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Integrative analysis of KRAS wildtype meta-
static pancreatic ductal adenocarcinoma
reveals mutation and expression-based
similarities to cholangiocarcinoma

A list of authors and their affiliations appears at the end of the paper

Oncogenic KRAS mutations are absent in approximately 10% of patients with
metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a
subgroup of mPDAC with therapeutic options beyond standard-of-care cyto-
toxic chemotherapy.While distinct gene fusions have been implicated inKRAS
wildtype mPDAC, information regarding other types of mutations remain
limited, and gene expression patterns associated with KRAS wildtype mPDAC
have not been reported. Here, we leverage sequencing data from the PanGen
trial to perform comprehensive characterization of themolecular landscape of
KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification
encompassing transcription factorsPROX1 andNR5A2. By leveragingdata from
colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight
similarities between cholangiocarcinoma andKRASwildtypemPDAC involving
both mutation and expression-based signatures and validate these findings
using an independent dataset. These data further establish KRAS wildtype
mPDAC as a unique molecular entity, with therapeutic opportunities extend-
ing beyond gene fusion events.

Pancreatic ductal adenocarcinoma (PDAC) is projected to become the
second most common cause of cancer-related deaths in the United
States by 20301. Oncogenic driver mutations in KRAS are a hallmark
genomic event in PDAC and occur in approximately 90% of patients, a
prevalence that is much higher compared to other cancers2. Mutant
KRAS drives tumor progression by activating downstream cell pro-
liferation pathways, immunosuppression, and cell metabolism repro-
gramming, which in combination with loss of function alterations in
tumor suppressor genes such asTP53, SMAD4, andCDKN2A, fuels PDAC
tumor growth and metastasis3,4. While efforts to pharmacologically
target oncogenic KRAS have intensified recently, most variants remain
resistant to targeted approaches. Meanwhile, there is a growing inter-
est toward understanding the underlying biology of KRAS wildtype
PDAC tumors, which are unique in that they often also lack secondary
mutations in tumor suppressor genes commonly found in PDAC5.

Next-generation sequencing (NGS) has facilitated the genomic
characterization of several PDAC cohorts which have included KRAS
wildtype tumors6–9. We and others have identified oncogenic fusions
involving NRG1 in KRAS wildtype metastatic PDAC (mPDAC) and
showed that such tumors are sensitive to the ERBB inhibitor afatinib5,10.
While such studies have characterized the distinct fusion landscape
observed in KRAS wildtype mPDAC, transcriptome-based differences
between KRASwildtype and mutant mPDAC remain unexplored. Gene
expression-based molecular subtypes of PDAC have been broadly
classified intobasal-like and classical subgroups,with basal-like tumors
being associated with poor prognosis and resistance to first-line
chemotherapy11,12. As studies interrogating the genomic landscape
of KRAS wildtype mPDAC have indicated that these tumors may
represent a distinct molecular entity, transcriptome-based profiling is
needed to better understand how KRAS wildtype tumors align to the
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molecular subtypes of PDAC, as well as identify other potential ther-
apeutic opportunities.

Here, we perform comprehensive genome and transcriptome
characterization of KRAS wildtype mPDAC using data from patients
enrolled in the PanGen trial of mPDAC (NCT02869802). By leveraging
additional sequencing data from metastatic colorectal adenocarci-
noma and cholangiocarcinoma cancer types as well as two indepen-
dent cohorts of mPDAC samples, we highlight results indicative of
roles of transcription factors NR5A2 and PROX1 in KRAS wildtype
mPDAC as well as a distinct similarity between cholangiocarcinoma
and KRAS wildtype mPDAC samples.

Results
Clinical characterization of KRAS wildtype mPDAC in the Pan-
Gen cohort
A total of 63 patients with newly diagnosed mPDAC were enrolled and
received sequencing as part of the PanGen trial (NCT02869802), prior
to receiving treatment for their metastatic disease, between October
2016 and May 2021. Nine of 63 (14%) patients had KRAS wildtype
tumors bywhole-genome sequencing (WGS) andwere investigated for
differences in clinical attributes collected as part of the trial (Supple-
mentary Table 1). Patients with KRAS wildtype tumors were diagnosed
earlier on average at 51.4 years (IQR 48.8–55.2) compared to 60.9 years
(IQR 56.7–67.4) in the KRAS mutant group (p = 0.03). CA19-9 levels in
the KRAS wildtype group were lower compared to the KRAS mutant
group (median 58 vs. 4900U/mL in the KRASmutant group; p =0.03).
Other clinical features including history of diabetes, family history
of malignancy, and tumor grade were comparable between the
two groups. Approximately half of all patients in the study received
FOLFIRINOX as first-line therapy (56 and 52% of KRAS wildtype and
mutant tumors, respectively). One of nine (11%) and 10 of 54 (19%)
KRAS wildtype and mutant groups (respectively) received first-line
immunotherapy as part of a phase II randomized clinical trial with an
intervention arm consisting of front-line gemcitabine, nab-paclitaxel,
durvalumab, and tremelimumab (NCT02879318). All but onepatient in
the KRAS wildtype group presented with de novo metastatic disease.

One patient with an NTRK2 fusion developed recurrent disease after
total pancreatectomy and adjuvant FOLFIRINOX, and remained on
first-line gemcitabine/nab-paclitaxel. One patient in the KRAS mutant
group received second-line palbociclib for a CDKN2Amutation, as part
of a clinical trial (NCT03297606).

Molecular-targeted therapies were received by four of nine (44%)
patients with KRAS wildtype mPDAC, which included afatinib (four
patients) and post-afatinib administration of erlotinib (one patient;
Fig. 1a), and were administered to patients based on an oncogenic
fusion detected in their tumor. Three patients with KRAS mutant
tumors that were enrolled in clinical trials for which primary
results have not been published (NCT03297606, one patient;
NCT03450018, two patients) were excluded from overall survival (OS)
analysis. Patients with KRAS wildtype mPDAC showed increased OS in
univariate analysis (hazard ratio (HR) = 0.13, 95% confidence interval
(CI) = [0.032–0.55], log-rank p =0.0012; Fig. 1b), and the prognostic
effect of KRAS mutation status remained significant (HR =0.16, 95%
CI = [0.035–0.76], p = 0.021) when multivariate survival analysis was
performed, which included age of disease onset (≤55 vs. >55 years13)
and Moffitt subtype as these variables were deemed significant
(p < 0.1) in a Forward Selection analysis of covariates (Fig. 1c). To fur-
ther explore the association between KRAS mutation status and sur-
vival in PDAC, we leveraged sequencing data from the COMPASS
(mPDAC; n = 195), and Hartwig (mPDAC; n = 113) cohorts. Genome
sequencing data revealed KRAS wildtype status in 18/195 (9%) and 16/
113 (14%) COMPASS and Hartwig samples, respectively. While OS was
not significantly different between patients with KRAS wildtype and
mutant tumors in the COMPASS cohort (HR = 1.1, 95% CI = [0.62–1.8],
p =0.81), patients with KRAS wildtype tumors showed significantly
higher OS in the Hartwig cohort (HR =0.25, 95% CI = [0.088–0.73],
p =0.0070; Supplementary Fig. 1). Interestingly, fusion rates among
KRAS wildtype tumors were higher in the Hartwig cohort (five of 16
(31%) patients; BRAF-NRF1 (two patients, fusion partners NRF1 and
SND1), ALK-EML4 (one patient),NTRK3-EML4 (one patient), and FGFR2-
KIAA1598 (one patient)) compared to COMPASS (one of 18 (6%)
patients; NTRK3-EML4), suggesting that underlying cohort-specific

