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Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and
behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on
supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical
and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more
energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would
not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of
Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-
feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and
illustrate the pitfalls involved in extrapolating from limited morphological convergence.
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Introduction

Much of our understanding of extinct organisms comes
from anatomical comparisons with extant species. Similar-
ities in morphology are often used to reach conclusions about
the ecology and behaviour of long-vanished animals [1–7] as
well as their susceptibility to extinction events [8]. This
approach is certainly a valid one in many cases, but its very
appeal can sometimes lead to its misuse. Here we show that
assumptions about morphological convergence have led to a
widespread, but erroneous, belief regarding the feeding
behaviour of pterosaurs (extinct flying reptiles).

Despite considerable interest in the biomechanics of flight
among pterosaurs, the feeding methods of these animals are
still poorly understood. This situation is in stark contrast to
other Mesozoic reptiles in which the feeding apparatuses have
been subject to numerous investigations in functional
morphology and biomechanics [9–11]. Based on postulated
convergence in mandible morphology, several pterosaurs are
suggested to have fed by skimming; the activity of flying low
over water with the tip of the lower mandible immersed and
seizing prey items on contact [2,6,7,12–16]. This foraging
technique is seen in the extant ‘‘skimmers’’ (Aves: Rynchopi-
dae), in which all three Rynchops species forage almost
exclusively by skim-feeding (Figure 1) [17]. Skimming-like
behaviour has been documented occasionally for a few terns
and gulls [18,19], but habitual foraging using this method has
been observed only in Rynchops. The skimming behaviour of
Rynchops is well documented and is most effective in areas of
calm, shallow water, and where aggregations of fish or small
crustaceans are abundant near the water surface [17,20–24].
Although skimmers do occasionally capture fish using
alternative methods [25], their ability to capture prey without
skimming is limited [22].

Many authors have discussed skim-feeding in pterosaurs,

but the hypothesis remains controversial. The basal pterosaur
Rhamphorhynchus was the first postulated pterosaur skimmer
[12]. Mateer [4] considered that Pteranodon used a skimming-
like technique to scoop plankton and other small creatures
from the water surface during flight. A headcrest-anchored
muscle was hypothesised to resist depressive forces acting on
the jaw during this process [4]. Wellnhofer [7,16] echoed these
suggestions in also suggesting that Pteranodon and Rhampho-
rhynchus were skimmers.
Nesov [15] inferred that pteranodontian and ornithocheir-

id pterosaurs were skimmers when discussing the skimming
capability of the azhdarchid Azhdarcho. Nesov [15] further
suggested that the long azhdarchid neck would have been
useful in skimming by allowing the animal to reach food at
shallow depths as well as at the water surface. Martill [14] also
suggested a long neck would be useful in skimming by
permitting flapping of the wings while feeding without the
wingtips touching the water surface. Further support for
azhdarchid skimming was given by Kellner and Langston [13]
and by Prieto [6] when considering the giant pterosaur
Quetzalcoatlus. Kellner and Langston [13] stated that the
maximum jaw gape of Quetzalcoatlus was ‘‘in keeping with
the notion of fishing on the wing, somewhat in the fashion of
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the existing skimmer, Rynchops’’ and that skimming is
generally ‘‘more plausible than Lawson’s (1975) carrion
feeding hypothesis.’’ Thalassodromeus has recently been
described as a likely pterosaurian skimmer after its apparent
mandibular similarities with Rynchops [2]. These authors
further suggest that the jaw morphology of Thalassodromeus
almost entirely precludes all other feeding methods.

However, the skim-feeding hypothesis also has detractors.
Bennett [26] suggested that Pteranodon lacks hooked jaws to
capture or grasp fish whilst in flight. }Osi et al. [27]
hypothesised that the long, rigid necks and slender man-
dibular rami of azhdarchids would limit their skimming
capability. Chatterjee and Templin [1] speculated that large
pterosaurs lacked the necessary flight power and manoeu-
vrability to skim-feed. These authors also highlighted dis-
tinctions between the blunted mandibular tips of skimmers
and the pointed jaw tips of postulated pterosaur skimmers,
suggesting that blunt tips may deflect water to either side of
the jaw during skimming and reduce energy costs. Although
advocating skimming in Thalassodromeus, Kellner and Campos
[2] highlight that Rhamphorhynchus lacks many adaptations
expected in skimmers and suggest it was a comparatively poor
skim-feeder.

By using data from physical experiments with life-sized
models of mandibles from suggested skimming pterosaur taxa
and modern skimmers, we tested the idea that pterosaurs may
have skim-fed. The results were then evaluated with both
hydrodynamic and aerodynamic models. We used a bill cast
of Rynchops niger cinerascens (a subspecies of R. niger), a model
of a jaw fragment (Museu de Ciências da Terra of the
Departmento Nacional de Produção Mineral, Rio de Janeiro,
Brazil, accession number DGM 1476-M) attributed to the
azhdarchoid pterosaur Thalassodromeus sethi [28], and for
comparison, a pterosaur not thought to skim-feed, Tupuxuara
sp. (Iwaki Coal and Fossil Museum, Iwaki, Japan, accession
number IMCF 1052). Because of the assertion that the tip of
the mandible of Thalassodromeus was laterally compressed [2],
we also used hydrodynamic principles to model the drag

resulting from a generic compressed bill with the character-
istics of a reversed aerofoil. This modelling approach allowed
us to assess the skimming potential of two other suggested
[4,6] skim-feeding pterosaurs—Pteranodon and Quetzalcoatlus—
as well as the two known specimens of Thalassodromeus [2,28].

