce breast cancer through an estrogen re-
ceptor independent pathway [42]. More research is required 
to clarify the involvement of STAT3 in estrogen receptor posi-
tive breast cancers.
 The orphan receptor estrogen-related receptor gamma 
(ERRγ) has also been implicated in BPA activity in breast 
cancer cell lines. Low doses of BPA induced cell proliferation 
via extracellular signal-regulated kinase 1/2/ERRγ signaling 
in MCF-7 and SkBr3 cell lines. Treatment with ERα and 
G-protein-coupled estrogen receptor inhibitors had no effect 
on proliferation induced by BPA, while treatment with an 
ERRγ inhibitor diminished the proliferative activity of BPA [43]. 
Yet another study suggests that BPA’s estrogenic activity is 
conferred through the membrane bound estrogen receptor, 
GPR30 [44]. Environmental endocrine disruptors, including 
BPA and more recently bisphenols F and S, have been sus-
pected to play a role in increased breast cancer risk, possibly 
via ER-dependent mechanisms. Recent evidence suggests 
that increased breast cancer stem cells and epigenetic 
changes may contribute to cancer progression, metastasis 
and treatment resistance. It would be highly valuable to un-
derstand the key mechanisms by which BPA can target and 
enhance breast cancer stem cells and estrogen-mediated 
events during breast cancer development.

Mechanisms of BPA modulation of cancer stem 
cells
Cancer stem cells represent a subpopulation of cancer cells 
that possess stem-like properties and the ability for self-re-
newal. They are implicated in the growth and metastasis 
of many cancers, including breast cancer, and have been 
regarded with new interest as an important component of 
cancer initiation and relapse [45]. Of additional importance, 
breast cancer stem cells are thought to be the principal me-
diators of radiation and chemotherapy resistance [46]. For 
these reasons, cancer stem cells are being studied more ex-
tensively in the field of breast cancer research.
 Cancer stem cells are characterized by a number of molec-
ular factors, such as CD44 and CD24 cell surface markers, 
aldehyde dehydrogenase-1 (ALDH-1) expression, and in the 
case of breast cancer stem cells, increased mammosphere 
formation [45]. Other important markers involved in prolong-
ing a stem cell phenotype include Nanog, Oct4, and Sox-
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2 [47]. The role of estrogen signaling pathways in inducing 
an increased breast cancer stem cell phenotype has been 
suggested [48]. Due to the structural and functional similari-
ties between estrogen and BPA, newfound interest has been 
focused on the involvement of BPA in inducing a stem-cell 
phenotype to breast cancer cells.
 In tissue culture, BPA induced differentiation of human em-
bryonic stem cells into mammary epithelial cells, potentially 
via upregulating Nanog, Oct4 and breast cancer stem cell 
markers. These results indicate that BPA may contribute to 
the formation and maintenance of breast cancer stem cells 
[49]. Additionally, BPA induced Sox-2 and ALDH-1 expression 
in MCF-7 cells, and increased mammosphere formation in 
MCF-7 or patient-derived xenograft (PDX) cells. Howev-
er, BPA failed to enhance the mammosphere formation in 
ER-negative MDA-MB-231 breast cancer cells. These find-
ings suggest that BPA-induced manifestation of the cancer 
stem cell phenotype is mediated by ER. A mechanistic study 
found that BPA induced SOX-2 mRNA expression through 
cyclic AMP-responsive element binding protein (CREB) phos-
phorylation, followed by pCREB binding to a SOX-2 down-
stream enhancer [50]. These results all indicate a potential 
link between BPA exposure and cancer stem cell signaling 
pathways, contributing to increased cancer development and 
progression.
 The bone morphogenetic protein (BMP) pathway might 

play a role in BPA-mediated breast cancer stem cell renewal 
and regulation as well [51]. BMP signaling is involved in the 
recruitment of stem cells in response to bone injury. However, 
this signaling pathway is also implicated in breast cancer ma-
lignancies [52]. BPA appears to increase the sensitivity of im-
mature mammary epithelial cells (MCF-10A) to BMP signaling 
through receptor localization and downstream signal priming. 
Additionally, BPA exposure alters the fate of mammary stem 
cells by modulating their response to BMP2 and BMP4 [53].

