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Systemic lupus erythematosus is an autoimmune disease that predominantly affects women and typically manifests in multiple
organs. The damage caused by this disorder is characterized by a chronic inflammatory state. Extracellular vesicles (EVs),
including microvesicles (also known as microparticles), apoptotic bodies, and exosomes, are recognized vehicles of intercellular
communication, carrying autoantigens, cytokines, and surface receptors. Therefore, the evidence of EVs and their cargo as
biomarkers of autoimmune disease is rapidly expanding. This review will focus on biogenesis of extracellular vesicles, their
pathophysiological roles, and their potential as biomarkers and therapeutics in inflammatory disease, especially in systemic lupus

erythematosus.

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease, characterized by its clinical heterogeneity and effect on
several organs since it has a wide profile of autoantibodies
[1, 2]. The prevalence of SLE varies from 20 to 150 cases per
100,000 of population, with a high prevalence in women (9:1)
[3]. Despite being currently incurable, in recent decades, sur-
vival rates and longevity have increased due to improvements
in therapies and diagnosis. Thus, it has a high impact on long-
term medical costs associated with frequent cycles of disease
flare and remission [4].

As are many autoimmune disorders, SLE is a multifac-
torial disease in which genetic and environmental factors
interact to modulate the final phenotype. Some loci have been
associated with an increase in the risk of SLE (complement
components Clq and C4) while others are generally related to
several autoimmune diseases, such as diabetes or rheumatoid
arthritis (e.g., PTPN22 and STAT4) [5, 6]. Moreover, an
epigenetic dysregulation, found in many SLE patients, has

been proposed as crucial in the initiation and progression of
the disease. Thus, several studies concerning DNA methyla-
tion [7, 8], histone acetylation [9, 10], and microRNAs [11,
12] have evidenced epigenetic cross talk [13]. Furthermore,
environmental factors (Epstein-bar virus and pesticides) and
hormones may trigger autoimmune responses and modulate
the alternating periods of SLE flares [14].

One of the most affected organs in SLE is the kidney.
The deposition of immune complexes, activation of comple-
ments and macrophages, and production of proinflammatory
cytokines and chemokines lead to lupus nephritis (LN).
Present in almost two-thirds of SLE patients during their
lifetime [15, 16], up to 30% of patients progress to end-
stage renal failure [17]. In particular, clinical manifestations
of active LN include proteinuria, active urinary sediments,
and progressive renal dysfunction [18]. Currently, the invasive
procedure of renal biopsy provides a direct visualization of
renal affection. A recent work, however, shows no correlation
between clinical and histological remission, which discards
this procedure as a prognostic biomarker [19].
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TABLE 1: Key features of extracellular vesicles.
EV types Size Biogenesis Markers Contents
miRNAs and mRNA; lipids,
Endolysosomal pathway. Tetraspanins (CD63, DNA membrane proteins
Exosomes 30-100 nm Released by exocytosis of CD9, and CD81), Alix, and lipids, cytokine
multivesicular bodies and TSGI101 receptors, and MHC
molecules
Cell surface. Outward Inteeri lecti d mRN? ’ noncocthpg RNAs,
Microvesicles/microparticles  100-1000 nm budding of plasma n egrlr}s, seiectins, an membrane proteins, .
CD40 ligand receptors, and cytoplasmic
membrane .
proteins
Cell surface. Released from Nuclear fractions, cell
Apoptotic bodies Upto5000nm  cellular blebs during Phosphatidyl-serine organelles, DNA, rRNA,
apoptosis and mRNA

EV: extracellular vesicles, MHC: major histocompatibility complex, mRNA: messenger RNA, miRNA: microRNA, rRNA: ribosomal RNA, and TSGI101: tumor

susceptibility gene 101.

Despite being well established and easy to measure,
complements C3 and C4, proteinuria, anti-dsDNA, or crea-
tinine clearance is not as specific or as sensitive as desired.
Currently, the SLE Disease Activity Index (SLEDAI) is the
most commonly used indicator. It consists of a list of 24 items
of which sixteen are clinical variables and eight are laboratory
tests such as urinalysis, blood complement levels, increased
anti-DNA antibody levels, and low platelet and white blood
cell counts. A final score of 6 or higher seems to be consistent
with an active disease state [20].

Despite improvements in the diagnosis and prevention of
SLE flares, laboratory markers are still unsatisfactory. Over
the last few years, the extracellular vesicles (EV), which
carry nucleic acids, proteins, and lipids, have been described
as essential players in several cellular processes [21, 22].
EVs are small membranous vesicles, ranging from 30 nm
to 5um, and receive different names depending on their
biogenesis and origin. Usually, they are classified as exosomes,
microvesicles/microparticles, and apoptotic bodies.