Results

Drag Estimation
Over the range of velocities used (1.8–6.8 m s�1), the

Rynchops bill cast experienced an approximately 14-fold
increase in drag from 0.05–0.72 N (Figure 2A). The Tupuxuara
model, immersed to the same depth (0.04 m), experienced
drag that was nearly an order of magnitude higher at 0.30–
5.18 N, with the data for Thalassodromeus of the same order
(Figure 2B). The Rynchops data from the flume trials were
modelled using an ordinary least-squares regression (OLS) of
log-transformed drag on log-transformed velocity (0.286V1.52,
n¼ 17 flume runs, adjusted r2¼ 0.76, p , 0.001; Figure 2). To

Figure 1. Comparative Dimensions of Rynchops and Pterosaur Lower

Jaws

(A) Dorsal (left) and lateral (right) views of Rynchops niger cinerascens in
foraging flight. Flight altitude was estimated from bill length, bill
penetration and bill angle (45 8).
(B) Skull of Rynchops showing cross-sectional shape of lower jaw.
(C) Skull of Tupuxuara sp. (IMCF 1052) and cross-section of lower jaw.
(D) Jaw fragment of Thalassodromeus sethi (DGM 1476-M) and cross-
section of lower jaw.
Lines of sections indicated by red lines. Jaw section scale bars equal to 10
mm.
doi:10.1371/journal.pbio.0050204.g001
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Author Summary

Just because a component of an extinct animal resembles that of a
living one does not necessarily imply that both were used for the
same task. The lifestyles of pterosaurs, long-extinct flying reptiles
that soared ancient skies above the dinosaurs, have long been the
subject of debate among palaeontologists. Similarities between the
skulls of living birds (black skimmers) that feed by skimming the
water surface with their lower bill to catch small fish, and those of
some pterosaurs have been used to argue that these ancient reptiles
also fed in this way. We have addressed this question by measuring
the drag experienced by model bird bills and pterosaur jaws and
estimating how the energetic cost of feeding in this way would
affect their ability to fly. Interestingly, we found that the costs of
flight while feeding are considerably higher for black skimmers than
previously thought, and that feeding in this way would be
excessively costly for the majority of pterosaurs. We also examined
pterosaur skulls for specialised skimming adaptations like those seen
in modern skimmers, but found that pterosaurs have few suitable
adaptations for this lifestyle. Our results counter the idea that some
pterosaurs commonly used skimming as a foraging method and
illustrate the pitfalls involved in extrapolating from living to extinct
forms using only their morphology.



provide a conservative estimate of drag, the equation for the
lower 75% confidence interval of the OLS was used to
describe drag of the Rynchops bill (0.019V1.26). Comparison of
the thin plate approximation (Equations 1–6) of a Rynchops
mandible with the lower 75% CI line of an OLS regression of
drag on velocity for the physical model (Figure 2A) indicates
that our hydrodynamic model captures the behaviour of the
physical model appropriately and thus supports our use of
this technique for the mandible of large pterosaurs. Drag
measurements for the model Rynchops bill and both Tupuxuara
sp. and the Thalassodromeus jaw fragment accord well with
estimates derived from fluid dynamic principles to give
conservative estimates of drag (Figure 2B).

Estimated flight costs including hydrodynamic drag were
compared against an estimate of available metabolic power
from Marden [29], using the hydrodynamic model for the
pterosaurs to adjust immersion depth to 19%. Estimated
minimum cost of flight (minimum power speed Vmp) and
minimum cost of flight per metre travelled (maximum range
speed Vmr) were 5.9 m s�1 and 11.0 m s�1 respectively for
Rynchops (Figure 3A and 3B). Flight costs were considerably
higher with Vmp at 3.9 m s�1 and 4.3 m s�1, and Vmr at 6.2 m s�1

and 6.9 m s�1 for Tupuxuara (Figure 3C and 3D) and
Thalassodromeus (fragment; Figure 3E and 3F), respectively.
The estimated foraging flight costs for powered flight (Figure
3) show both the reduced costs at intermediate speeds and the
rapidly increasing costs at very low speed (resulting in higher
stall speeds) associated with wing-in-ground effect flight [30].
When considered in relation to an estimate of maximal
metabolic power available for powered flight based on body
mass of flying vertebrates [29], Rynchops, despite high hydro-
dynamic drag costs (Table 1), is still capable of foraging for
long periods with its bill submerged to a depth of 0.04 m.
Neither of the pterosaurs appears able to meet the energetic
costs of skimming. The fact that the observed flight speed of
10 m s�1 for Rynchops [19,31] is closer to the theoretical Vmr

suggests that the bird is attempting to reduce the cost of
transport, and this finding supports the idea that foraging
flight in this species maximises the distance travelled for a
given energy input [31,32].

The added costs of flight due to hydrodynamic drag range
from 20% of total costs in Rynchops, up to 68% in the low-
mass estimate for Pteranodon (Table 1, Figure 4). Among the
pterosaurs, even Tupuxuara, which seems potentially able to
fly with the tip of its mandible immersed, uses half of the
energy needed for flight on hydrodynamic drag. It is clear
that in all species, hydrodynamic drag constitutes a major
component of total flight costs. It is also clear that with
hydrodynamic drag costs incorporated, the benefits of
intermittently powered flight are negated for most species
(Table 1).

