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REVIEW

Circular RNAs and their role in renal cell 
carcinoma: a current perspective
Zhongyuan Liu and Ming Li*   

Abstract 

Circular RNAs (circRNAs) are a new class of long non-coding RNAs, that results from a special type of alternative splic-
ing referred to as back-splicing. They are widely distributed in eukaryotic cells and demonstrate tissue-specific expres-
sion patterns in humans. CircRNAs actively participate in various important biological activities like gene transcription, 
pre-mRNA splicing, translation, sponging miRNA and proteins, etc. With such diverse biological functions, circRNAs 
not only play a crucial role in normal human physiology, as well as in multiple diseases, including cancer. In this 
review, we summarized our current understanding of circRNAs and their role in renal cell carcinoma (RCC), the most 
common cancer of kidneys. Studies have shown that the expression level of several circRNAs are considerably varied 
in RCC samples and RCC cell lines suggesting the potential role of these circRNAs in RCC progression. Several circRNAs 
promote RCC development and progression mostly via the miRNA/target gene axis making them ideal candidates for 
novel anti-cancer therapy. Apart from these, there are a few circRNAs that are significantly downregulated in RCC and 
overexpression of these circRNAs leads to suppression of RCC growth. Differential expression patterns and novel func-
tions of circRNAs in RCC suggest that circRNAs can be utilized as potential biomarkers and therapeutic targets for RCC 
therapy. However, our current understanding of the role of circRNA in RCC is still in its infancy and much comprehen-
sive research is needed to achieve clinical translation of circRNAs as biomarkers and therapeutic targets in developing 
effective treatment options for RCC.
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Introduction
With trillions of cells multiplying in the body, any altera-
tions in the process that lead to uncontrolled growth of 
cells will result in cancer. When tubular epithelial cells 
of nephron go cancerous, it gives rise to renal cell car-
cinoma (RCC) which accounts for over 90% of the renal 
malignancies, and over 3% of all adult malignancies 
[1]. The condition is mostly seen in old age (> 60 years), 
with nearly two times higher prevalence in males than 
in females [2]. Further, RCC is ranked as the sixth and 
eighth most common cancer in males and females respec-
tively. Radical nephrectomy is the mainstay therapy for 

RCC, however distant metastasis and local invasion lim-
its such an approach. In such cases, chemotherapy is an 
ideal choice but resistance to current drugs significantly 
impairs the treatment efficiency [3]. Therefore, novel 
strategies for early detection and targeted therapies are 
need of a moment for the successful management of 
RCC. A deeper understanding of the RCC pathophysiol-
ogy may reveal relevant molecules for further advance-
ment in the therapeutic management of RCC.

Similar to other cancers, the tumorigenesis of RCC 
involves dysregulation of genetic and epigenetic path-
ways [4–6]. In most RCC patients, the short arm of 
chromosome 3 is lost, where the tumor suppressor 
gene von Hippel-Lindau (VHL) is located, resulting in 
the dysregulation of the hypoxic pathway due to altera-
tion of HIF-2α expression [7] Other pathways involved 
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in cell proliferation and growth, like PI3K-AKT-mTOR 
pathways, are also activated in RCC [8]. Epigenetic 
disruption due to altered epigenetic regulators is 
identified as fundamental to cancer occurrence. Non-
coding RNAs are one such epigenetic regulators that 
are shown to play a potential role in RCC development 
and progression [9–11]. Circular RNAs (circRNA) are 
a special category of long noncoding RNAs (lncRNAs) 
that are being extensively studied for their role in the 
development and progression of various types of can-
cer [12, 13]. Many studies have demonstrated that the 
expression of various circRNAs is dysregulated in vari-
ous cancers including RCC [14–16]. Several circRNAs 
with enhanced expression in RCC models suggest the 
oncogenic potential of these overexpressed circRNAs 
in RCC [14]. On contrary, there are a few circRNAs that 
are downregulated in RCC demonstrating the tumor 
suppressor effect of circRNAs in RCC progression [14]. 
These studies demonstrate a critical role of circRNAs in 
various stages of RCC making them an important topic 
of research for developing new strategies to improvise 
RCC management. Hence, in the present review, we 
performed an extensive literature search for circRNAs 
associated with RCC and summarized the role of vari-
ous circRNAs in RCC, demonstrating their potential to 
be used as biomarkers and targets for RCC therapy.