Fig. 1 | Administration of targeted treatment regimens in patients with KRAS
wildtype mPDAC. a Swimmer’s plot showing the duration of each treatment
regimen receivedby each patientwithKRASwildtypemPDAC (n = 9). Best response
to first-line therapy is indicated by black symbols. Black arrows at the end of bars
indicate patients who remain on treatment. b Kaplan–Meier curve comparing
overall survival between KRAS wildtype (n = 9) and mutant (n = 51) groups. Hazard

ratio (HR), 95% confidence interval (CI), and log-rank p value are shown. c Forest
plot showing results of multivariate survival analysis (n = 60). Significance of KRAS
wildtype status (p value) shown is based on the Wald statistic. For each covariate,
dots represent the hazard ratio and lines represent 95% confidence intervals.
Source data are provided as a Source Data file.
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genomic differences may explain the survival discrepancies between
mPDAC cohorts, though this extends outside the scope of the cur-
rent study.

Somatic mutation landscape of KRAS wildtype mPDAC
To characterize the somatic mutation landscape of KRAS wildtype
samples in the PanGen cohort,weperformedan exploratory analysis in
which the frequency of single nucleotide variant (SNV)/indel and copy
number amplification/deletion events were compared for each gene
between KRASwildtype (n = 9) andmutant (n = 54) groups. SNV/indels
affecting TP53were less frequent inKRASwildtype (11.1%) compared to
mutant (81.5%) tumors (Fig. 2a; p = 0.010), while no other genes
showed significant differences in SNV/indel frequency between
groups. Higher frequency of copy number amplification was observed
for 1395 genes on chromosome 1 (chr1; Supplementary Data 1),
including transcription factors NR5A2 and PROX1 (Fig. 2b). NR5A2, also
known as LRH-1, is an essential regulator of gene transcription pro-
grams including cholesterol homeostasis14 and has been linked to
pancreatic cancer susceptibility15, development and progression16.
PROX1 is a homeobox transcription factor with critical roles in
embryogenesis and cell fate determination andhas been linked toboth
oncogenic and tumor suppressor roles in cancer17, while increased
PROX1 levels have been associated with improved survival in patients
with PDAC18, suggesting that PROX1 may have opposing roles that are
dependent on tumor type or disease stage. Besides chr1, we also noted
a higher frequency of copy number amplifications for 350 genes on
chromosome 8 (chr8). No genes showed significant differences
in frequency of homozygous deletion between KRAS wildtype and
mutant groups.

To visualize the spatial distribution of copy number variation
(CNV) events, we mapped the copy status of KRAS wildtype
and mutant samples to 100 kb bins along the entire length of chr1,
which revealed broad amplification of the entire q arm (chr1q) in
approximately 50% of KRAS wildtype tumors (Fig. 2c). Analysis of
chr8 showed a copy amplification pattern thatwas unique to theKRAS
wildtype group, in which broad amplification of one chromosomal
arm (chr8q) was observed in approximately 33% of patients (Sup-
plementary Fig. 2). We next sought to validate our findings of KRAS
wildtype-associated SNV/indel and CNVs in the validation PDAC
cohorts. Similar to the PanGen cohort, SNV/indel frequency in TP53
was lower inKRASwildtype tumors in both COMPASS (p = 6.3e–5) and
Hartwig (p = 0.0054) cohorts (Supplementary Fig. 3a). Meanwhile,
neither NR5A2 nor PROX1 amplification rates were higher in KRAS
wildtype tumors belonging to either validation cohort (Supplemen-
tary Fig. 3b), indicating that chr1q amplification is unique to KRAS
wildtype tumors in the PanGen cohort.

We next assessed the combinatory occurrence of SNV, CNV, and
fusion events in each sample (Fig. 2d). Oncogenic somatic fusionswere
identified in six of nine (66.7%) KRAS wildtype tumors, and these
fusions were not detected in any KRAS mutant tumors (p = 1.2e–6).
Fusions identified in KRAS wildtype tumors included NRG1 (fusion
partners ATP1B1 (two patients) and APP (one patient)), FGFR2-GCC2
(one patient), NTRK2-THAP1 (one patient), and BRAF-TNS3 (one
patient), and were likely to be bioactive events given that each fusion
resulted in an in-frame transcript and was assigned a high-quality
threshold by the Arriba fusion caller19. Tumor mutational burden
(TMB) levels were not significantly different between KRAS wildtype
(median TMB= 2.4 mut/Mb) and mutant (median TMB= 1.5 mut/Mb)
groups (p =0.11).

Transcriptional landscape of wildtype PDAC
To characterize the transcriptional landscape of KRASwildtype PDAC,
we performed differential expression analysis (DEA) between KRAS
wildtype (n = 9) and mutant (n = 54) groups (Fig. 3a). DEA revealed
significant (p < 0.05) up- and downregulation of 1132 and 1265 genes

(respectively) in KRAS wildtype tumors (Supplementary Data 2), while
more conservative significance thresholds (p <0.005, absolute log2
fold change (L2FC) > 2.5) were used to define a smaller list of up
(n = 93) and downregulated (n = 134) genes for input to downstream
pathway analysis (Supplementary Data 3). This set of 227 con-
servatively DE genes will henceforth be referred to as the KRAS
mutation status signature genes. Exploratory enrichment analysis was
performed separately on the conservatively up- and downregulated
genes and encompassed 32,284 gene sets20 (Fig. 3b and Supplemen-
tary Data 4 and 5). Genes upregulated in KRAS wildtype tumors were
enriched for known targets of the repressive epigenetic mark
H3K27me3 (p = 1.3e–5) as well as genes related to ductal (p =0.0019)
and hepatoblast (p =0.0020) cell types. Interestingly, genes known to
be more highly expressed in cholangiocytes compared to other liver
cell types, as identified by Aizarani et al.21, were also enriched among
genes upregulated in KRASwildtype tumors (p =0.0023) and included
CTNND2, DCDC2, FXYD2, CFTR, SLC4A4, WNK2, PKHD1, CHST9, and
KCNJ16. Genes downregulated in KRAS wildtype tumors were sig-
nificantly enriched for cellular differentiation pathways, including
keratinocyte (p = 1.2e–18) and epidermal (p = 1.2e–16) cell types. To
ascertain whether KRAS wildtype versus mutant differences in gene
expression might be confounded by the clinical variables that were
significantly associated with KRAS mutation status, we calculated the
correlation between expression of each of the 227DE geneswith age at
diagnosis andmedianCA19-9 levels at baseline (Supplementary Fig. 4).
Of note, zero of the nine upregulated genes that overlapped with the
Aizarani et al. cholangiocyte gene set were significantly correlatedwith
either clinical variable. Out of all 227 DE genes, only CR2 showed a
significant correlation (rho = −0.50, p = 0.010) with CA19-9 levels, and
we therefore concluded that the clinical variables associatedwithKRAS
mutation status were unlikely confounding the DEA results. We next
assessed KRAS wildtype-associated differences in mRNA levels for the
DE genes (p <0.05 or p < 0.005 and absolute L2FC > 2.5 in PanGen) in
each of the validation cohorts. In support of our results in the PanGen
cohort, genes downregulated in KRAS wildtype samples in PanGen
showed significantly (p <0.05) lower L2FC (KRAS wildtype/mutant)
values in both COMPASS and Hartwig cohorts, while genes upregu-
lated in KRAS wildtype samples in PanGen showed significantly higher
L2FC values, with the exception of conservative threshold (p < 0.005,
absolute L2FC > 2.5) genes for the Hartwig dataset (p = 0.26; Supple-
mentary Fig. 5). In particular, FXYD2 and WNK2, belonging to the
cholangiocyte-specific gene set21, showed significantly increased
mRNA levels in KRAS wildtype samples in the COMPASS (L2FC = 2.9,
p =0.0024) and Hartwig (L2FC = 3.1, p = 2.5e–7) cohorts, respectively.