Discussion

Rynchops
Our results allow us to re-evaluate the foraging ecology of

Rynchops. The hydrodynamic drag on the bill is considerably
greater than that previously estimated by Withers and Timko
[19]. In the context of our revised estimates of the costs
involved in foraging flight, and contrary to the only other
previous study [19], we found that hydrodynamic drag from
the bill tip has significant implications for the energy budget
of Rynchops. At the typical recorded foraging speed of R. niger
(10 m s�1 [19,31]), the drag extrapolated from our measure-
ments for the model R. n. cinerascens (0.35 N) is at least three
orders of magnitude greater than that previously estimated

Figure 3. Power Curves

(A, B) R. n. cinerascens, (C, D) Tupuxuara sp., and (E,F) Thalassodromeus in
flapping flight. Plots are of horizontal flight speed versus metabolic flight
costs in ground effect with the mandible immersed to the depth
indicated in Table 1 (A, C, and E), and metabolic costs per metre travelled
(B, D, and F). Shaded areas bound the limits of the high- and low-power
estimates from the sensitivity analysis. The horizontal line on A, C, and E
indicates estimated available metabolic power (47.126M0.605) [29])
doi:10.1371/journal.pbio.0050204.g003

Figure 2. Drag Measurements and Model Predictions

(A) Drag measurements for a resin cast of a Rynchops niger cinerascens
mandible. Solid red line is an OLS of log-transformed data, broken red
line is the lower 75% confidence interval for the OLS. Broken black lines
are drag estimates from fluid-dynamic models (dashed: aerofoil; dotted:
thin plate approximation).
(B) Drag measurements for Tupuxuara sp. mandible model (filled circles),
and that of a mandible attributed to Thalassodromeus (open circles). The
solid line is a OLS for log-transformed Tupuxuara data, dashed line the
drag estimate from fluid-dynamic models (aerofoil).
doi:10.1371/journal.pbio.0050204.g002

PLoS Biology | www.plosbiology.org August 2007 | Volume 5 | Issue 8 | e2041649

Pterosaur Feeding Technique



[19] (1 3 10�4 N). We attribute this disparity to inadequate
consideration of dynamic scaling methods in [19] as accurate
estimation of drag at the water surface requires test velocities
close to those in real life to satisfy scaling of both the
Reynolds number (Re) and Froude number (Fr) [33].

On the basis of the calculations provided by Withers and
Timko [19], it has generally been assumed that the hydro-
dynamic costs of skimming are trivial compared to the
aerodynamic costs of flight (e.g., [17,31–33]). Similar to our
work, Withers and Timko [19] suggested that wave drag on
the lower mandible could safely be ignored (see Materials and
Methods), but they did not consider spray drag at all.
Nonetheless, although we demonstrate that spray drag is less

important than pressure drag, it is still an important
component of the hydrodynamic drag costs. For the thin-
plate approximation of the Rynchops bill, we find that as a
percentage of total drag costs, the drag components contrib-
ute 79.1% (pressure), 13.5% (ventilation), and 7.4% (spray) at
Vmp. However, whereas Withers and Timko [19] concluded
that hydrodynamic costs for skimmers are less than 0.1% of
the aerodynamic costs of flight, we argue that correct
measurement of drag (matching Re and Fr) suggests that
hydrodynamic costs are two orders of magnitude higher than
that estimate (20% of aerodynamic costs). To this end, we
suggest that the high energetic requirements of this foraging
technique, despite considerable morphological specialisation,
may explain its rarity in extant birds.

Pterosaur Biomechanics
Hydrodynamic drag estimates for pterosaur mandibles are

considerably higher than those of Rynchops, and in the context
of aerodynamic estimates rule out skim-feeding for those
animals heavier than 2 kg. Based on the flume results, our
modelling appears to describe well the hydrodynamics of an
immersed Rynchops bill tip and lends support to our use of the
model for pterosaur jaws. In accordance with current
thinking, powered flight seems an unlikely proposition for
Quetzalcoatlus, even without the added drag from skim-
feeding. Second, even with the conservative hydrodynamic
drag estimates used, our calculations suggest that neither
Thalassodromeus, Pteranodon, or Quetzalcoatlus would have been
able to use skimming as a feeding method in continuous flight
or with intermittent flapping, although Tupuxuara may have
been able to meet skim-feeding energy requirements based
on its proximity to its theoretical available metabolic power
(Figure 4, broken red line). However, the estimated required
power output is still around 10 W more than the other
estimate of available power, based on empirical data from
Marden [29]. This is a somewhat surprising finding, because
Tupuxuara sp. was not a species we expected to be able to
skim-feed, but the result most likely reflects our conservative
modelling of drag. However, it does also present a possible
explanation for evolution of the skimming habit. If, as some
authors predict (e.g., [1,34]) pterosaurs had lower wing
loading than extant birds, they were probably able to cope
with some additional flight costs. If the ancestors of modern

Figure 4. Estimated Metabolic Costs

Estimated metabolic costs of steady flapping flight in ground effect (Vmp)
with (filled symbols) and without (open symbols) the tip of the mandible
immersed in water. Stars, R. n. cinerascens; diamonds, Tupuxuara sp.; up-
triangles, Thalassodromeus fragment; down-triangles, Thalassodromeus
holotype; circles, Pteranodon; squares, Quetzalcoatlus. Solid red line
indicates estimated maximum available metabolic power (47.126M0.605)
[29], broken red line the theoretically maximum available metabolic
power (54.144M0.739) [29].
doi:10.1371/journal.pbio.0050204.g004

Table 1. Estimated Flight Costs for Both Powered and Intermittently Powered Flight with and without the Tip of the Mandible
Immersed

Species Power Available (Estimate, W) Minimum Power Required (W)

Powered Flight Intermittently Powered Flight

Tip Immersed Normal Flight Tip Immersed Normal Flight

R. n. cinerascens 24.97 9.02 7.34 9.22 7.20

Tupuxuara sp. 52.09 55.16 24.02 67.73 23.04

Thalassodromeus fragment 187.48 534.25 186.00 669.56 174.26

Thalassodromeus holotype 142.54 360.15 119.86 470.45 112.79

Pteranodon (16.6 kg) 257.88 983.86 313.05 1,320.9 293.50

Pteranodon (22.7 kg) 311.64 1,536.9 513.75 2,047.3 483.29

Quetzalcoatlus (45.8 kg) 467.52 2,984.4 876.39 3,749.0 809.17

Quetzalcoatlus (200 kg) 1,162.48 23,009 9,648.2 27,833 9,114.3

doi:10.1371/journal.pbio.0050204.t001
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skimmers were either smaller or had proportionally larger
wings, this may have given them the ability to tolerate the
increased costs of skimming with a ‘‘normally’’ shaped bill
and to take the step from dipping for prey to some kind of
skimming behaviour. It also leaves the theoretical possibility
that smaller (,2-m wingspan) pterosaurs such as Rhampho-
rhynchusmay have been able to skim-feed occasionally without
particularly specialised jaw morphology due to their lower
flight costs (through lower wing loading [34]) than extant
birds.