The overall structure of the article
Overview and biogenesis of circular RNAs.
Biological functions of CircRNAs.
Functional significance of CircRNAs in RCC.
circRNAs and their involvement in other cancer 

types.
Conclusion

(Please see Fig.  1 for the flowchart of the research 
methodology).

Overview and biogenesis of CircRNAs
CircRNAs are a subclass of lncRNAs that are generated 
by the process of back-splicing (Fig. 1), where a 5′ splice 
site is bonded to the 3′ splice site. Structurally, they are 
a single chain RNA molecule with a 5′–3′ phosphodies-
ter bond, forming a covalently-looped circular structure 
[17]. Based on their composition, three types of circR-
NAs have been identified: exonic circRNAs (EcircRNAs), 
intronic circRNAs (IcircRNAs) and exon–intron circR-
NAs (EicircRNA) (Fig. 2) [18]. RNA binding proteins play 
a major role in the formation of circRNAs. For instance, 
Quaking supports EcircRNA formation by promoting a 
5′–3′ phosphodiester bond formation [19], while mus-
cleblind supports IcircRNA formation by binding to its 
own pre-mRNA [20]. Due to their unexpected structure, 
the finding of circRNAs was initially considered an arti-
fact. However, with the use of latest technologies like 
next-generation sequencing and bioinformatics tools, 
the existence of circRNAs is not only accepted but over 
30,000 types of circRNAs have been predicted to exist 
in humans [14, 21]. Important bioinformatics tools and 
databases useful for studying circRNAs are enlisted in 
Table  1. The expression of circRNAs is tissue specific 
and they are most abundantly found in neural tissue, 
where they tend to accumulate with age [22, 23]. The 
reason for this could be that the neurons exhibit high-
est rate of alternative splicing, an important process for 
circRNA biogenesis. Apart from that the circRNAs pos-
sess a longer half-life (18–23 h) compared to linear RAs 
(4–7 h) which could be one of the reasons they might get 

Fig. 1  Flowchart of the research methodology
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accumulated in hardly dividing cells like neurons and not 
much in highly proliferating tissue [24, 25]. The observed 
longer half-life in circRNA is due to the lack of 5′ and 3′ 

terminal structure making them relatively resistant to 
common RNA degradation pathways, and are thus con-
sidered stable of all the RNAs. Under in vitro conditions, 

Fig. 2  Biogenesis of circRNA and its biological function

Table 1  List of important bioinformatics tools and databases useful for circRNA research

Tool/database name Important features Ref

Circ2Traits It contains information of 1951 human circRNAs potentially associated with 105 different diseases. It also stores a putative 
miRNA-circRNA-mRNA-lncRNA interaction network for all these diseases

[28]

CircAtlas It is a comprehensive database that contains 1070 RNA-seq samples from 6 different species with the integration of 
1,007,087 circRNAs

[29]

CircBank It is a human circRNA database that contains 12,348 conserved circRNAs and 4388 circRNAs with m6A modifications [30]

Circbase merged and unified data sets of circRNAs from multiple species [31]

CIRCexplorer3 A comprehensive pipeline to quantitatively evaluate circRNA expression across samples [32]

CircInteractome A web-based tool for the analysis of circRNAs and their interacting proteins and miRNAs [33]

CircNet It provides tissue-specific circRNA expression profiles and circRNA-miRNA-gene regulatory networks [34]

CIRCpedia v2 An updated database containing 180 RNA-seq datasets for circRNA annotations across 6 different species with computa-
tional tools to compare circRNA expression among different samples

[35]