Expression-based subtyping of KRAS wildtype PDAC
Previous studies have demonstrated the ability to condense inter-
sample heterogeneity of PDAC into discrete molecular subtypes3,8,
which often converge onto the basal-like (or “squamous”) and classical
subtypes proposed by Moffitt et al.22 along with an intermediate sub-
type that may represent a hybrid or transitional state23,24. Given the
positive relationship between oncogenicKRAS gene imbalance and the
basal-like subtype signature in PDAC23–25, we hypothesized that Moffitt
subtyping calls and expression patterns differ according to KRAS
mutation status. Moffitt subtyping of each sample revealed over-
representation of classical-subtype calls among KRAS wildtype sam-
ples (nine of nine; 100%) compared to KRAS mutant samples (32/54;
59%; p =0.021; Fig. 3c). Among the conservative (p <0.005, absolute
L2FC > 2.5) list of DE genes, nine basal-like (FAM83A, KRT6A, CST6,
LY6D, SLC2A1, SCEL, DHRS9, SERPINB4, and S100A2) and four classical
(VSIG2, KRT20, TFF2, and TFF3) genes were downregulated in KRAS
wildtype tumors. KRASwildtype classical samples showed significantly
lower median mRNA expression of classical genes when compared to
KRAS mutant classical samples (p =0.0022; Fig. 3d), indicating that
KRAS wildtype mPDAC may not conform to the classical subtype
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Fig. 2 | Patients with KRAS wildtypemPDAC harbor distinct fusion events that
enable targeted therapeutic approaches. a Scatter plot comparing SNV/indel
frequency across genes in KRAS wildtype versus mutant groups. b Scatter plot
comparing copy number amplification (left) and deletion (right) events across
genes in KRASwildtype versus mutant groups. Colors indicate whether the gene is
located on chromosome 1 (chr1). c Stacked bar plot showing CNV frequency across
the length of chr1 in KRAS wildtype (upper) and mutant (lower) samples. The

corresponding ideogram for chr1 is displayed between the KRAS wildtype and
mutant tracks and is colored based on reported gram-staining patterns.
d Oncoprint summarizing somatic SNV/indel, CNV, and fusion landscape in meta-
static PDAC tumors. For each gene, CNV tracks are shown immediately below each
SNV track. Fusion genes are shown in the bottom-most four tracks. KRAS wildtype
mPDAC tumors are shown on the far right. Upper bars represent tumormutational
burden (TMB) levels. Source data are provided as a Source Data file.
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of PDAC. Subtyping according to the Collisson method8 revealed sig-
nificantly higher proportion of exocrine-like calls among KRAS wild-
type (six of nine; 67%) compared to mutant (three of 54; 6%) group
(p = 1.2e–4; Supplementary Fig. 6a), though median expression of
exocrine-like genes remained low across all samples apart from one
KRAS wildtype sample showing high outlier expression (Supplemen-
tary Fig. 6b). Subtyping according to the Bailey method3 showed sig-
nificant overlap between KRASwildtype tumors and the ADEX subtype
(p = 5.5e–6; Supplementary Fig. 6c), though differences in median
expression of ADEX subtyping genes was not significantly different

between KRAS wildtype samples and any of the KRAS mutant subtype
groups (Supplementary Fig. 6d). Distribution of metabolic subtype
calls was significantly different between KRAS wildtype and mutant
groups (p =0.023), with the KRAS wildtype group showing higher
proportion of cholesterogenic calls (44.4% vs. 13.0% in the KRAS
mutant group) and lower proportion of glycolytic calls (11.1% vs. 42.6%
in the KRAS mutant group). While median expression of cholestero-
genic genes was not significantly different between groups (p =0.99),
median expression of glycolytic genes trended toward lower values in
the KRAS wildtype group (p = 0.069).

Fig. 3 | Differential expression analysis reveals significantly higher mRNA
expression of cholangiocyte-associated genes in KRAS wildtype tumors.
a Volcano plot showing mRNA-based differential expression analysis (DEA;
based on two-tailed Wald tests followed by Benjamini–Hochberg multiple test
correction) results between KRAS wildtype (n = 9) and mutant (n = 54) tumors.
Each point represents a gene, and genes are colored based on up (orange) and
down (blue) regulation in KRAS wildtype versus mutant groups. b Bar plots
demonstrating results of enrichment analysis (one-tailed hypergeometric tests;
Benjamini–Hochberg multiple test correction) performed on up (orange; upper)
and down (blue; lower) regulated genes. Genes upregulated in KRAS wildtype
tumors are significantly enriched for genes known to be uniquely expressed in

cholangiocytes. c Donut plots showing the distribution of Moffitt subtype calls
across KRAS wildtype (top) and mutant (bottom) groups. Two-tailed Fisher’s
exact test p value shown. d Box plots comparingmedian mRNA expression levels
of Moffitt basal-like (left) and classical (right) genes across KRAS wildtype and
mutant groups, stratified byMoffitt subtype. Left to right: KRASmutant basal-like
samples (n = 15), KRAS mutant classical samples (n = 32), KRAS wildtype classical
samples (n = 9). Box plots indicate median (central line), 25–75% IQR (bounds of
box), and whiskers extend from box bounds to the largest value no further than
1.5 times the IQR. Two-tailedWilcoxonmean rank-sum p values are shown. Source
data are provided as a Source Data file.
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We next compared Moffitt subtyping patterns between KRAS
wildtype and mutant groups in the validation cohorts. Frequency of
Moffitt subtype calls was not significantly different across KRAS wild-
type and mutant samples in the COMPASS (p =0.91) nor Hartwig
(p = 0.44) cohorts (Supplementary Fig. 7a). However, when comparing
Moffitt classical KRAS mutant samples versus all KRAS wildtype sam-
ples, we observed significantly lower mRNA expression of classical
genes in the KRAS wildtype group in the Hartwig cohort (p = 9.9e–4;
Supplementary Fig. 7b), consistent with the notion that KRASwildtype
PDAC samples may not accurately fall into the two canonical Moffitt
subtyping groups.