Our analyses assume air density at current levels, but this
value may not have been constant over geological time
[35,36]. Because we use gross estimates of available power, we
are unable to estimate directly the implications for lift and
drag of air with differing densities. However, if we assume a
direct relationship between air density and lift, then over the
relevant timescale for pterosaurs, the density minimum of the
Triassic (87% of present [36]) and the density maximum of
the early Tertiary (121% of present [36]) might be expected to
increase or decrease the power requirements for flight by
13% and 21% respectively. Neither of these values is likely to
change the overall conclusions presented here.

Pterosaur Osteology
To date, analysis of potential skim-feeding adaptations in

pterosaurs have been limited, typically focusing on single
cranial or cervical features rather than considering the entire
skull and neck. This suggests a misunderstanding of just how
specialised skim-feeding is: modern skimmers require numer-
ous adaptations across their cranial anatomy to facilitate
efficient skimming and to resist forces generated during
feeding [24,37]. Some 30 adaptations are seen in the skull and
neck of Rynchops that cope with both hydrodynamic forces
acting upon the skull whilst skimming and with the impact of
capturing prey, as well as maintaining bill position within the
water column, detecting prey, and regenerating abraded bills
[24,37]. The most obvious of these adaptations include
extreme lateral compression and pronounced horny exten-
sion of the mandibular symphysis, large jaw muscles, a
reinforced quadrate-articular joint resistant to lateral dis-
articulation, developed medial bracing of the mandible, short
mandibular rami, elongate mandibular symphysis, and a
segregated, highly flexible neck [24,37]. Such adaptations are
not seen in other birds and are thought to represent
specialisations to the highly derived lifestyle of skimmers [24].

We acknowledge that pterosaurs may have possessed
skimming adaptations distinct from those of Rynchops, but
the structures of pterosaur and bird skulls are not so different
that some functional convergence should be expected if,
indeed, pterosaurs did skim. However, few of the adaptations
expected are seen in these postulated skimming taxa. For
instance, pterosaur skulls are often elongated, but not one
pterosaur yet found shows the degree of lateral compression
seen in the mandible of Rynchops. Relatively pronounced
lateral compression of the mandibular symphysis is seen in
Pteranodon, Rhamphorhynchus, and Thalassodromeus, with tapered
dorsal and ventral symphyseal surfaces also seen in the latter
taxa [2,26,38], but none exhibit the extreme condition of this
feature seen in Rynchops (Figure 1).

The rarity of soft tissue preservation limits understanding
of pterosaur jaw soft tissues, and it remains possible that
some postulated pterosaur skim-feeders could have possessed

horny mandibular sheaths similar to those of Rynchops to
extend the jaw and pronounce lateral compression. This
structure appears vitally important for skimming Rynchops,
because it extends the feeding depth and provides an
expendable jaw tip that can be replaced if damaged
accidentally on submerged obstacles or grounded on sub-
strata [24]. A review of Rynchops literature suggests that such
accidents may be relatively common [17]. The rhampotheca
of Rynchops is highly vascular and grows continuously,
presumably to regenerate the abraded or broken bill tips
[24]. Such an adaptation, therefore, seems crucial to skim-
feeding. However, no known pterosaurs show a mandibular
sheath comparable to that of Rynchops. Rhamphorhynchus does
show a soft-tissue mandibular extension, but it is considerably
shorter than that of skimmers and shows dorsal curvature [38]
instead of ventral as seen in skimmers.
Several pterosaurs are skimmer-like in possessing short

mandibular rami (e.g., Pteranodon and Quetzalcoatlus, though
not Thalassodromeus), but their rami differ from Rynchops in
being relatively slender. This suggests that pterosaurs had
comparatively little mandibular anchorage for their jaw
adductor musculature, which is known to be large in Rynchops.
This increased muscle mass in Rynchops is critical for
stabilising the mandible and counteracting depressive forces
acting on the mandible whilst skim-feeding [24]. Skimming
pterosaurs would almost certainly require similarly devel-
oped musculature to forage successfully.
Rynchops possesses a reinforced jaw joint supported by bony

bracing at the quadrate and the basitemporal plate [24,37].
Several other bird groups demonstrate a similar condition,
but none show the development of this bracing to the level
seen in Rynchops [37]. Reinforcement of the jaw is thought to
be necessary to withstand the impact phase of skim-feeding
[24], and no pterosaur yet known shows jaw bracing of this
kind. The jaw articulator facets of Rhamphorhynchus and
Tupuxuara are deep (DM Unwin, personal communication)
and a small laterally bracing ‘‘peg’’ is known in Quetzalcoatlus
[13], but despite this, pterosaur jaw joints are considerably
less robust than those of Rynchops.
The neck of Rynchops is also subjected to large stresses

during skim-feeding [24], including caudoventral forces on
the skull and neck that are countered by powerful neck
muscles anchored to a flexible, robust cervical series. The
cervical vertebrae are segmented into articulatory groups and
highly sculpted to situate enlarged neck musculature [24],
with the anterior vertebrae particularly robust. Such adapta-
tions are needed when an impact occurs during skimming, as
these force the head and anterior cervical segments to rotate
caudoventrally. Strong, flexible necks appear critical to
absorbing impact forces while skim-feeding.
Amongst pterosaurs, the cervicals of Rynchops are most