CircPro An integrated tool for the identification of circRNAs with protein-coding potential from high-throughput sequencing 
data

[36]

CircRNA disease It provides a user-friendly interface for searching experimentally supported disease-associated circRNAs [37]

CircRNADb A comprehensive database comprising 32,914 non-redundant human exonic circRNAs with protein-encoding feature 
annotation

[38]

CircRNAFisher A circRNA identification pipeline for robust circRNA identification [39]

CIRI A de novo circular RNA identification tool [40]

CSCD A comprehensive cancer-specific circRNA database [41]

ExoRBase It is a database containing 58,330 circRNAs, 15,501 lncRNAs and 18,333 mRNAs characterized from derived from RNA-seq 
data analyses of human blood exosomes

[42]

StarBase v2.0 A tool to identify the RNA–RNA and RNA–protein interactions including miRNAs, ncRNAs (lncRNAs, pseudogenes and 
circRNAs)

[43]
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the enzymatic activity of Rnase H and Rrp44 could cleave 
circRNAs, although the process is considerably slow [26, 
27]. The mechanisms and rate of degradation of circR-
NAs in vivo are yet to be fully understood.

Biological functions of CircRNAs
Despite their unusual structure and lack of 5′ and 3′ ter-
minals, circRNAs are biologically active and are a hot 
topic of research. Various biological and cellular func-
tions of circRNAs have been identified making them 
an important aspect of current biological research with 
respect to their role in various diseases such as cancer. 
Based on various studies, six biological functions of cir-
cRNAs have been identified and all the functions have 
been discussed briefly below. Moreover, all six functions 
of circRNAS have been represented in Fig. 2.

Functioning as micro RNA (miRNA) sponges
Micro RNA (miRNA) is a type of non-coding RNA with 
a length of about 18–25 nucleotides, which erroneous 
expression has been confirmed to be related to cancer, 
autoimmune diseases, osteoporosis and so on [44–46]. 
CircRNAs can act as competitive endogenous RNAs, 
where they competitively bind to miRNAs via miRNA 
response elements and inhibit their functions [47]. For 
example, Zheng et  al., found that the circHIPK3 can 
sponge 9 miRNAs, especially miR-124, which are known 
growth-suppressors in different cancer cells [48]. Simi-
larly, circ-ITCH is shown to sponge miR-7 and miR-
214 resulting in inhibition of lung cancer via increased 
expression of the ITCH gene [49]. Sponging miR-9 by 
circMTO1 increases p21 expression in hepatocellular 
carcinoma, resulting in the inhibition of its proliferation 
and invasive abilities [50]. Sponging by circRNA may 
not always result in inhibition of miRNA, but also serve 
as its reservoir or transporter. For example, the circRNA 
sponge for miR-7 (ciRS7) can sponge both miR-7 and 
miR-671, where the later could trigger the AGO2-medi-
ated cleavage of ciRS7, releasing miR-7 [47, 51].

Regulating transcription and translation
The circRNAs, primarily IcircRNAs and EicircRNAs, 
are able to influence gene transcription through their 
retained intronic sequences, by interacting with RNA 
polymerase II and U1 snRNP. For instance, studies have 
revealed that circEIF3J, circPAIP2, circANKRD52 and 
circSIRT7 could enhance the expression of their parental 
genes [52, 53]. Apart from regulation of gene transcrip-
tion, the circRNA also influences the protein expression, 
mostly by acting as modulators of mRNA translation. For 
example, a study by Chao et al. showed that the circRNAs 
generated by the mouse formin (Fmn) gene prevented 

the translation of its mRNA into Fmn protein by harbor-
ing itself at its translation site [54].

Competing with linear splicing of pre‑mRNA
Both circRNA biogenesis and canonical splicing work on 
the same splice sites and depend on the same spliceoso-
mal machinery, suggesting that the circRNAs compete 
with the linear splicing of pre-mRNAs [20, 55]. Studies 
have shown a negative correlation between circRNAs and 
their linear isoforms [56]. However, the molecular mech-
anisms underlying such competition needs to be further 
elucidated.