Effect of KRAS wildtype-associated chr1 amplification on mRNA
and protein expression levels
We next sought to determine the degree by which KRAS wildtype-
specific copy number amplification of chr1 correlated with differential
mRNA expression patterns. For genes included in the exploratory
analysis of copy number amplifications in KRAS wildtype tumors
(n = 2987), significantly higher mRNA L2FC values were observed for
genes located on chr1 that had significant (p <0.05) rates of amplifi-
cation in KRASwildtype tumors (median L2FC =0.27, p < 2.2e–16), and
increases in L2FC were even more pronounced when using a more
stringent CNV analysis p value cut-off of p <0.001 (genes with highest
differences in copy gain frequency between KRAS wildtype vs. mutant
tumors; median L2FC=0.38, p < 2.2e–16; Fig. 4a). Among genes with
highest mRNA L2FC values and increased amplification frequency in
KRAS wildtype tumors were NR5A2 (chr1q; L2FC = 3.1, DEA p = 6.4e–8,
CNV p = 9.0e–4), PROX1 (chr1q; L2FC = 2.4, DEA p = 1.0e–4, CNV
p = 9.0e–4) and VTCN1 (chr1q; L2FC = 3.5, DEA p = 9.7e–7, CNV
p =0.023), a cell surface receptor that functions to inhibit T-cell acti-
vation. To further explore the effect of chr1q amplifications in KRAS
wildtype PDAC, we performed mass spectrometry (MS)-based pro-
teome profiling of PanGen patient tumor samples. Across all 7293
genes assayed in the MS dataset, protein and mRNA levels were sig-
nificantly correlated (rho =0.28, p < 2.2e–16). We calculated protein
L2FC values for genes included in the analysis of copy number
amplification in KRAS wildtype tumors that were available in the MS
dataset (n = 1298; SupplementaryData 6). In agreementwith themRNA
data, genes located on chr1 that had significant (p <0.05) frequency of
amplification in KRAS wildtype tumors showed higher L2FC (KRAS
wildtype / mutant) values (median L2FC =0.05, p =0.025), though this
observation was not significant for genes on chr1 with highest
(p < 0.001) frequency of amplification in KRAS wildtype tumors
(median L2FC =0.032, p = 0.50; Fig. 4b). While NR5A2 protein levels
were not available in the MS dataset, we observed significantly higher
protein levels in KRAS wildtype versus mutant tumors for VTCN1
(protein L2FC = 2.3, p = 0.007) and PROX1 (protein L2FC=0.79,
p = 1.9e–5; Supplementary Data 7 and Fig. 4c). In the validation PDAC
cohorts, we observed significantly higher PROX1mRNA levels in KRAS
wildtype tumors belonging to the COMPASS cohort (p =0.012),
though differences in PROX1 mRNA levels were not observed in the
Hartwig cohort (p =0.39), nor for VTCN1 in either COMPASS (p =0.17)
or Hartwig (p =0.42; Supplementary Fig. 8). Thus, while results of the
PanGen study demonstrate KRAS wildtype-specific amplification of
chr1q that is linked to subsequent increases in bothmRNA and protein
levels, chr1q amplification may not be generalizable to all cohorts of
KRAS wildtype mPDAC.

Direct comparison between cholangiocarcinoma and KRAS
wildtype mPDAC
While rare in mPDAC, oncogenic fusions involving genes such asNRG1
and FGFR2 are more frequently observed in cholangiocarcinoma26,27.
The presence of such fusion events in KRASwildtype mPDAC together
with increased expression of genes expressed in cholangiocytes, while
hypothesis-generating and not conclusive on their own, prompted us

to directly investigate the relationship between KRASwildtypemPDAC
and cholangiocarcinoma samples, the latter of which received genome
and transcriptome sequencing as part of the POG trial (n = 14;
NCT02155621). We also included metastatic colorectal adenocarci-
noma samples from the POG trial (n = 63) as an additional comparator,
as colorectal adenocarcinoma represented an additional KRAS
mutation-containing carcinoma cohort that were frequently biopsied
from liver metastases (75% of samples biopsied from the liver, com-
pared to 79% of cholangiocarcinoma and 86% of mPDAC samples).
Consensus clustering of all PDAC, cholangiocarcinoma, and colorectal
adenocarcinoma samples based on the expression of the KRAS muta-
tion status signature genes (genes conservatively DE in KRAS wildtype
vs.mutantmPDAC;n = 227) revealed anoptimal solutionbasedon four
clusters (Fig. 5 and Supplementary Fig. 9). The majority of colorectal
adenocarcinoma samples (98%; 62/63) clustered independently of
mPDAC and cholangiocarcinoma samples and encompassed all sam-
ples in Cluster 1. Cluster 2 contained 89% (eight of nine; p = 4.6e–10) of
KRAS wildtype mPDACs as well as the highest proportion of cho-
langiocarcinoma samples (64%; nine of 14; p = 1.4e–8) compared to all
other clusters, further supporting the high transcriptional similarity
between KRAS wildtype mPDAC and cholangiocarcinoma. Moreover,
among the oncogenic fusions identified in mPDAC samples, we
observed fusions involving FGFR2 (two patients; fusion partners BICC1
and SORBS1) and NRG1-ATP1B1 (one patient) in three of 14 (21%) cho-
langiocarcinoma samples, all of which were contained in Cluster 2. No
such oncogenic fusions were detected in colorectal adenocarcinoma
samples. Clusters 3 and 4 contained mostly mPDAC samples (12/15
(80%) and 43/46 (93%), respectively) and differed in terms of the
number ofMoffitt basal-like samples contained in each cluster (zero of
15 (0%), and 15/15 (100%) basal-likemPDAC samples inClusters 3 and 4,
respectively). Tumor content (TC) values were similar between clus-
ters (median TC 50%, 45%, 55 and 51% in Clusters 1, 2, 3, and 4,
respectively; p =0.50). While three separate RNA-sequencing (RNA-
seq) batches were encompassed by the three cancer types, pre-
clustering batch correction was unable to be performed as the dis-
tribution of batches was skewed between cancer types (colorectal
adenocarcinoma samples containing no “batch3” samples andmPDAC
samples containing no “batch 1” samples), which would result in dilu-
tion of true between-cancer type signal when batches are corrected
for. Instead, we noted that no single batch dominated any of the four
clusters, and Cluster 2 contained representation from all three bat-
ches, indicating that the RNAseq batches did not confound the clus-
tering solution. Clustering based on cell composition landscape,
estimated for each sample using xCell28, did not show meaningful
differences nor similarities between cancer types, apart from the
enrichment of one cell composition cluster (including stroma and
fibroblast components) among low TC samples (p =0.0045; Supple-
mentary Fig. 10).

To further assess the genomic similarities between cholangio-
carcinoma and KRAS wildtype mPDAC, we examined the spatial dis-
tribution of CNV events across chr1 and chr8 in the POG
cholangiocarcinoma samples (Supplementary Fig. 11). Similar to KRAS
wildtype mPDAC, amplification of chr1q was observed in approxi-
mately 20% of cholangiocarcinoma tumors (Supplementary Fig. 11a).
Meanwhile, amplification of chr8q was not as frequent (approximately
14% of tumors) in cholangiocarcinoma (Supplementary Fig. 11b) com-
pared to KRAS wildtype mPDAC.