distinct from those of azhdarchids. These pterosaurs bear
slim, elongate cervicals with broad, interlocking zygopoph-
yses and reduced or absent neural spines and transverse
processes [39]. Many authors have noted the inflexibility of
the azhdarchid cervical series (e.g., [27,40,41]), and this would
appear to be a severe handicap to a skim-feeder. So great are
these distinctions in cervical vertebrae between azhdarchids
and Rynchops that we echo the suggestion of }Osi et al. [27] that
neck osteology alone casts serious doubt on the skimming
potential of azhdarchids. The cervical vertebrae of Rhampho-
rhynchus, Pteranodon, and tupuxuarids compare more favour-
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ably with those of skimmers in being relatively robust and
bearing developed processes. The biomechanics of pterosaur
necks are still largely uninvestigated, but we note that neither
Rhamphorhynchus nor Pteranodon show the distinct segmenta-
tion and size increase of the anterior cervical series seen in
Rynchops (Figures 27 and 28 of [24]). The cervical series of
tupuxuarids are among the most robust and flexible of all
pterosaurs (DM Unwin, personal communication), but we also
note that many feeding strategies require flexible necks, not
just skimming. Hence, these features of tupuxuarid anatomy
do not necessarily advocate skim-feeding habits in these
forms.

Almost without exception, pterosaur anatomy appears
poorly adapted for skim-feeding. Comparisons between
pterosaurs and Rynchops reveal little of the convergence
expected between animals postulated to have such similar,
specialist lifestyles, with the relatively wide mandibular
symphyses, apparent absences of elongate, abradable man-
dibular sheaths (at least observable in Rhamphorhynchus), and
lack of a suitably reinforced jaw joint particularly pertinent
arguments against pterosaur skimming. We note that
Dsungaripterus, a pterosaur specialized for crushing hard-
shelled foods [16], shares an upturned, dorsally tapered
mandibular symphysis with many of the postulated skimming
pterosaurs discussed here. Upturned jaws may provide
increased grip on food through the larger occlusion surface
with the bolus along the lower jaw. Straight jaws, by contrast,
can only hold an object at a single point on each jaw. Dorsally
tapered symphyses may also allow for greater application of
pressure on food items and do not necessarily indicate
skimming habits.

Conclusions
The idea that pterosaurs were skimmers appears to have

originated through limited morphological comparisons with
modern forms (e.g., [2]) and inadequately investigated func-
tional inferences (e.g., [15]). Both modelling the energy
requirements of skimming pterosaurs and analysing their
osteology casts serious doubt on the ability of pterosaurs to
habitually skim-feed. Although our physical modelling sug-
gests that small pterosaurs may have been energetically
capable of skimming, there is no anatomical evidence to
assume that Rhamphorhynchus or any other small pterosaurs
were skimmers. From this, we stress the difficulty of using

limited morphological convergence to interpret the ecology
of extinct forms: comprehensive analysis of this nature can be
insightful but should ideally be supported with additional
biomechanical data.

Materials and Methods

Drag measurements using physical models.Model bills were cast in
epoxy resin (R. n. cinerascens, BMNH 1914.12.2.9), or modelled with
dense, varnished, polyethylene foam (Tupuxuara sp., [IMCF 1052] and
Thalassodromeus fragment [DGM 1476-M]) from specimens and data
[28]. Model dimensions are given in Table 2. These physical models
were instrumented with strain gauges connected to an amplifier, with
the output signals recorded on a computer. Models were suspended
from a trolley towed above a water flume (0.5 m width 3 12.0 m
length, 0.25-m water depth, 8.0-m trolley travel) at different speeds
selected from the known range for Rynchops and determined by speed
settings for the towing motor. Velocity data were extracted from
video footage of the trials (Sony DCR HC1000, 25 frames per s) and
bending moments present at the strain gauges were used to calculate
the drag force acting on the models.

Drag modelling. In physical terms, the laterally compressed
mandible of Rynchops acts as a surface-piercing strut, and as such,
the drag that it experiences is potentially comprised of five additive
components: friction drag, pressure drag, wave drag, spray drag, and
drag due to ventilation [42]. Of these five components, the latter
three are specific to surface-piercing struts and are the result of
energy losses from work performed in displacing water vertically
against the force of gravity [42].

Drag coefficients representing pressure and friction drag vary with
Reynolds number (Re). The distal section of the mandible of Rynchops
is similar to a reversed streamlined airfoil (e.g., NACA 0012), for
which data collected at Re � 106, suggests coefficients of drag twice
that of a typical streamlined airfoil oriented with its blunt leading
edge facing the direction of movement [33,42]. Such sections are
apparently adapted to reduce drag components associated with the
air–water interface [33,43]. We have no reason to believe that the
coefficient of drag for such a reversed airfoil will vary with Re in the
same way as a conventionally oriented airfoil will, especially at Re ,
106, a range that has received comparatively less attention from fluid
dynamicists. Although we know almost nothing about the behaviour
of reversed airfoils, Hoerner [42] suggests that the coefficient of drag
for sharp-nosed foil sections (i.e., thickness ratios less that 15%) at Re
, 106 may behave in a manner similar to that of a thin plate in
laminar flow. Composite simulation and experimental data from
work on turbine blades supports this theory by suggesting the drag
coefficient of a reversed NACA 0012 airfoil is approximately constant
over the range 104 � Re � 107 [44]. We thus describe the Re
dependence of Cdpro (coefficient of profile drag, including pressure
and friction components) of the tip of a Rynchops mandible by using
the theoretical drag coefficient for a thin plate in laminar flow
corrected for a drag coefficient based on frontal area

Cdpro ¼ 2ð1:328=Re1=2Þðc=tmidÞ ð1Þ

Table 2. Key morphological parameters

Parameter Rynchops niger

cinerascens

(BMNH 1914.12.2.9)

Tupuxuara sp.