Regulating translocation of various RNA binding proteins 
(RBPs)
CircRNAs can bind to RBPs and transport them to spe-
cific subcellular locations, and thus aid in regulating pro-
tein functions [57]. Studies have revealed that the RBPs 
like STAT3, PDK-1, AKT1 and c-myc are translocated 
into the nucleus by circ-Amotl1 [58–60]. While nuclear 
translocation of MBL protein and translational activator 
HuR are facilitated by circ-Mbl and circPABPN1, respec-
tively [20, 61].

Acting as a scaffold for protein interaction
By acting as scaffolds, some circRNAs are shown to influ-
ence the kinetics of the protein–protein interaction by 
facilitating the contact between them. For instance, circ-
Amotl1 acts as a scaffold for PDK1 mediated AKT1 phos-
phorylation that aids in its nuclear translocation [62], 
while circ-Foxo3 can facilitate the interaction between 
p53 and Mdm2 that results in degradation of p53 [63].

Encoding for peptides and proteins via translation
Owing to its unusual structure, circRNAs were initially 
thought to be untranslatable. However, recently sev-
eral studies reported that circRNAs also get encoded 
[64–66]. Despite the absence of 5′ and 3′ terminals, the 
circRNA demonstrates a cap-independent open reading 
frame that incorporates internal ribosome entry sites, 
allowing its translation via membrane-associated ribo-
somes [64]. Yang et  al., showed that in the presence of 
N6-methyladenosine, some circRNAs within in cancer 
cell line could encode several peptides [66]. Legnini et al. 
also demonstrated the presence of heavy polysomes in 
circ-ZNF609, which can be translated into a protein that 
may control myoblast proliferation [65]. More studies 
are needed in the sector to not only reveal the proteins 
coded by circRNAs but also to elucidate their functional 
relevance.
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Functional significance of CircRNAs in RCC​
Owing to such diverse biological activities, circRNAs 
play a critical role in human physiology and pathology, 
including cancers. Here we discuss the role of circR-
NAs in RCC with emphasis on oncogenic and tumor 
suppressor functions of various circRNAs. The mecha-
nisms of how the circular RNAs impact the tumorigen-
esis of renal cell carcinoma are shown in Fig. 3. Several 
genome-wide studies have reported altered transcrip-
tional profiles of circRNA in RCC. Franz et  al. identi-
fied 13,261 circRNAs in clear cell renal cell carcinoma 
(ccRCC) samples, of which 78 were upregulated and 91 
were downregulated as compared to matched controls 
[67]. The bioinformatics analysis of the RNA microar-
ray database of ccRCC tissues by Ma et al. revealed that 
the expression of a total of 542 circRNAs was deviated 
from normal, among which 218 circRNAs were upregu-
lated while the remaining 324 were downregulated [68]. 
Mechanism of many of these circRNAs in the regula-
tion of key processes of RCC tumorigenesis, like epi-
thelial–mesenchymal transition (EMT), proliferation, 
migration, invasion, apoptosis and drug resistance have 
been identified [14, 69–72]. Each upregulated or down-
regulated circRNA can influence multiple key processes 
via circRNA/miRNA/miRNA-target gene axis, the 
details of which are discussed briefly in Tables 2 and 3.