To validate our finding of distinct mRNA-based similarities
between cholangiocarcinoma and KRAS wildtype mPDAC, we lever-
aged RNAseq data for cholangiocarcinoma (n = 25) and mPDAC
(n = 46) samples fromtheHartwig validationdataset andperformed an
identical consensus clustering analysis. First, DEA of KRAS wildtype
versusmutantmPDAC in theHartwigdataset resulted in a list of 245DE
(absolute L2FC > 2.5, p =0.005) genes, 190 (78%) of which were upre-
gulated. Consensus clustering of these DE genes revealed an optimal
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solution based on four clusters (Supplementary Fig. 12). We again
observed a distinct cluster (Cluster 1) containing the majority of KRAS
wildtype mPDAC (six of eight (75%); p = 3.0e–6) and cholangiocarci-
noma (15/25 (60%); p = 6.4e–4) samples. Oncogenic fusion events,
which included BRAF-FAM129A (one patient withKRASmutant disease)
in mPDAC and FGFR2 (fusion partnersWAC (one patient), PKD2L1 (one
patient), TENC1 (one patient), and TBC1D4 (one patient)) in cho-
langiocarcinoma, were not uniquely contained in Cluster 1. TC values
were similar across clusters (p =0.11), while 31/46 (67%) and 16/24
(67%) of mPDAC and cholangiocarcinoma samples (respectively; with
biopsy sitemissing forone cholangiocarcinoma sample)werebiopsied
from the liver. Taken together, these data provide evidence toward a

striking molecular similarity between metastatic cholangiocarcinoma
and KRAS wildtype mPDAC that is not shared with KRAS mutant
mPDAC, while being observed in two orthogonal study cohorts of
patient tumor samples.

Discussion
Previous studies have established a marked distinction between KRAS
wildtype and mutant mPDAC that involves an increased frequency of
fusion events5,29 in patients with KRAS wildtype mPDAC. Results from
the PanGen cohort of 63 patients with mPDAC support this observa-
tion, as somatic fusion events were identified in 67% of patients with
KRAS wildtype tumors (with no known oncogenic fusions detected in

Fig. 4 |VTCN1 and PROX1 are increased inKRASwildtypemPDACatbothmRNA
and protein levels. a Violin plots showing distribution of mRNA expression fold
changes (log2; KRAS wildtype vs. mutant) for genes grouped according to results
of CNV analysis betweenKRASwildtype versusmutant tumors. Left to right: genes
located on any chromosome with no difference in rate of copy amplification in
KRAS wildtype tumors, genes located on chr1 with a significantly higher rate of
copy amplification in KRAS wildtype tumors above thresholds of p < 0.05 and
p < 0.001. Each dot represents a gene. Two-tailed Wilcoxon mean rank-sum p
values are shown. b Violin plots showing the distribution of protein-level fold
changes (log2; KRAS wildtype vs. mutant) for genes grouped according to results

of CNV analysis between KRAS wildtype versus mutant tumors. Two-tailed Wil-
coxon mean rank-sum p values are shown. c Box plots comparing mRNA and
protein levels between KRASwildtype andmutant groups for VTCN1 (mRNA: KRAS
wildtype n = 9, KRAS mutant n = 54; protein: n = 3 and n = 17) and PROX1 (mRNA:
n = 9, n = 54; protein: n = 7 and n = 38). Each dot represents a sample, and dots are
colored based on whether copy amplification of the gene was present. Box plots
indicate median (central line), 25–75% IQR (bounds of box), and whiskers extend
from box bounds to the largest value no further than 1.5 times the IQR. Two-tailed
Wilcoxon mean rank-sum p values are shown. Source data are provided as a
Source Data file.
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patients with KRAS mutant tumors). While previous studies have
identified increased survival among patients with KRAS wildtype
PDAC30, the survival advantage associated with KRAS wildtype tumors
in the PanGen cohort is likely biased by treatment differences between
the two groups, as approximately half of the patients with KRAS wild-
type tumors received therapy targeted at driver fusions. Given the
discrepancies in prognostic significance ofKRASmutation status in the
COMPASS and Hartwig validation mPDAC cohorts, it remains unclear
how differences such as study design, patient demographics, treat-
ments, or underlying molecular alterations may attribute to different
survival patterns of patients with KRAS mutant mPDAC, and to what
extent the small sample size of KRAS wildtype groups introduces
unintended biases that may skew survival data. In any case, given the
actionability and frequency of oncogenic fusion events among
patients with KRAS wildtype tumors, incorporating panel-based KRAS
mutation testing into the clinical management of patients newly
diagnosed with PDAC, with subsequent NGS deployed for the ~10% of
patients with KRAS wildtype PDAC, may prove beneficial for max-
imizing patient survival moving forward. From a health economics
standpoint, in which the cost and logistics of NGS remain a barrier to

delivering personalized care31, this reflexive strategy would aid in
identifying the subset of patients who are most likely to benefit from
molecular-targeted therapies.

Frequent copy number amplification of chr1q encompassing
transcription factors NR5A2 and PROX1 in KRAS wildtype tumors pro-
vides important implications for the future development of ther-
apeutic strategies targeting this subgroup of mPDAC. NR5A2 has been
established as a promising therapeutic target due to its known role in
pancreatic cancer, including cell cycle regulation and early
development14. The data presented here indicate a striking association
betweenKRASwildtypemPDACandNR5A2 in the PanGen study cohort,
both in terms of copy number amplification and mRNA expression
patterns. PROX1 encodes a homeobox transcription factor with critical
roles in cellular development, and has been linked to both oncogenic
and tumor suppressive roles in different cancers17 while being amarker
of better prognosis in gastric and pancreatic cancers18,32. Here, we show
significant enrichment of PROX1 copy number amplification in KRAS
wildtype PDAC that is coupled with significant increases in bothmRNA
and protein levels of PROX1. From these data, we highlight the
potential oncogenic driver role of PROX1 in KRAS wildtype mPDAC as

Fig. 5 | KRAS wildtype mPDAC samples show unique mutation and expression
patterns that are shared with cholangiocarcinoma samples. Upper heatmap
(purple/white) shows results of consensus clustering ofmPDAC (n = 63),metastatic
cholangiocarcinoma (n = 14), and metastatic colorectal adenocarcinoma (n = 63)
samples based on mRNA expression levels (z-score) of the KRAS mutation status
signature genes (genes found to be differentially expressed in KRAS wildtype

mPDAC samples; n = 227). Upper bars indicate tumor content levels for each
sample, with upper grid showing KRASmutation status. Lower heatmap (blue/red)
shows expression patterns of the genes used for clustering. Bottom grids show
gene fusion events, biopsy sites, and RNAseq batches for each sample. Cho-
langiocarcinoma and KRAS wildtype mPDAC uniquely group together as part of
Cluster 2.
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an exciting topic that warrants future in vivo research. Taken together,
our results from the PanGen trial warrant further experimental inves-
tigation into the selective sensitivity of chr1q-amplified KRAS wildtype
mPDAC cells to PROX1 and NR5A2 inhibition.

Basal-like and classical subtypes of PDAC each relate to a set of 25
genes identified in the original Moffitt subtyping manuscript22. Basal-
like samples are characterized by relatively high and low expression of
basal-like and classical genes, respectively,while classical samples show
the opposite expression pattern (low basal-like, high classical expres-
sion) and discordant or “intermediate” samples show intermediate
expression of both basal-like and classical genes23. Here, we discovered
that some KRAS wildtype mPDAC do not conform to the expected
Moffitt subtype expression patterns, asKRASwildtype tumors received
“classical” subtype calls using thepublished tool33 yet showedmarkedly
low expression of classical genes in the PanGen cohort as well as the
Hartwig validation dataset. As clinical PDAC research moves toward
incorporating subtype-based information into first-line treatment
decision-making11,12, it is worth considering the KRASmutation status of
patients, as our data indicate that some classical-subtype KRAS wild-
type tumors may not conform to the expression-based phenotype
observed in classical subtype KRAS mutant tumors.