This review focuses on the role of extracellular vesicles
(EV) as biomarkers to assess disease activity and the response
to therapy in SLE.

2. Extracellular Vesicle Biogenesis and
Characteristics

Extracellular vesicles, small membranous spherical structures
composed of a lipid bilayer, are released by different kind of
cells and found such biofluids as urine, plasma, saliva, CSE
synovial fluid, and breast milk [23]. These vesicles can be
released by different kinds of cells and carry DNA, coding
and noncoding RNAs, proteins, and lipids [21, 22]. Profiling
of EV-associated RNA has shown important differences with
parental cellular RNA [24]. Moreover, RNA species (miRNA
or mRNA) shuttled by EVs maintain their function when
transferred to the recipient cells, suggesting epigenetic signal-
ing and an important role in cell-to-cell communication [25].

The general term “EV” includes different types of vesicles.
They are not homogeneous and overlapping in size and
are classified according to different parameters, biochemi-
cal composition, morphology, biogenesis, and size [26, 27]

(Table 1). Exosomes are the smallest vesicles (30 nm to 150 nm
in diameter), derive from the inward budding of endosomes,
and accumulate in intraluminal vesicles known as multivesic-
ular bodies. These EVs are released to the lumen by exocytosis
[28]. Microvesicles or microparticles (also referred to as shed-
ding vesicles, ectosomes, or prostasomes) are generally larger
than exosomes (100 nm to 1000 nm) and include all structures
created by budding and fission directly from the plasma
membrane [29]. Finally, apoptotic bodies are released as the
consequence of apoptosis, and their diameters vary from
1000 nm to 5000 nm. They are also produced by direct bud-
ding of the membrane when cells suffer apoptosis (Table 1).

Currently, there is no consensus on a gold-standard
method to isolate/purify EVs according to the type of biofluid
or EV type desired [30]. That, notwithstanding, differential
ultracentrifugation is the method most frequently mentioned
in the literature. It is based on a two-step protocol that begins
with a low-speed centrifugation at 10,000-17,000 xg, which
separates apoptotic bodies and larger EV's, and a second step
at a higher speed, 100,000-200,000 xg, depending on the
study and the average size of EV required [31]. Alternatively,
EVs can be isolated using immunoaffinity beads against sur-
face proteins, filtering the sample through a nanomembrane,
utilizing commercial products for exosome enrichment, or
employing size-exclusion chromatography principles [32-
35].

According to the International Society for Extracellular
Vesicles (ISEV), most EV preparations are heterogeneous.
Over the last few years, there have been great efforts
made to establish appropriate guidance for EV isolation and
characterization with minimum experimental requirements
[30]. Furthermore, three public databases contain updated
information about EVs: EVpedia, ExoCarta, and Vesiclepedia
[36-38].

3. Extracellular Vesicles in
Inflammatory Disease

The damage caused by most autoimmune disorders is char-
acterized by a chronic inflammatory state; so the regulation
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FIGURE 1: Role of extracellular vesicles in inflammation. Extracellular vesicles (EVs) from mature dendritic cells (DC) provide antigen to
T cells and promote a proinflammatory response, mediated by host factors present within exosomes and apoptotic bodies (TNE, HMGBI,
etc.). Autoantigens in EVs are recognized by autoantibodies and form immune complexes. Platelet-derived microvesicles (PMVs) activate
DC and carry IL-1p. EVs in target cell can be involved in antigen presentation and the transfer of major histocompatibility complex (MHC)
molecules and antigens, participating in immune regulation. Finally, EVs activate or transfer surface receptors and deliver various RNA species
(including mRNA and small RNAs) to target cells. DC: dendritic cell, EVs: extracellular vesicles, MHC: major histocompatibility complex,

and PMVs: platelet-derived microvesicles.

of inflammation becomes essential in order to ameliorate a
patient’s condition.

Recently, few studies have been conducted in order to
establish the relationship between damage-associated molec-
ular patterns (DAMPs) and EV transport. These are endoge-
nous molecules found normally inside cells such as histones,
purine metabolites, and mitochondrial components. Under
cellular stress or injury conditions, however, DAMPs are
released into the extracellular space by damaged tissues, thus
activating innate immune cells [39]. Therefore, they are likely
to play a determinant role in the appearance and persistence
of inflammation. Some DAMPs have been characterized
inside EV's as nuclear HMGBI, high mobility group protein
B1, ATP (inside apoptotic bodies), or S100 proteins (group of
ligands of toll-like receptors) (Figure 1) [40, 41].