(IMCF 1052)

Thalassodromeus

Fragment

(DGM 1476-M)

Thalassodromeus

Holotype

Pteranodon Quetzalcoatlus

Wing span (W) 1.2 m 2.1 m 5.3 m 4.35 m 6.25 m 10.39 m

Body mass (M) 0.35 kg 1.18 kg 9.80 kg 6.23 kg 16.6 to 22.7 kg 45.8 to 200 kg

Wing area (Awing) 9.37310�2 m2 0.26 m2 1.47 m2 1.02 m2 2.00 m2 5.12 m2

Mandible length (L) 0.13 m 0.33 m 0.82 m 0.68 m 0.62 m 2.02 m

Mandible tip penetration (d) 0.040 m (31%) 0.063 m (19%) 0.156 m (19%) 0.129 (19%) 0.118 (19%) 0.384 (19%)

Mandible chord at interface (c) 8.5310�3 m 2.5310�2 m 5.38310�2 m 4.55310�2 m 2.07310�2 m 2.60310�2 m

Mandible thickness at tip (ttip) 1.98310�3 m 7.0310�4 m 1.5310�3 m 1.5310�3 m 1.5310�3 m 1.5310�3 m

Mandible thickness at interface (tint) 2.05310�3 m 1.37310�2 3.14310�2 m 3.14310�2 m 3.14310�2 m 3.14310�2 m

Altitude (h) 0.064 m 0.189 m 0.470 m 0.390 m 0.355 m 1.157 m

doi:10.1371/journal.pbio.0050204.t002
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where 1.328/Re1/2 is the coefficient of skin friction drag for laminar
flow CfL [42]. The ratio c/tmid is the inverse of the thickness ratio tmid/c
where tmid is the thickness of the plate at the midpoint between its tip
and the water surface and c is the chord of the plate at the water
surface. We calculate profile drag as

Dpro ¼ 0:5qV2AbillCdpro ð2Þ

where q is the density of water, V the velocity of the mandible, and
Abill is the projected frontal area of the bill, from its tip to the water
interface.

We now turn to the spray and wave drag components associated
with the breaking of the water surface by the mandible. Both wave
and spray drag depend on the Froude number (Fr), which is a measure
of the ratio of inertial and gravitational forces and is used to compare
the wave-making resistance between bodies of various sizes and
shapes. Froude number, based on the chord of the mandible, is
given by

Fr ¼ V=
ffiffiffiffi
gc
p ð3Þ

where, as before, V is the speed through the water, g is the
acceleration due to gravity (9.81 m s�2), and c is the chord of the
mandible at the water surface. Spray drag effects are unfortunately
poorly described at 1 � Fr , 3 [42]. However, we do know that the
coefficient of spray drag (Cdspray, based on spray drag divided by
mandible thickness-squared [42]) is relatively constant and of the
order 0.24 for Fr � 3 for semi-streamlined double arc sections with
forebody thickness ratios (t/x) � 0.4 (where x is forebody length, from
leading edge to point of maximum thickness on a double arc or
aerofoil section; Figure 25, section 10–13 of [42]. Both the mandible
of Rynchops and the NACA 0012 airfoil fall into this category, and
even at 1 m s�1 for the Rynchops bill, Fr¼ 3.5. For struts at Fr , 3, the
velocities involved are small and we assume that spray drag is
negligible. The spray drag is thus given by

Dspray ¼
0
0:5qsV

2t2intCdspray
if Fr, 3
if Fr .3

�
ð4Þ

Wave drag represents the kinetic energy transferred from an
object travelling at the water surface as water is accelerated upward
[42]. Wave drag increases to a maximum at Fr ’ 0.5 [42], but then
decreases steadily to zero near Fr ¼ 3. Thus for the mandible of
Rynchops, wave drag is likely to be zero at velocities near 1 m s�1, and
we consider its effects to be negligible in comparison to spray drag
down to 0.5 m s�1 and therefore assume that it can be ignored.

The ventilation drag component is caused mainly by the presence
of an area of negative pressure behind a moving object that draws air
downwards and increases its effective chord [42]. Drag due to
ventilation is very much dependent on the shape of the strut, being
greater in those with flat trailing edges, but in general, the coefficient
for drag due to ventilation can be given by

Cdvent ¼ ðgdÞ=V2 ð5Þ

where d is the depth to which the tip of the mandible penetrates the
water [42]. We therefore estimated the drag due to ventilation as

Dvent ¼ 0:5qsV
2AbillCdvent ð6Þ

Finally, the three relevant drag components (Dpro, Dspray, Dvent)
were summed to give an estimate of the total drag (Dtot) acting on the
immersed tip of the mandible. We also used drag components
calculated for a NACA 0012 aerofoil oriented with a blunt leading
edge as a comparison to the flat plate approximation of a mandible
tip, because its profile is more similar to that of the tips of the
pterosaur mandibles. This implementation of the model differed
from that given above, only in that Cdpro was calculated (after [42]) as

Cdpro ¼ 2CfLðc=tmidÞ þ 2CfL þ ðtmid=cÞ forRe � 105

1þ 2ðtmid=cÞ þ 2CfTðc=tmidÞ60ðtmid=cÞ4 forRe .105

�
ð7Þ

with CfL from Equation (1), and CfT, the coefficient of skin friction
drag for turbulent flow, well described by the ‘‘Schoenherr line’’, an
empirically derived equation to describe skin friction. The coefficient
of skin friction drag for turbulent flow can be approximated within
2% by

CfT ¼ 1=ð5:5� 3:46logðReÞÞ2 ð8Þ

(Equation 26, section 2–5 of [42]). Throughout the modelling, the
mandible was assumed to be angled at 45 8, and this inclination was

accounted for by adjusting the drag function by a factor of 1.415
following the results of Withers and Timko [19].

