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Abstract 

Hispanic/Latino populations are admixed, with genetic contributions from multiple ancestral 

populations. Studies of genetic association in these admixed populations often use methods 

such as admixture mapping, which relies on inferred counts of "local" ancestry, i.e., of the 

source ancestral population at a locus. Local ancestries are inferred using external reference 

panels that represent ancestral populations, making the choice of inference method and 

reference panel critical. This study used a dataset of Hispanic/Latino individuals from the 

Hispanic Community Health Study/Study of Latinos (HCHS/SOL) to evaluate the “old” local 

ancestry inference performed using the state-of-the-art inference method, RFMix, alongside 

“new” inferences performed using Fast Local Ancestry Estimation (FLARE), which also used an 

updated reference panel. We compared their performance in terms of global and local ancestry 

correlations, as well as admixture mapping-based associations. Overall, the old RFMix and new 

FLARE inferences were highly similar for both global and local ancestries, with FLARE-inferred 

datasets yielding admixture mapping results consistent with those computed from RFMix. 

However, in some genomic regions the old and new local ancestries have relatively lower 

correlations (Pearson R < 0.9). Most of these genomic regions (86.42%) were mapped to either 

ENCODE blacklist regions, or to gene clusters, compared to 7.67% of randomly-matched regions 

with high correlations (Pearson R > 0.97) between old and new local ancestries.  
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Introduction 

Admixture is the process where “ancestral” populations that have been isolated interbreed to 

form a new, admixed population, where specific segments in genomes of individuals from the 

admixed population can be traced to one of the ancestral populations[1]. Admixed individuals 

with multiple ancestral populations have diverse genetic compositions leading to differential 

linkage disequilibrium patterns both across ancestral and within admixed populations[2]. 

Further, disease risk or quantitative trait loci often have different frequencies across ancestral 

populations. Thus, inference of genetic architecture of complex traits in admixed populations is 

complicated and more challenging compared to other well-studied populations that are 

genetically more homogeneous [3]. Hispanic/Latino populations are admixed, and their 

admixture patterns are typically described based on European, African, and Amerindian 

continental ancestral populations [4,5]. Hispanic/Latino individuals account for 17.8% of the 

United States’ work-age population in 2023 as the largest racial/ethnic minority group [6]. 

However, the group is still underrepresented in genomic studies. According to the genome-

wide association studies (GWAS) Diversity Monitor, accessed in July 2024, only 0.38% of GWAS 

participants were identified as Hispanic or Latin American [7]. Identification of causal variants 

and of their effect magnitudes in Hispanic/Latino individuals is thus complicated by the limited 

representation and complexities from their admixture. Overcoming these methodological 

challenges and efficiently detecting potential variants and effects remain as knowledge gaps to 

be addressed.   
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Nevertheless, prior research on admixed populations has effectively utilized admixture 

information from ancestral populations, defined according to external reference panels, to 

identify disease-associated variants, and a few approaches have also been proposed to leverage 

local ancestries for genetic association analysis with a phenotype or trait [4]. For instance, the 

two-step testing procedure LAAA (Local Ancestry Adjusted Allelic) uses an omnibus joint test to 

examine the effects in allele, local ancestry, and ancestry plus alleles, and then uses model 

selection to detect the sources of associations [8]. The TRACTOR method performs ancestry-

specific GWAS with a regression model that is local ancestry-aware to generate effect sizes and 

p-value for each ancestry [9]. Genetic analyses, such as GAUDI, incorporate local ancestries into 

polygenic risk scores, which model ancestry-differential effects using penalized regression 

frameworks [10].  