CircRNAs facilitating oncogenesis in RCC​
Several circRNAs are found upregulated in RCC which is 
correlated with tumor growth. RNA microarray analysis 
by Zhou et al. found the upregulation of circPCNXL2 in 
ccRCC samples, that correlated with poor overall sur-
vival of the patients [73]. Knockdown of circPCNXL2 
resulted in decreased proliferation and invasion of RCC 
cells in vitro and significantly reduced the tumor growth 
in  vivo [73]. Further experimental analysis showed that 
circPCNXL2 functions as a miRNA sponge for miR-153, 
resulting in increased expression of ZEB2 protein, which 
is associated with aggressive RCC phenotype and poor 
prognosis in RCC patients [73, 74]. Similarly, Jin et  al. 
determined an oncogenic role of circ0039569, where 
it could support the survival and metastasis of RCC by 
promoting the proliferation, invasion and migration of 
RCC cells [72]. Circ0039569 was found to achieve this 
by sponging miR-34a-5p that resulted in upregulation 
of CCL22 gene, which codes for CCL22 chemokine [72]. 
CircZNF609 is another oncogenic circRNA which is 
shown to promote the proliferation and invasion of RCC 
cells [75]. RNA immunoprecipitation assay and lucif-
erase assay revealed the role of circZNF609/miR-138-5p/
FOXP4 axis in RCC tumorigenesis [75]. CircFNDC3B 
and circNRIP1 are two other circRNAs that are shown 
to promote the proliferation and migration in RCC cells. 
CircFNDC3B negatively regulates miR-99a influencing 

Fig. 3  Circular RNA affects the tumorigenesis mechanism of renal cell carcinoma
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the JAK1/STAT3 and MEK/ERK pathway resulting in 
increased proliferation and migration of RCC cells [76]. 
Similarly, circNRIP1 played the oncogenic role in RCC 
via miR-505/AMPK and miR-505/PI3K/AKT/mTOR 
pathway [77].

Few circRNAs could impart anti-apoptotic features 
to RCC cells. Increased SOX12 expression due to 
sponging of miR-296-5p by circ001895 could not only 
increase proliferation, invasion and migration of RCC 
cells but also prevented their apoptosis by increas-
ing Bcl-2 and decreasing Bax and cleaved caspase-3 
expression [78]. Moreover, apoptosis of RCC cells was 
prevented by circEGLN3 via miR-1299/IRF7 [79], and 
circABCB10 [80], by altering Bax, Bcl2 and caspase-3 
protein expression. CircEGLN3, along with circNOX4 
and circRHOBTB3 were all found to correlate well, 
demonstrated by good area under the receiver operat-
ing characteristic curve (AUC-ROC), with the clinical 
features and overall survival of ccRCC patients, indi-
cating their potential as diagnostic biomarkers for the 

condition [67, 81]. Of these, circEGLN3 demonstrated 
an excellent AUC-ROC of 0.98, making it a remarkably 
reliable biomarker [79]. CircABCB10 was found to be 
associated well with the pathologic grade and TNM 
staging of RCC and thus may serve as a potential prog-
nostic marker [80].

Epithelial–mesenchymal transition (EMT) is a criti-
cal process through which the differentiated epithelial 
cells acquire the features of stem-like mesenchymal 
cells, contributing to tumorigenesis, cardiopathy and 
other diseases [82–84]. EMT is a major dysregulated 
element in RCC, which is reportedly promoted by 
circ000926 and circPRRC2A via miR-411/CDH2 and 
miR-514a-5p/miR-6776-5p/TRPM3 axis [69, 85]. Fur-
ther, circPRRC2A level correlated well with the tumor 
size, Fuhrman grade and pT stage which makes it an 
independent prognostic biomarker for overall survival 
and metastasis-free survival [85]. Yan et  al. reported 
the role of circ0035483 in contributing to gemcitabine 
resistance in human RCC cells by targeting miR-335/

Table 2  CircRNAs with oncogenic functions in RCC​

CircRNA Target miRNA/gene axis Gene/Protein 
activity

Functions in RCC​ Ref

circPCNXL2 miR-153/ZEB2 Increased Increased proliferation and invasion [73]

circ0039569 miR-34a-5p/CCL22 Increased Increased proliferation, migration and invasion [72]

circZNF609 miR-138-5p/FOXP4 Increased Increased proliferation and invasion [75]

circFNDC3B miR-99a/JAK1/STAT3/MEK/ERK Increased Increased proliferation and migration [76]

circNRIP1 miR-505/AMPK/PI3K/AKT/mTOR Increased Increased proliferation and migration [77]