Similarities between cholangiocarcinoma and PDAC have long
been recognized and can present a diagnostic histopathology chal-
lenge. Both cancer types arise from epithelial cells of the pancreato-
biliary system, sharemorphological and histological similarities, and in
the case of mPDAC lesions of the liver, physiologically overlap. While
studies have aimed at determining immunohistochemistry markers
that distinguish PDAC from cholangiocarcinoma34, low sensitivity and
specificity has impeded their adoption into routine pathology. Here,
we demonstrate that similarities between these two cancer types on a
molecular level are influenced by KRAS mutation status, as cho-
langiocarcinoma and KRAS wildtype mPDAC shared genomic (NRG1,
FGFR2 fusions and amplification of chr1q) and transcriptomic (upre-
gulation of genes associated with cholangiocytes) features and clus-
tered together independently of KRASmutant mPDACwhen clustered
based on a set of KRAS mutation status signature genes. Moreover,
using an independent cohort of metastatic cholangiocarcinoma and
mPDAC from the Hartwig study, we validated our findings of the
transcriptional similarity between cholangiocarcinoma and, specifi-
cally, KRAS wildtype mPDAC tumors. From a clinical perspective,
immediate implications regarding the molecular similarity shared
between KRAS wildtype mPDAC and cholangiocarcinoma are limited,
as both diseases often receive platinum-based first-line treatment
regimens (containing oxaliplatin and cisplatin, respectively). Instead,
these findings may be relevant to ongoing and future clinical trials of
cholangiocarcinoma treatment strategies. For instance, results of
contemporary clinical trials investigating FGFR2 inhibition in cho-
langiocarcinoma, including infigratinib (NCT03773302) and futibati-
nib (NCT04093362), could perhaps be extrapolated to patients with
FGFR2 fusion positive, KRAS wildtype PDAC.

Our analysis of KRAS wildtype mPDAC bears several important
limitations. From a clinical standpoint, it is difficult to draw a conclu-
sion from a small cohort size such as the PanGen cohort of 63 patients,
and our results are therefore hypothesis-generating. Rare occurrence
coupled with challenges in core-needle biopsy and rapid disease pro-
gression hinder successful enrollment and sequencing of patient-
derived mPDAC tumor samples, and the PanGen trial represents an
ongoing clinical effort that encompasses multiple treatment centers
and approximately 5 years of patient enrollment. Use of the COMPASS
(n = 195) and Hartwig (n = 113) validation mPDAC cohorts was an
important step tomitigating sample size limitations, and ourfinding of
molecular similarities shared between cholangiocarcinoma and KRAS
wildtype mPDAC was able to be validated in this way. Our study con-
sisted solely of metastatic disease cohorts. High frequency of liver
biopsy across the mPDAC, cholangiocarcinoma, and colorectal

adenocarcinoma datasets reduced bias during the RNAseq clustering
analysis. As resectable PDAC datasets such as TCGA, ICGC, and
CPTAC are derived from pancreas biopsies, such datasets were not
included and the applicability of our study results to early-stage PDAC
remains an open question. Another limitation yet important observa-
tion of our study was the stark genomic differences between mPDAC
cohorts, namely, fusion rates among KRAS wildtype samples (67% in
PanGen, 31% in Hartwig and 6% in COMPASS) and fused genes (NRG1
(three patients) and NTRK2 (one patient) unique to PanGen; NTRK3
(one patient) and ALK (one patient) unique to Hartwig). Furthermore,
KRAS wildtype-specific chr1q amplification was only observed in the
PanGen cohort. While such genomic events may not be generalizable
across all cohorts of KRAS wildtype mPDAC, they highlight a diverse
landscape of actionability and the importance of broad genomic
testing for patients with KRAS wildtype mPDAC.

In conclusion, our results provide a comprehensive character-
ization of the genomic and gene expression landscape of KRAS wild-
type tumors that furthers our understanding of the diverse underlying
biology aswell as subtyping-basedprofiles of this subgroupofmPDAC.
The discovery of distinct amplification of chr1q, affecting mRNA and
protein levels of transcription factor PROX1, provides hypotheses
toward future therapeutic targeting of a subset of KRAS wildtype
mPDAC. Furthermore, molecular concordances between KRAS wild-
type mPDAC and cholangiocarcinoma provide impetus toward the
future adoption of cholangiocarcinoma-specific treatment strategies
in the clinical management of KRAS wildtype mPDAC. Overall, these
data provide a significant rationale toward incorporating KRAS muta-
tion status as part of standard-of-care testing in PDAC.

Methods
PanGen/POG study enrollment
PanGen (Prospectively Defining Metastatic Pancreatic Ductal Adeno-
carcinoma Subtypes by Comprehensive Genomic Analysis;
NCT02869802) and POG (BC Cancer Personalized OncoGenomics;
NCT02155621) trials are approved by the University of British Colum-
bia Research Ethics Committee (REB# H14-00291 and H12-00137) and
conducted in accordance with international ethical guidelines. Written
informed consent was obtained from each patient prior to molecular
profiling. For the discovery mPDAC cohort, all patients (n = 63) were
enrolled and analyzed as part of the PanGen trial. Patient enrollment
occurred between October 2016 and May 2021. All PanGen patients
received tumor biopsy and sequencing prior to initiating treatment for
their metastatic (unresectable) disease. All patients were confirmed as
having a primary tumor located on the pancreas, with subsequent
histopathological confirmation of PDAC. Metastatic (unresectable)
tumors were biopsied for sequencing analysis.

Patients with metastatic colorectal adenocarcinoma (n = 63) and
cholangiocarcinoma (n = 14) were enrolled as part of the POG trial.
Cholangiocarcinoma samples were noted as either liver intrahepatic
cholangiocarcinoma (n = 2), bile duct cholangiocarcinoma (n = 6), or
liver cholangiocarcinoma (n = 6) by pathology review. For patients
withmetastatic colorectal cancer and cholangiocarcinoma, enrollment
on the protocol could occur during any line of therapy if patients were
deemed to have a reasonable life expectancy to benefit from genomic
sequencing. PanGen and POG samples did not receive laser-capture
microdissection prior to sequencing. All sequencing data were housed
using a secure computing environment. The PanGen and POG clinical
trials are not directly linked to a specific treatment, but rather aim to
assess response to genomics-guided therapy, with treatments selected
at the discretion of the treating oncologist.

PanGen/POG genome and transcriptome sequencing
WGS was performed on tumor and matched normal (blood) samples
with target depths of 80× and 40×, respectively. For collection of
whole-genome and transcriptome data, sequencing was performed
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using one of: HiSeq2500, HiSeqX, and NextSeq500. Bases were called
using the following software from Illumina: Illumina Off-line Basecaller
v1.9.4, Illumina bcl2fastq v1.8.3, v1.8.4, and v2.17.1.14.WGS libraries had
reads trimmed to 75 base pairs (bp) and were aligned (hg19; GRCh37-
lite) using BWA-memv0.7.6a35 with default parameters. WGS duplicate
reads were marked using sambamba v0.5.536 with default parameters.
RNAseq was performed on tumor samples with a target depth
of 200 million reads. RNAseq reads were trimmed to 75 bp and
aligned (GRCh37-lite) using STAR v2.7.337, with parameters: -chimSeg-
mentMin 20 -outSAMmultNmax 1 -outSAMstrandField intronMotif -out-
FilterIntronMotifs RemoveNoncanonical. RNAseq duplicate reads were
marked using PicardTools v2.17.3. Raw reads counts were assigned to
Ensembl 75 genes using Subread v1.4.638, normalized for library depth
and gene size (RPKM), and log10-transformed.