Epigenetic mechanisms of BPA action
The vast majority of breast cancer cases are unrelated to 
germline mutations in tumor suppressor genes, and are, in-
stead, thought to arise through either direct DNA damage, or 
epigenetic mechanisms, both of which can be induced by en-
vironmental stimuli. These cases of breast cancer are termed 
sporadic breast tumors [54]. BPA, BPF, and BPS have all 
been shown to induce estrogen-receptor mediated changes 
in the methylome of breast cancer cell lines and increased 
cell proliferation [55]. In recent years, it has been suggested 
that cancers induced through an endocrine disrupting epigen-
etic mechanism, such as BPA-induced, stem cell mediated 
breast cancers, can be prevented by bioactive food compo-
nents [56]. 
 Morgan et al. [57] found that BPA induced epigenetic 
changes in the coat color of viable yellow agouti mouse off-
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spring. This mouse model contains an intra-cisternal A parti-
cle retrotransposon which, when activated due to epigenetic 
modifications, leads to the expression of the agouti gene, of 
which the resulting protein causes a yellow coat color. This 
model can be used to map the effects of compounds on the 
epigenome [57]. The study by Dolinoy et al. [58] using this 
model found that the methyl-donors genistein and folate could 
reverse the hypomethylating effects of BPA, which caused a 
yellow coat color in viable yellow agouti mouse offspring. 
 A recent work by Li et al. [59] found that BPA-induced pro-
liferation of MCF-7 cells was found to be mediated through 
suppression of DNA hydroxymethylation. Specifically, 
Ten-eleven translocation (TET)2 plays a direct role in DNA 
hydroxymethylation in response to BPA through interaction 
with ERα [59]. This novel pathway suggests a potential 
mechanism through which epigenetics play a role in breast 
cancer development in response to BPA exposure. Hussain 
et al. [60] have suggested the involvement of HOXC6, a 
homeobox-containing gene associated with breast cell de-
velopment that is often found to be overexpressed in breast 
cancers. The estrogen response element in the promoter of 
the HOXC6 gene responds to BPA exposure, which facilitates 
the recruitment of ERα and estrogen receptor co-activators, 
ultimately leading to histone modifications and chromatin 
remodeling. Overexpression of HOXC6 also increased the 
expression of tumor growth factors in cell culture [60]. Anoth-
er study noted the involvement of a second homeobox-con-
taining gene, HOXB9. Through a similar mechanism, BPA 
was shown to induce expression of HOXB9 via ERs and ER 
co-activators, leading to the overexpression of HOXB9 and 
chromatin remodeling [61]. 
 The long non-coding RNA HOX antisense intergenic RNA 
(HOTAIR), known to respond to estrogen to induce silencing 
of genes necessary for breast cancer proliferation, was found 
to respond to BPA through EREs and ER-coregulators in an 
MCF-7 model [62]. The study by Doherty et al. [63], modeled 
in CD-1 female mice, found that BPA induced the expression 
of EZH2, a histone methyltransferase involved in embryonic 
development, and often overexpressed during tumor de-
velopment. Overall, these results highlight the importance 
of studying the potential epigenetic factors that influence 
the ability of BPA to induce carcinogenic effects. Figure 2 
summarizes the possible signaling pathways/key molecules 
contributing to the increased breast cancer incidence and de-
velopment following BPA exposure.

CANCER PREVENTION PERSPECTIVE

To establish better approaches to the prevention of breast 
cancer, it is important to recognize potential environmental 
determinants and to understand how they cause cancer 
development and progression. Industrialized society has 
ubiquitous environmental contaminants. Some are known to 
be harmful, but others have not been confirmed or even chal-

lenged to assess for the long-term effects in humans. 
 Exposure to endocrine disruptors such as BPA has been 
suspected to increase the risk of breast cancer. Testing expo-
sure and assessing cancer risks associated with chemicals 
via human trials is not ethical. However, using relevant epide-
miological data, exposure assessment and toxicology, as well 
as well-defined mechanism studies altogether can build the 
best evidence needed for cancer prevention. Understanding 
the mechanistic link between BPA and cancer could help us 
to find a way to reduce breast cancer risk from the exposure 
as well as to further prevent breast cancer development. 
Clear elucidation of environmental causes in cancer develop-
ment could provide effective long-lasting protection against 
breast cancer in humans.
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