circ001895 miR-296-5p/SOX12 Increased Increased proliferation, migration, invasion and decreased apoptosis [78]

circEGLN3 miR-1299/IRF7 Increased Increased proliferation, migration, invasion and decreased apoptosis [79]

circABCB10 – – Increased proliferation and migration
decreased apoptosis

[80]

circ000926 miR-411/CDH2 Increased Increased proliferation, migration, invasion and EMT [85]

circPRRC2A miR-514a-5p
miR-6776-5p/TRPM3

Increased Increased proliferation and EMT [69]

circ0035483 miR-335/CCNB1 Increased Increased proliferation, autophagy and resistance to Gemcitabine [70]

Table 3  CircRNAs with tumor suppressive functions in RCC​

CircRNA Target miRNA/gene axis Gene/protein activity Functions in RCC​ Ref

hsa-circ0072309 miR-100/PI3K/AKT/mTOR Increased Increased proliferation, migration and invasion; 
decreased apoptosis

[86]

circ0001451 – – Increased proliferation; decreased apoptosis [81]

circAKT3 miR-296-3p/E-cadherin Decreased Increased migration, invasion and EMT [87]

cRAPGEF5 miR-27a-3p/TXNIP Decreased Increased proliferation,migration and invasion [71]

circATP2B1 miR-204-3p/FN1 Increased Increased migration and invasion [88]

circHIAT1 miR-195-5p
miR-29a-3p
miR-29c-3p/CDC42

Increased Increased migration and invasion [89]

circMTO1 miR9/LMX1A Decreased Increased proliferation and invasion [90]
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CCNB1 axis [70]. Together, upregulation of these cir-
cRNAs contributes to the tumorigenesis and progres-
sion of RCC.

CircRNAs suppressing RCC growth and tumorigenesis
Following the same circRNA/miRNA/target gene axis, 
several circRNAs can exert anti-tumor effects in RCC. 
Chen T et  al. identified that the Hsa-circ0072309 was 
poorly expressed in RCC specimens [86]. Increasing 
the expression of Hsa-circ0072309 in RCC cell lines, in 
which the expression was otherwise suppressed, inhib-
ited their proliferation, migration and invasion abilities, 
while enhancing their apoptosis. The search for under-
lying mechanisms revealed the sponging of miR-100 by 
Hsa-circ0072309 that led to suppression of PI3K/AKT/
mTOR pathway in RCC cells [86]. Another circRNA 
that could induce apoptosis in RCC cells is circ0001451 
and knockdown of which resulted in a significant RCC 
growth under in vitro conditions [81]. Further, an AUC-
ROC of 0.704 circ0001451 was found to be correlated 
well with the clinicopathological features and overall 
survival of ccRCC patients, making it an attractive diag-
nostic and prognostic biomarker [81]. By regulating miR-
296-3p/E-cadherin axis, circ-AKT3 was shown to inhibit 
EMT in RCC cells resulting in suppression of metastasis 
of ccRCC [87]. CircRNAs cRAPGEF5 and circATP2B1 
are also shown to suppress the proliferation, migration 
and invasion of RCC cells by regulating the miR-271-3p/
TXNIP and miR-204-3p/FN1 axis, respectively [71, 88]. 
Further, the expression level of circRAPGEF5 correlated 
well with tumor stages, overall survival and relapse-free 
survival of RCC patients and thus may serve as a prog-
nostic biomarker in RCC [71]. circHIAT1 can sponge 
multiple RNAs that include miR-195-5p, miR-29a-3p 
and miR-29c-3p to suppress CD-42 expression, which 
leads to suppression of migration and invasion in ccRCC 
cells [89]. Another circRNA with an anti-tumor function 
in RCC is circMTO1, which promotes the expression of 
tumor suppressor LMX1A by acting as a miR9 sponge 
and leading to miR9 downregulation. LMX1A is a direct 
target of miR9 and downregulation of miR9 by circMTO1 
leads to higher expression of LMX1A and ultimately 
leading to suppression of RCC progression demonstrat-
ing the role of circMTO1 as a potential therapeutic tar-
get for RCC therapy [90]. All these circRNAs with tumor 
suppressor functions are downregulated in RCC, and 
the fact that their upregulation can inhibit the RCC pro-
gression, metastasis and chemoresistance under in vitro 
conditions, makes them potential therapeutic targets for 
treating RCC. Many more circRNAs undoubtedly play 
a crucial role in RCC tumorigenesis which are yet to be 
discovered by future research.