 

Amidst these methodologies, admixture mapping emerges as an effective analytic approach for 

analyzing association with a phenotype using local ancestry [11–13]. Local ancestry is defined at 

the local, i.e., variant or genomic segment level, referring to the reference ancestry from which 

the locus was inherited. In contrast, global ancestry is defined based on patterns across the 

genome: it estimates the proportion of genome inherited from ancestors from a specified (or 

inferred) genetic ancestry, i.e., it is an average of local ancestry patterns across the genome. At 

a given genomic position, the number of chromosomal copies with local ancestry from a given 

ancestry is coded (possibly 0, 1, or 2 copies) [14], and this variable is used in association analysis 

with the phenotype. An association is observed when either the causal variant frequency or 

effect sizes (or both) differ between the modeled ancestral populations [15]. The modeled local 
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ancestry unit (variant or segment) typically captures the causal variant via linkage 

disequilibrium, where the range of LD is usually very high for local ancestry [16].  As a result, a 

phenotype association with local ancestry may be driven by genetic variants located at a 

potentially large genomic segment around the region of association [17].  Admixture mapping is 

powerful because it may capture more complex associations (haplotypes, rare variants) 

compared to standard GWAS and has a lower multiple testing burden [13,18]. Admixture mapping 

can also be useful to augment standard variant-level analysis now that more modern and 

computationally efficient methods, as well as more genomic reference panels, are available to 

perform local ancestry inference [19–26]. For example, our team recently reported associations of 

local ancestries with blood metabolite levels in Hispanic Community Health Study/Study of 

Latinos (HCHS/SOL) participants, yielding 116 novel associations with 78 circulating metabolites, 

in which genomic regions enriched for both African ancestry and Amerindian ancestry were 

identified respectively and mapped to the corresponding genes with their associated metabolic 

pathways and diseases [27]. 

 

Local ancestry can be inferred through reference panels with different ancestral populations. 

Methods include a discriminative model trained on reference panels (RFMix) and generative 

models, such as MOSAIC and HapMix [14,28,29]. In the HCHS/SOL, over ten thousand study 

participants were genotyped, and their local ancestries were inferred [5,30,31]. HCHS/SOL local 

ancestry inference was reported in previous works, where the inference of local ancestries was 

described over genomic intervals [5]. This published study used RFMix, which was considered 

state-of-the-art at that time [29]. The local ancestry inference accounted for three ancestral, 
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continental populations: Europe, Africa, and America (a few individuals with non-negligible 

contributions of Asian ancestry were identified and excluded from analysis). From this 

inference, numerous publications reported discoveries of genetic associations via admixture 

mapping followed by overlaying of GWAS results on the admixture mapping signal [15,27,32,33]. 

More recently, FLARE (Fast Local Ancestry Estimation), a new method for local ancestry 

inference, reported improved performance at both the computational and inference accuracy 

level compared to past approaches using both simulated and real data from 1000 Genomes and 

Human Genome Diversity Project [19,20,34].  Thus, FLARE can be applied to the HCHS/SOL 

participants, generating detailed inferences referencing either the previous three populations 

or by including additional reference ancestral populations, thanks to its enhanced 

computational capacity. This study quantifies the potential improvements of the FLARE method 

through comprehensive comparisons of local ancestry inference and subsequent admixture 

mapping between the RFMix and the FLARE inferences. 

 

This study has two goals. First, it aims to compare the resulting local ancestry estimates from 

FLARE to those of the RFMix inference. For the FLARE inference, the analyses involved applying 

FLARE with two sets of reference populations: once with 7 continental ancestries (FLARE7) and 

once with the 3 continental ancestries previously used (FLARE3). Second, it compares the use of 

these inferred local ancestries in admixture mapping analysis applied to metabolites that were 

previously reported to be associated with local ancestry levels in specific genomic regions [27]. 
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Results 

Participant characteristics 

 
Participant characteristics focused on individuals participating in the metabolomics analysis and 

are provided in Table 1, stratified by metabolomics batch. The mean age was ~46 in the 

discovery batch (batch 1), and ~52 in the replication batch (batch 2). Batch 2 also had a larger 

proportion of female participants (~64% compared with ~57%), higher proportion of 

participants with hypertension and/or diabetes, and lower eGFR levels on average. For both 

batches, the distribution of participants from the various recruitment centers were similar 

(Table 1).  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.04.636481doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.04.636481
http://creativecommons.org/licenses/by/4.0/


   
 

 

Table 1 Characteristics of participants included in the admixture mapping, from either the 
discovery batch 1 or the replication batch 2. Continuous variables are reported with mean 
and standard deviation (SD) and categorical variables are reported with proportion in each 
level. 
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Global ancestry comparison  