PanGen mPDAC MS proteomics
MS-based proteomics sequencing of clinical (PanGen) tumor samples
from patients diagnosed with mPDAC (n = 46) was performed using
the SP3-CTP pipeline. 400 µL of supernatant containing protein in RLT
buffer from sequencing pipeline was heated at 95 °C for 15min with
mixing at 1200 rpm. 50 µL of 400mM chloroacetamide was added to
each sample at room temperature and incubated for 30min in the
dark. Further sample preparation was as described previously39. MS2-
TMT data were collected on a Thermo Orbitrap Eclipse mass spec-
trometer coupled with low pH LC-MS. As the previous data were col-
lected on a Thermo Orbitrap Fusion, differences in instrument
parameters are as follows: for MS1 scans application mode was pep-
tide, advanced peak determination was true, Xcalibur AcquireX was
off. For MS2 scans, 9 minimum points across the peak were defined,
normalized AGC target was 100%, enhanced resolution mode was off,
relaxed restrictions when too few precursors are found was true,
intensity threshold rangewas 5000–1 × 10, auto PTEwindowswere not
enabled, collision energy mode was fixed, the normalized AGC target
was 100%,maximum injection timewas auto, and enhanced resolution
mode was off. Thermo RAW files were converted to mzML by Ther-
moRawFileParser v1.340. Spectra were searched using the MSFragger
search engine v3.341 in FragPipe computational platform v16.0 against
the UniProt Human proteome (20,371 sequences, downloaded July 16,
2021) database appended to a list of common contaminants. Identifi-
cation parameters in MSFragger were specified as trypsin digestion,
maximum of two missed cleavages allowed, minimum peptide length
of 6, precursor mass tolerance of 20ppm, and a fragment mass tol-
erance of 20 ppm. MS and MS/MS mass calibration, MS/MS spectral
deisotoping, and parameter optimization were enabled. Cysteine car-
bamidomethylation (+57.0215), lysine TMT labeling (+229.1629), and
peptide N-terminal TMT labeling (+229.1629) were included as fixed
modifications. Methionine oxidation (+15.9949) and serine TMT
labeling (+229.1629) were included as variable modifications. Search
output was processed by Philosopher workflow42 and Percolator43.
Proteins were filtered to 1% protein-level false discovery rate (FDR)
using the best peptide approach and picked FDR target-decoy strat-
egy. Data from multiple TMT plexes were summarized using TMT-
Integrator44 (max_pep_prob_thres = 0.9, min_pep_prob = 0.9, min_-
purity = 0.5, min_percent = 0.05 andmedian centering normalization).

PanGen/POG somatic mutation calling
Somatic SNV/indels were called using paired tumor/normal WGS
libraries using a combination of Strelka v2.9.1045 and Manta v1.5.046

with default parameters and genome build GRCh37. Variants were
annotated using SnpEff v4.347 with parameters -v GRCh37.75 -canon
-no-downstream -no-upstream -noLog -noStats -no-intergenic. CNV
events and tumor ploidy were called using Facets v0.6.048 with default
parameters. Copy number amplification was defined as a segment
having a total copy number greater than or equal to twice the tumor
ploidy. Copy number segment calls were mapped to Refseq genes

using bedtools v2.26.0. Expressed somatic fusions were identified
basedonRNAseqdata usingArriba v1.2.019 (default parameters), with a
separate STAR alignment (recommended fusion calling parameters:
-outFilterMismatchNmax 3 -chimSegmentMin 10 -chimOutType With-
inBAM SoftClip -chimJunctionOverhangMin 10 -chimScoreMin
1-chimScoreDropMax 30 -chimScoreJunctionNonGTAG 0 -chimScor-
eSeparation 1 -alignSJstitchMismatchNmax 5 -1 5 5 -chimSegmen-
tReadGapMax 3). Fusion events were filtered for in-frame events
reported at a confidence level of “high” by Arriba.

PanGen mPDAC tumor mutational burden
For TMB calculations, VCF files were first converted to MAF format
using vcf2maf v1.6.18with default parameters. Variants werefiltered to
exclude those located outside of exons (using consensus exon regions
GRCh37.p13; GCF_000001405.25, downloaded June 19, 2020) and any
common variants identified by ExAC49 (ExAC_nonTCGA.r0.3.1.si-
tes.vep.vcf.gz). Variants were further filtered based on established
guidelines50,51, including VAF ≥0.05, tumor depth ≥ 25, and alternate
allele count ≥ 3. Only missense, nonsense, and in-frame/frameshift
variants were included for TMB calculation. TMB was calculated using
the sum of all filtered mutations in a sample, and 32.102474Mb was
used for the TMB denominator50.

PanGen mPDAC exploratory SNV/indel and CNV analyses
Differences in the frequency of SNV/indels were compared between
KRAS wildtype and mutant groups for genes mutated in more than
three patients across the cohort (n = 119 genes). For CNVs, copy
number amplification frequencies were compared for genes with copy
gains in more than three patients across the cohort (n = 3818), and
homozygous deletion frequencies were compared for genes with
homozygous deletion in more than three patients across the cohort
(n = 1394). For each gene, mutation frequency between groups was
compared using Fisher’s exact test, and p values were subjected to
Benjamini–Hochberg multiple test correction. When comparing the
distribution of CNV frequencies across chromosomes 1 and 8, chro-
mosomeswerebinned using non-overlapping 100 kb bins. Copy status
was thenmapped to each bin, for each sample, using bedtools v2.26.0.
Chromosome ideograms (hg19) were constructed using the chromo-
some gram-staining pattern (bands) data downloaded from the UCSC
genome browser (https://genome.ucsc.edu/).

PanGenmPDAC differential expression and enrichment analysis
Raw mRNA levels of protein-coding genes that were expressed (non-
zero read count) in at least half of the samples (n = 18,416) were used as
input for DEA (KRAS mutant vs. wildtype) by DESeq252. Samples
encompassed two separateRNAseq libraryprotocolbatches (n = 32and
31), which were accounted for in the experimental design matrix using
the following formula: ~ batch + kras_status. For downstream enrich-
ment analysis, a conservative DE threshold of adjusted p value < 0.005
and absolute L2FC > 2.5 was used to limit the number of input genes.
Gene set enrichment analysis was performed separately on up- and
downregulated DE genes using hypergeometric tests, in which genes
were assessed for overlap with each of 32,284 gene sets obtained from
themolecular signatures database (MSigDB20; downloaded April 2021).
Hypergeometric test p values were subjected to Benjamini–Hochberg
multiple test correction. L2FC (KRAS mutant vs. wildtype) of protein
levels were calculated using DEqMS53 with default parameters and the
experimental design formula: ~ kras_status.

PanGen/POG mPDAC, colorectal, and cholangiocarcinoma
clustering analysis
Log10-transformed, RPKM-normalized gene expression values were
converted to z-scores prior to clustering, for genes found to be DE
(absolute L2FC > 2.5,p <0.005) in the PanGenmPDACcohort (n = 227),
and clustering was performed using this set of KRAS mutation status
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signaturegenes.Consensus clusteringofPanGenmPDAC (n = 63), POG
cholangiocarcinoma (n = 14) and POG colorectal adenocarcinoma
(n = 63) samples was performed using R v3.6.3 package Consensu-
sClusterPlus, with parameters reps = 50, pItem =0.8, pFeature = 1, clus-
terAlg = ”hc”, distance= ”pearson”, seed = 123, and maxK = 6. The
optimal clustering solution (k = 4) was chosen based on the area under
the cumulative distribution function (CDF) curve. We noted that a
clustering approach based on principal components analysis of batch-
corrected RNAseq data did not yield a meaningful comparison
between cancer types (Supplementary Fig. 13), and this was expected
as some technical batcheswerewholly containedwithin a single cancer
type cohort.