CircRNAs and their involvement in other cancer types
Compared with other published articles, we have made 
a more comprehensive and novel summary of the role of 
circRNAs in RCC. At the same time, it is not only lim-
ited to the role of circRNAs in RCC, we also summarize 
the reports of circRNAs in other cancers. Different cir-
cRNAs and their involvement in various cancer types 
are summarized in Table  4. According to the informa-
tion summarized in the table, various studies on different 
circRNAs suggest that they play an important role not 
only in RCC but in other types of cancers also including 
breast cancer, colorectal cancer, gastric cancer, hepato-
cellular carcinoma, glioma, lung cancer, bladder cancer 
and hematological malignancies [91–93]. In these can-
cer types, differential expression of various circRNAs 
has been reported suggesting their crucial role in cancer 
development and progression. Generally, circRNAs with 
enhanced expression in different cancer types play an 
oncogenic role via targeting the expression of important 
miRNAs and proteins leading to tumorigenesis [91, 92]. 
On the other hand, circRNAs with diminished expression 
in different cancer types act as a tumor suppressor and 
when ectopically expressed leads to suppression of tumor 
growth [91, 92].

Conclusion and future perspective
Circular RNAs are a group of biologically active long 
non-coding RNAs that are associated with various bio-
logical functions in eukaryotic cells. Although initially 
neglected as an artifact, advancement in recent research 
has led to a better understanding of their functions and 
applicability, particularly in the field of cancer. Here we 
have demonstrated that there is significant dysregulation 
in the expression of various circRNAs in cancers includ-
ing RCC. We further gave an overall idea of how several 
circRNAs influence RCC growth and progression. We 
further provided detailed examples and a comprehensive 
list of circRNAs with oncogenic and tumor suppressive 
effects in RCC, demonstrating the role of various circR-
NAs in the complex process of RCC development. How-
ever, our knowledge of the role of circRNAs in cancers 
including RCC is very limited and there is still a need for 
more research related to circRNAs to determine their 
internal structure and entire functional spectrum in can-
cer biology. Our understanding of the role of circRNA in 
RCC is in its infancy, as only a few circRNAs have been 
identified. Even within the identified circRNAs, most of 
our current understanding of their mechanism of action 
is limited to miRNA sponging activity, while much of 
their other functions are yet to be understood. The tumor 
microenvironment (TME) is a complex ecosystem that 
plays a vital role in the process of RCC development and 
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Table 4  List of important circRNAs associated with cancers other than RCC​

Sr. No. CircRNA Cancer types Expression 
pattern

Proposed function Ref

1 circFBXW7 Glioblastoma ↓ Tumor suppressor [94]

2 circITCH Glioma ↓ Tumor suppressor [95]

Multiple myeloma ↓ Tumor suppressor [96]

Bladder cancer ↓ Tumor suppressor [97]

Cervical cancer ↓ Tumor suppressor [98]

Breast cancer ↓ Tumor suppressor [99]

Osteosarcoma ↓ Tumor suppressor [100]

Ovarian cancer ↓ Tumor suppressor [101]

Hepatocellular carcinoma ↓ Tumor suppressor [102]

3 circSMARCA5 Glioblastoma ↓ Tumor suppressor [103]

Hepatocellular carcinoma ↓ Tumor suppressor [104]

Non-small cell lung cancer ↓ Tumor suppressor [105]