Moreover, the EV transport of cytokines and chemokines
has emerged as an interesting mechanism for the spread
and maintenance of inflammation. For instance, rheumatoid
arthritis patients present platelet-derived microparticles with
an abundance of IL-1f3, which induces cytokine release from
synovial fibroblasts [42]. Other authors have shown apoptotic
bodies carrying active forms of CX3CLl/fractalkine and
stimulating chemotaxis in macrophages [23, 43].

Similarly, microvesicles found in the synovial fluid of
rheumatoid arthritis patients form proinflammatory immune
complexes which may work as autoantigens and autoadju-
vants, initiating and perpetuating autoantibody production

(Figure 1) [44, 45]. Moreover, in juvenile idiopathic arthritis,
synovial exosomes released by macrophages transport a
nuclear phosphoprotein named DEK. This protein, involved
in chromatin organization, tends to form high affinity com-
plexes with IgG2, which results in joint inflammation [46].

Many studies have pointed out the defective clearance
of apoptotic bodies and their subsequent accumulation as
a main source of autoantigens in SLE. This results in both
chronic organ and tissue damage, as well as the development
and maintenance of the systemic autoimmune disease [47,
48]. Recently, circulating microparticles of SLE patients
have been associated with particular clinical features, and
specific protein patterns have been found. This suggests the
importance of EV in driving pathological responses [49-51].
In addition, major ribonucleoproteins antigenically active for
lupus and Sjogrens syndrome have been found in salivary
gland-derived exosomes [52].

4. Extracellular Vesicles as Biomarkers of
Systemic Lupus Erythematosus

The study of circulating microparticles (MP) in the plasma
of SLE patients has outlined novel subpopulations of platelet,
endothelial, and leukocyte-derived MP, some of which have
clinical and serological correlations. Cytometry studies per-
formed by Nielsen et al. showed correlations between a
population of MP of endothelial origin (AnxV-CDMPs) and



disease activity measures, glomerulonephritis, and vascular
dysfunction [49]. Thus, the phenotype of endothelial MP
offers strong potential as a specific biomarker of vascular
pathology associated with SLE. Confirming this hypothesis,
Parker et al. have shown an increase of endothelial MP with
active SLE when compared to controls. Immunosuppressive
therapy reduced the cardiovascular risk by reducing the
number of circulating endothelial MP [53].

Moreover, the protein signature of these MP reveals
specific patterns that could be used as biomarkers of the
activity and progression of SLE. @stergaard et al. have shown
a special spectrum of MP in SLE patients, with a particu-
larly unbalanced and decreased microtubule and cytoskeletal
composition, which differs from healthy individuals or even
rheumatoid arthritis patients [50]. Therefore, the amounts
and characteristics of circulating MPs provide new targets for
assessing SLE pathogenicity and treatments.

Nevertheless, lupus nephritis (LN) is still a major cause of
the morbidity and mortality of SLE with 10-30% of all cases
progressing to end-stage renal disease [17]. The investigation
of new biomarkers to assess glomerular damage without
invasive biopsy has become essential in order to monitor
disease progression.

In that sense, urine is the ideal biological fluid for new
biomarkers because of its uncomplicated and noninvasive
collection. Since the identification and characterization of
urinary exosomes by Pisitkun et al., 2004 [54], many studies
focusing on urinary exosomes as a source of biomarkers in
renal, systemic, and urogenital diseases have been performed
[55-58].

Some EV-associated miRNAs, small noncoding RNAs
that modulate gene expression, have been proposed as
biomarkers of kidney damage in SLE. Over the last few
years, the characterization of exosomal miRNA, as opposed
to nonexosomal miRNA, by deep sequencing has confirmed
the notion of urinary exosomes as a stable source of miRNA
biomarkers [59]. Particularly, Ichii et al. have shown an
increase in the levels of miR-26a in exosomes from patients
of LN and a positive correlation with urinary protein levels,
suggesting its convenience as a predictive biomarker of
podocyte injury [60]. Similarly, Solé et al. have reported
reduced levels of miR-29¢ in LN patients when compared
to controls. Moreover, those levels correlated with renal
function and the degree of renal fibrosis, highlighting a
potential role in predicting histological fibrosis [61].

Especially relevant is the study of miR-146a, reported
to be markedly downregulated in PBMCs, contributing to
alterations in type 1 interferon (IFN) pathway in patients
with SLE [62]. Furthermore, several studies have assessed
its biomarker relevance and found it downregulated as well
in plasma and serum [63, 64] but overexpressed in the
glomeruli of LN patients [65]. Moreover, some SNPs have
been correlated with a lower expression of miRNA in a case-
control study in Europeans [66]. Finally, our group has found
much higher levels of miR-146a inside urinary exosomes
compared to whole urine or exosome-depleted fractions,
especially in patients with active LN (data under review).