COMPASS and Hartwig mPDAC validation datasets
Unresectable PDAC samples in the COMPASS validation cohort
(n = 195) were derived from patients enrolled and sequenced as part of
theComprehensiveMolecularCharacterization of Advanced PDACFor
Better Treatment Selection (COMPASS; NCT02750657) trial. RNAseq
(n = 195) and WGS (n = 195) data for COMPASS patients was generated
and processed as described previously11. COMPASS fusion events were
called using Arriba v1.2.0, with the same parameters as were per-
formed in the PanGen cohort. Survival data were available for all
COMPASS patients (n = 195). Unresectable PDAC and metastatic cho-
langiocarcinoma samples in the Hartwig dataset were accessed
through the Hartwig Medical Foundation database. Hartwig WGS data
for PDAC (n = 113) and cholangiocarcinoma (n = 25)was accessed in the
form of Purple and Linx tool outputs. For fusion calls (Linx), fusions
were filtered based on those with reported = True and likelihood =High
fields. Hartwig RNAseq data for mPDAC (n = 46) and cholangiocarci-
noma (n = 25) samples were processed using the same pipeline as
PanGen/POG samples. For eachmPDAC validation dataset, normalized
gene expression values (FPKM for COMPASS, RPKM for Hartwig) were
log10-transformed prior to analysis. All somatic mutation data were
based on human genome build GRCh37 (hg19). For both COMPASS
and Hartwig mPDAC RNAseq data, log fold change values for mRNA
expression were generated using DESeq2, with the experimental
design formula: ~kras_status. OS and censorship data were available for
84 Hartwig patients with PDAC.

Hartwig mPDAC and cholangiocarcinoma clustering analysis
Log10-transformed, RPKM-normalized gene expression values were
converted to z-scores prior to clustering of Hartwig mPDAC (n = 46)
and cholangiocarcinoma (n = 25) samples, for genes identified as DE
(absolute L2FC> 2.5, p < 0.005; n = 245) in KRAS wildtype tumors
in the Hartwig mPDAC cohort. Consensus clustering of all samples
was performed using R v3.6.3 package ConsensusClusterPlus, with
parameters reps = 50, pItem =0.8, pFeature = 1, clusterAlg = ”hc”, dis-
tance = ”pearson”, seed = 123, and maxK = 6. The optimal clustering
solution (k = 4) was chosen based on the area under the CDF curve.

PDAC subtyping
Classification of samples into theMoffitt basal-like and classical groups
was performed using the RNAseq version of the Moffitt PurIST
algorithm33. PurIST scores (basal-like probability values) were used to
stratify patients into basal-like (score > 0.75), classical (score <0.25)
and intermediate (score [0.25–0.75]) subtype groups23. Basal-like
(n = 25) and classical (n = 25) genes from the original Moffitt subtyp-
ing manuscript22 were used when directly investigating the expression
values of Moffitt subtyping genes. Collisson and Bailey subtypes were
determined separately using semi-automatic clustering approaches,
in which R v3.6.3 package ConsensusClusterPlus was performed
on all samples based on normalized expression of Collisson and
Bailey subtyping genes, with parameters reps= 50, pItem=0.8, pFea-
ture = 1, clusterAlg = ”hc”, distance = ”pearson”, seed = 123, and maxK = 3
(Collisson) or 4 (Bailey) to quantify relatedness between samples. These

inter-sample relatedness values, as output by ConsensusClusterPlus,
were then subjected to hierarchical clustering and dendrograms were
manually cut according to underlying subtyping gene expression pat-
terns to produce the expected subtypes25. Collisson classical (n = 22),
exocrine-like (n = 20), and quasi-mesenchymal (n = 20) genes from the
original Collisson subtyping paper8 were usedwhen assigningCollisson
subtypes or directly investigating the expression values of Collisson
subtyping genes. ADEX (n = 240), immunogenic (n = 370), squamous
(n = 1061) and progenitor (n = 268) genes from the original Bailey sub-
typing paper3 were used when assigning Bailey subtypes or directory
comparing expression values of Bailey subtyping genes. Metabolic
subtypes were determined based on the relative expression of glyco-
lytic (GAPDH, ALDOA, PKM, ENO1, TPI1, PGK1, GPI, PGAM1, PFKP, PFKFB3,
ENO2, PPP2R5D, PFKM, PFKFB4) and cholesterogenic (FDPS, FDFT1,
DHCR24, EBP, IDI1, MVD, HMGCS1, SQLE, NSDHL, DHCR7, HMGCR, LSS,
SC5D, MVK, HSD1787) genes, as previously described25.

Statistical analysis
Fisher’s exact tests were used to compare SNV/indel/CNV frequency
and subtype calls between KRAS wildtype and mutant sample groups.
Log-rank tests were used to calculate p values in the Kaplan–Meier
analysis. Multivariate survival analysis was performed using Cox pro-
portional hazards regression model, with p values based on the Wald
statistic and selection of covariates was performed using a Forward
Selection approach (covariate p value cut-off = 0.1). Wilcoxon mean
rank-sum tests were used for two-group comparison of continuous
variables. All group comparison tests were two-tailed. Wilcoxon
signed-rank tests were used when testing whether the distribution of a
continuous variable was symmetric about zero. A one-way ANOVAwas
used to test for differences in TC between clustering groups. Gene set
enrichment analysis was performed based on one-tailed hypergeo-
metric tests. All p values were subjected to Benjamini–Hochberg
multiple test correction when three or more tests were performed. All
analyses were performed using R v3.6.3.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genomic data generated within the PanGen/POG and COMPASS
studies are actively submitted to the European Genome-phenome
Archive (EGA) under accession numbers EGAS00001001159 and
EGAS00001002543, respectively. Data uploaded to EGA as part of the
POG/PanGen study, including raw RNA andwhole-genome sequencing
files, will be made available to interested researchers while respecting
patient privacy, and can be accessed through the BC Cancer Data
Access Committee (https://ega-archive.org/dacs/EGAC00000000011;
email address: tdoadmin@phsa.ca), which provides responses within
3–5 business days. Uponestablishment and signing of the data transfer
agreement, EGA data release can be expected within 3 business days.
Once access has been granted, the period duringwhich the data canbe
downloaded is flexible according to the downloader’s needs. Data
access throughEGA is ona limiteduseandproject-specific basis. These
data are available under restricted access in accordance with the
ethical data regulations followed by the POG and PanGen trials. Hart-
wig data were accessed through the Hartwig Medical Foundation
database (https://www.hartwigmedicalfoundation.nl/data/databank/).
The UniProt Human proteome is available from https://www.uniprot.
org/proteomes/UP000005640. Processed VTCN1 and PROX1 protein-
level data are included as Supplementary Data 7. Raw protein data are
available in the Proteomics Identifications Database (PRIDE) under
accessionnumber PXD036632. The remaining data are availablewithin
the article, Supplementary information, or Source Data file. Source
Data are provided with this paper.
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