4 circSHPRH Glioma ↓ Tumor suppressor [106]

5 circZKSCAN1 Hepatocellular carcinoma ↓ Tumor suppressor [107]

6 circSLC8A1 Bladder cancer ↓ Tumor suppressor [108]

7 circ-ZFR Gastric cancer ↓ Tumor suppressor [109]

8 circPTK2 (hsa_circ_0008305) Non-small cell lung cancer ↓ Tumor suppressor [110]

9 circSMAD2 Hepatocellular carcinoma ↓ Tumor suppressor [111]

10 circ_0132266 Chronic lymphocytic leukemia ↓ Tumor suppressor [112]

11 circ_0000190 Multiple myeloma ↓ Tumor suppressor [113]

12 CDR1as Non-small cell lung cancer ↑ Oncogenic [114]

Colorectal cancer ↑ Oncogenic [115]

Hepatocellular carcinoma ↑ Oncogenic [116]

13 circHIPK3 Colorectal cancer ↑ Oncogenic [117]

Gallbladder cancer ↑ Oncogenic [118]

Chronic myeloid leukemia ↑ Oncogenic [119]

14 circNFIX Glioma ↑ Oncogenic [120]

Non-small cell lung cancer ↑ Oncogenic [121]

Pituitary adenoma ↑ Oncogenic [122]

15 circNT5E Glioblastoma ↑ Oncogenic [123]

Non-small cell lung cancer ↑ Oncogenic [124]

Bladder cancer ↑ Oncogenic [125]

16 circTTBK2 Glioma ↑ Oncogenic [126]

17 hsa_circ_0046701 Glioma ↑ Oncogenic [127]

18 circ100284 Osteosarcoma ↑ Oncogenic [128]

19 circ-DNMT1 Breast cancer ↑ Oncogenic [129]

20 circ-BANP Colorectal cancer ↑ Oncogenic [130]

Lung cancer ↑ Oncogenic [131]

21 circRNA_001569 Gastric cancer ↑ Oncogenic [132]

Colorectal cancer ↑ Oncogenic [133]

Breast cancer ↑ Oncogenic [134]

Pancreatic cancer ↑ Oncogenic [135]

Osteosarcoma ↑ Oncogenic [136]

Hepatocellular carcinoma ↑ Oncogenic [137]

Non-small cell lung cancer ↑ Oncogenic [138]

22 circPAN3 Acute myeloid leukemia ↑ Oncogenic [139]

23 circ_0007841 Multiple myeloma
Ovarian cancer

↑ Oncogenic [140]

↑ Oncogenic [141]

24 circFGFR1 Non-small cell lung cancer ↑ Oncogenic [142]
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progression. However, the role of circRNA in shaping the 
RCC TME and vice versa is still elusive [151]. CircRNAs 
are abundantly expressed in body fluids [152–154], and 
the fact that they possess a longer half-life and better sta-
bility make them attractive biomarkers in liquid biopsy 
for diagnosis or monitoring of various conditions includ-
ing RCC. However, not all the current known circRNAs 
associated with RCC can serve as biomarkers, and those 
that are considered as potential diagnostic or prognostic 
biomarkers need more studies to establish their credibil-
ity. In fact, the techniques and methods to reliably detect 
circRNAs need to be further standardized. Within our 
current understanding, circRNAs seem to be promis-
ing agents for targeted therapy, however, we are far from 
determining the methods to safely and effectively achieve 
it. One possible way could be to use exosomes to deliver 
circRNAs without immunologic rejection. Exosomes 
are shown to contain stable circRNAs and can serve as 
diagnostic biomarkers for colon cancer detection [155]. 
A similar role of exosomes in RCC is yet to be revealed. 
It is evident that differential regulation of various circR-
NAs and their role in RCC development indicates their 
importance as potential therapeutic targets and biomark-
ers for the development of more effective treatment strat-
egies for RCC therapy. However, there is still a need for 
more extensive research focused on circRNAs and their 
involvement in RCC.
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