Regarding messenger RNA cargo, similar studies have
been performed to find new markers of kidney damage.
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Recently, urinary exosome levels of CD2AP mRNA (protein
participating in the glomerular filtration barrier) were found
downregulated in patients and correlated with proteinuria
and severity of renal fibrosis [67]. Similarly, the induction
of podocyte damage in rats showed an increase of cystatin
C mRNA levels in exosomes, which was representative
of glomerular damage, correlating with renal mRNA and
protein expression [68].

Finally, protein levels of the adhesion molecule ADAMIO
were found higher in the exosomes of patients with glomeru-
lar disease, including LN [69]. An important substrate of this
protein is the Notch receptor, not only involved in podocyte
development but also playing a role in glomerular disease
[70]. Moreover, transcription factors related to early podocyte
injury were found in urinary EVs, but not in the whole urine
of acute and chronic renal patients [57].

Thus, the analysis of urinary exosomes could be con-
sidered a reliable, noninvasive approach to the physiological
state, offering complementary information to the invasive
kidney biopsies. Exosomes are likely to replace biopsies in the
future.

5. Extracellular Vesicles as
a Therapeutic Approach

Leaving aside their promising future as biomarkers, EVs and
their cargo could be exploited for therapeutic purposes in a
broad range of procedures.

Due to the fundamental role of EVs in regulating bio-
logical processes and promoting inflammation and tumor
growth under pathophysiological conditions [71], therapeutic
actions are being developed to reduce the load of circulating
EVs using different strategies: by inhibiting EV formation
and release, by blocking EV-specific components with small
interfering RNA, and by inhibiting EV uptake [72, 73].
Although reducing the amount of apoptotic bodies or MPs
is especially attractive for autoimmune disorders with a high
inflammatory component such as SLE, interfering with the
general aspects of biogenesis could lead to undesirable off-
target effects. Therefore, such actions would require a target-
ing system capable of selecting EV-cell specific populations.

Nevertheless, there has been a rapid increase in the
number of studies investigating the role of EVs in the mod-
ulation of the immune system. Thus, EVs containing anti-
inflammatory substances could be used as therapeutic agents
to promote immunosuppressive responses. Some studies have
shown these types of compounds to have a longer half-life
when encapsulated in EVs, increasing the survival of mice
after LPS-induced septic shock [74]. Therefore, these vesicles
could work as immunomodulatory agents for autoimmune,
inflammatory, and hypersensitivity disorders [23, 75].

Several studies have been performed in order to exam-
ine the immunomodulatory action of dendritic cell (DC)
derived exosomes. For instance, bone marrow-derived DCs
were treated with IL-10, and the reduction of autoimmunity
was evaluated in some murine models of disease, such as
collagen-induced arthritis and delayed hypersensitivity [76,
77]. Further work, however, will be required before clinical
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translation is possible in order to optimize cell types for the
production of well-defined EV therapeutic agents that are safe
in the long run.

Regarding drug delivery, patient-derived EVs could be
used to package molecules capable of avoiding immune
responses. Exosomes are ideal for transfer purposes and may
become a strong delivery tool for pharmacological agents.
Because of their bilipidic structure, they are flexible vectors
with the ability to carry select nucleic acids (miRNA, siRNA,
and mRNA), proteins, and active chemical drugs across
biological barriers [74, 78, 79].

Altogether, this information underscores the broad
potential of EV for the treatment and prevention of flares
in autoimmune disorders like SLE. Nonetheless, further
investigation is needed to elucidate the precise effect of EV
treatment with immunomodulatory purposes.

6. Concluding Remarks

Extracellular vesicles have emerged as important “nanoshut-
tles” of information between cells, carrying proteins, genetic
information, and bioactive lipids to modify the phenotype
and function of recipient cells. EVs are potential regulators
in autoimmune disorders, having a determinant role in the
appearance and maintenance of inflammation. In SLE, the
defective clearance of apoptotic bodies and their accumu-
lation represents a major source of autoantigens. The pres-
ence of EV-specific patterns and their cargo as biomarkers
of SLE activity and progression is rapidly expanding. In
that sense, miRNAs, mRNA, and proteins transported into
urinary exosomes are representative of glomerular damage,
correlating with proteinuria and the severity of renal fibro-
sis in lupus nephritis. Still, the precise pathophysiological
functions of these vesicles and their role as therapeutic
agents or targets are not fully understood. Although further
studies are necessary, we foresee a great potential for EVs as
immunomodulatory agents and therapeutic vehicles in the
future.
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