Whereas Rynchops was treated as having the distal 31% of the
mandible immersed, physical models for Tupuxuara and the Thalasso-
dromeus fragment were, for logistic reasons, immersed to the same
absolute depth (0.04 m) as the Rynchops cast. To account for the
discrepancy, we modelled the pterosaur bills using the hydrodynamic
model with an immersion depth of 19% of its length. This immersion
was chosen as it represents the posterior region of the mandibular
symphysis in the Thalassodromeus jaw and thus the point after which
sudden lateral expansion of the mandible occurs.

Whereas data from the model jaw of Tupuxuara sp. could be used to
estimate foraging flight costs, the jaw fragment attributed to
Thalassodromeus [28] was considerably thicker than is suggested by
Kellner and Campos [2]. In the absence of mandible dimensions other
than length and chord, the dimensions of the Thalassodromeus
fragment were used for both Thalassodromeus jaw models, as well as
for those of Pteranodon and Quetzalcoatlus (Table 2).

Pterosaur mass estimation. To model flight costs, we estimated the
body mass (M) and wing area (Awing) of pterosaur specimens in this
study using a regression formula based on data on mass and
wingspan (W) for the following 13 species of pterosaur for which
wing area estimates were also available [34]: Campylognathoides zitteli,
Dorygnathus banthensis, Dsungaripterus weii, Eudimorphodon ranzi, Nycto-
saurus gracilis, Pteranodon sp., Pterodactylus antiquus, P. elegans, P. kochi,
P. micronyx, Rhamphorhynchus intermedius, R. muensteri, and Scaphogna-
thus crassirostris. In addition, we used data on wingspan and area for
Tapejara wellnhoferi, Anhanguera piscator, and Quetzalcoatlus northropi
from Chaterjee and Templin [1]. The dataset of Hazelhurst and
Rayner [34] provides three estimates of wing area based on the
postulated posterior attachment point of the wing membrane,
whereas that of Chatterjee and Templin [1] provided only one,
which fitted best when placed with Hazelhurst and Rayner’s type
III area (ankle attachment). OLS regressions of log(M) on log(W)
and log(Awing) on log(W ) all gave good fits (M¼ 0.229W2.215, n ¼ 13,
p , 0.0001, adjusted r2 ¼ 0.978; Awing1 ¼ 0.0668W1.854, n ¼ 13, p ,
0.0001, adjusted r2¼ 0.992; Awing2¼ 0.0886W1.778, n¼ 10, p , 0.0001,
adjusted r2 ¼ 0.990; Awing3 ¼ 0.138W1.692, n ¼ 15, p , 0.0001, adjust-
ed r2 ¼ 0.925). The estimated masses are given in Table 2.

Wingspan estimates for Quetzalcoatlus [1], the Thalassodromeus
holotype [2], and Tupuxuara sp. (Witton and Martill, personal
observation) were used to estimate other parameters for these
species using the regressions generated from the Hazelhurst and
Rayner data. The regression method produced estimates of mass for
larger species that fell near the lowest published estimates, so to
account for the variation in current mass estimates for large
pterosaurs, we also used two published masses for Pteranodon and
Quetzalcoatlus from the upper end of accepted estimates [45,46].
Wingspan for the Thalassodromeus specimen of Veldmeijer et al. [28]
was estimated from the holotype [2] by scaling to the height of the
mandibular symphysis.

Modelling flight costs. We estimated the metabolic power (Pmet)
required for both flapping and flap-gliding flight using the methods
of Pennycuick ([47] and summarised by [48]) and Norberg [49],
respectively. There are three components to the power requirements
for level flight: parasite power, induced power, and profile power.
Following Ward et al. [50], the parasite power was estimated as

Ppar ¼ 0:5qairSCdbodyV
3 þ DtotV ð9Þ

where qair is the density of air (’1.23 kg m�3), S is the projected
frontal area of the animal’s body (calculated as 8.13310�3M0.666, after
[47], but see also [51,52]), and Cdbody is an estimate of the coefficient
of drag of the body. We use Cdbody ¼ 0.25 in accordance with the
revised estimates of Pennycuick et al. [53] for species with a
prominent head and enlarged bill. The second term on the right
hand side of Equation (9) represents the costs associated with
ploughing the tip of the mandible through the water as a function of
velocity.

The induced power was estimated as

Pind ¼ ð2kM2g2Þ=pW2V ð10Þ

where k is an induced velocity scaling factor related to the degree of
efficiency with which flapping wings generate lift, and set to 1.2
throughout, based on aeronautical arguments as in the majority of
avian flight studies [53]. From Equation (10) it is possible to find the
unique value of V that minimises the sum of Ppar and Pind. The final
component of power output, profile power Ppro, is estimated as 1.2
times this minimal sum of Ppar and Pind as given by Equations (9) and

PLoS Biology | www.plosbiology.org August 2007 | Volume 5 | Issue 8 | e2041653

Pterosaur Feeding Technique



(10). From the above, the total mechanical power expended in flight is
simply the sum Ppar þ Pind þ Ppro. Although estimation of profile
power in this way is common, it is too simple to be fully realistic
because it does not allow Ppro to vary with flight speed. However,
when dealing with extinct taxa for which wing kinematics are not
known, it is the only available option.

In the above calculations, we assumed that the costs of ploughing the
tip of the mandible through the water and of flight were not separable,
and should not be simply summed or ignored as they have been in
previous studies where mandible drag was considered negligible
[19,31,32]. We therefore included mandible drag in the flight power
model as additional parasite drag as recommended by Ward et al. [50]
for drag due to respirometry masks in flight studies to take account of
its effects on performance in addition to the direct drag costs.

We estimated the total power consumption of flight by using the
aerodynamic equations to calculate the mechanical component of
power output during flight (Pmech) and obtain an estimate of Pmet
from this by:

Pmet ¼ 1:1ððPmech=EFMÞ þ PBMRÞ ð11Þ

where flight muscle efficiency (EFM) is defined as Pmech/metabolic
power consumed by the flight muscles, and PBMR is basal metabolism
([47,49] and see [50] for a discussion of the errors associated with this
estimate]. The constant value of 1.1 results from the assumption that
the extra costs of respiration and circulation during flight each
contribute 5% to Pmet [47]. A recent study examining EFM in starlings
(Sturnus vulgaris) suggested values of around 0.18 for birds in the size
range of starlings (approximately 0.1 kg [50]). However, in the
absence of other data, and given the known increase in efficiency with
size, we used the commonly used value of 0.23 (e.g., [47]). We used an
allometric equation for non-passerines (PBMR ¼ 3.8 M0.72, [54]) to
estimate PBMR from mass.

As a further step, a method for calculating the cost of flying close
to the ground (wing-in-ground effect) is presented by Rayner [30].
From published photographs of foraging skimmers (e.g., [17]) we
estimated that when held parallel to the water’s surface, the
skimmer’s wing is some 10 cm above the water. This corresponds to
the height estimated from considering the geometry of the bird in
flight, i.e., (L � d) cos(458), where L is mandible length and d is
immersion depth. From this we calculated a relative height as b¼ h/b,
where h is the height of the wing from the water surface and b the
wing semispan. Next, the aspect ratio of the wings rW is calculated as
4b2/S, and from this, the minimum drag-to-weight ratio,

rD ¼ 2ðCdbody=prW Þ1=2 ð12Þ

Two further coefficients denote the reduction in induced drag due to
the ground effect (r), and a circulation factor due to ground effect (s).
Thesecoefficientsaregraphedas functionsofb inFigure2ofRayner [30].

From Equation (11), we identify Vmp, the velocity that minimises
energetic costs (away from the ground effect). We can then calculate
the costs of flying at any speed V correcting for the effects of flying
near the ground Pge according to

Pge ¼ ðPmechDgeÞ=d ð13Þ

where Dge is the total drag of the animal corrected for ground effect,
and d is the relative drag,

d ¼ ð1=2v2Þ þ ðv2=2Þ ð14Þ

where v is the scaled velocity V/Vmp. To calculate Dge, we first calculate
c, the relative circulation [30]:

c ¼ ðv� ðv2 � 2srDÞ1=2Þ=srD ð15Þ

Then

Dge ¼ ðc2ð1� rÞ=2Þ þ ðv2=2Þ ð16Þ

Flap-gliding or intermittently powered flight is an energy-saving
behaviour and is frequently seen in Rynchops [19,31]. Flap-gliding is

characterised by the use of powered flight to increase height before
gliding using open wings. During the gliding phase, the bird supports
its weight with its wings but does no mechanical work; it loses height
as potential energy is converted into work against drag. The resulting
undulating flight path was approximated by the following method,
based on that of Norberg [49]. The assumption was made that the
minimum power velocity for powered flight (Vmp) was equal to both
the glide (Vglide) and climb (Vclimb) velocities. From this it follows that
the vertical sinking speed of the animal at a glide angle / is

Vsink ¼ Vglidesinð/Þ ¼ Vmpsinð/Þ ð17Þ

The backward drag component D in this situation is approxi-
mated by

D ¼ Mg sinð/Þ ð18Þ

The proportion of time spent climbing from the water surface to
elevation h is given by

a ¼ tanð/Þ=ðtanð/Þ þ tanðuÞÞ ð19Þ

where u is the slide angle. The mechanical power required to climb
using powered flight is given by

Pclimb ¼ VmpðDþMgsinðuÞÞ ð20Þ

To produce an estimate of flight costs during flap-gliding, climb
angle u was set at 45 8 and / was adjusted to minimise the cost of
flight at Vclimb (i.e., minimise the product a Pclimb), with the limitation
that / ranged from 1 8 to 30 8 (corresponding to reasonable glide
angles for extant volant animals and human gliders [33]). The total
average power required for undulating flight is then simply given by
the sum of metabolic power required to climb, power required for
forward flight with the mandible in the water, and metabolic costs of
basal metabolic rate during gliding

Pund ¼ 1:1ðaðPclimb þ PmpÞÞ þ PBMRð1� aÞ ð21Þ

It should also be noted that this method does not account for
changing drag costs associated with variable mandible submersion,
drag of the mandible while gliding, or changes in flight costs due to
impacts of elevation on wing-in-ground effect. It does, however, give
a rough estimate of the flight costs during flap-gliding for comparison
with powered level flight.

Sensitivity analysis. To evaluate the sensitivity of our aerodynamic
model, we varied the values of k and Cdbody to simulate high- and low-
power cases for Rynchops, Tupuxuara, and Thalassodromeus (holotype)
following [55] and [56]. For the low-power case, k was decreased from
1.2 to 1.0 and Cdbody was reduced by 60% to 0.16. In the high-power
case, k was increased to 1.4 while Cdbody was increased by 60% to 0.40.
These values allowed us to span the range of current estimates for
these two parameters and so bracket the power outputs for a given
flight speed (see shaded regions in Figure 3).
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body drag anomaly: wind-tunnel observations on a thrush nightingale
(Luscinia luscinia) and a teal (Anas crecca). J Exp Biol 199: 2757–2765.

54. Schmidt-Nielson K (1984) Scaling: Why is animal size so important?
Cambridge (United Kingdom): Cambridge University Press. 256 p.

55. Tobalske BW, Hedrick TL, Dial KP, Biewener AA (2003) Comparative
power curves in bird flight. Nature 421: 363–366.

56. Spedding GR, Pennycuick CJ (2001) Uncertainty calculations for theoret-
ical flight power curves. J Theor Biol 208: 127–139.

PLoS Biology | www.plosbiology.org August 2007 | Volume 5 | Issue 8 | e2041655

Pterosaur Feeding Technique