 
The number of variants that passed this quality control (QC) is 3,610,937 single nucleotide 

polymorphisms (SNPs) for FLARE3 (99.78%) and 5,091,756 SNPs for FLARE7 (99.74%). The global 

ancestry proportions for each genetic analysis group are highly similar between RFMix and 

FLARE3 results (Supp. Figure 1A, 1B). Inference of European, African, and Amerindian ancestry 

reiterate previously reported findings for this datasets [13,27,35]: participants from the Cuban 

group have more European ancestry than other groups, and individuals from Mainland 

backgrounds (Mexico, Central America, and South America) have more Amerindian ancestry 

than Caribbean groups. By contrast, participants from Caribbean backgrounds (Dominican, 

Puerto Rican) have more African ancestry compared to the participants from mainland 

backgrounds. The introduction of multiple other ancestries in the FLARE7 inference added more 

details to the ancestry compositions (Supp. Figure 1C). The estimated global proportions for the 

four additional ancestries (Central/South Asia, East Asia, Oceania, and Middle East) for most 

individuals are less than 5%. No participants have Oceanian or Central/South Asian ancestries. 

The Cuban group has more Middle Eastern ancestry than other groups. The groups with 

Caribbean backgrounds have the least East Asian ancestry (Supp. Figure 1C).  

 

Comparing the estimated global ancestry proportions in the two FLARE inferences and RFMix to 

those from ADMIXTURE, we see that all correlations are above 0.99, suggesting high similarity 

(Figure 1). This can also be observed from visualization of the first two genetic PCs colored by 
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the global ancestry proportions computed from RFMix, FLARE3, and FLARE7 (Supp. Figure 2). As 

previously reported[5], RFMix tends to have higher European ancestry calls than ADMIXTURE, 

which assigns lower European ancestry and higher African and Amerindian ancestry 

proportions. A similar pattern is also observed in local ancestry calls when comparing FLARE3 to 

ADMIXTURE proportions (Figure 1).  In FLARE7, the European ancestry proportions tend to be 

lower for some individuals compared to those in RFMix, ADMIXTURE, and FLARE3, as local 

ancestry counts could be attributed to other ancestries such as Middle Eastern or East Asian 

(Figure 1, Supp. Figure 1C). 

   

 
Figure 1 Global ancestry correlation comparisons for RFMix, FLARE3, and FLARE7 to ADMIXTURE. 
Estimated proportions of global ancestries (African, Amerindian, and European) from two 
inferences are plotted against each other, and the Pearson correlation coefficient (R) is provided 
for each comparison.   
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Local ancestry comparison 

 
For the entire genome, 15425 (99.52%) local ancestry intervals from the RFMix-based dataset 

were successfully converted into the hg38 assembly. 92.29% of the SNPs from FLARE7 and 

92.48% of the SNPs from FLARE3 were matched to an RFMix-inferred local ancestry interval. For 

all ancestries, the mean correlations between the RFMix and FLARE3 local ancestry counts are 

above 0.9, with values of 0.954 (standard deviation [SD] = 0.012) for African, 0.972 (SD = 0.009) 

for Amerindian, and 0.956 (SD = 0.011) for European ancestry. The mean correlations between 

RFMix and FLARE7 are lower for European ancestry and comparable for the other two 

ancestries, with values of 0.959 (SD = 0.012) for African, 0.972 (SD = 0.009) for Amerindian, and 

0.916 (SD = 0.013) for European ancestry. Compared to FLARE3, European ancestry in FLARE7 

has lower correlations with the European ancestry counts in the RFMix dataset. This could be 

due to the introduction of Middle Eastern ancestry, where some parts of the local ancestry 

previously assigned to European are now assigned to Middle Eastern ancestry (Figure 2, Supp. 

Figure 1C). These differences are also reflected in the comparison between mean proportions 

of European ancestry for each SNP position. The RFMix and FLARE3 inferences consistently 

have higher European proportions than those of FLARE7 across all chromosomes (Supp. Figure 

4, 5). The variances of the estimated ancestry proportions computed across the genome in both 

FLARE3 and FLARE7 are highly similar and are higher than that of RFMix across ancestries and 

chromosomes (Supp. Figure 6, 7). 

 

For certain chromosomes there are regions where the correlations between the RFMix and the 

FLARE inferences drop at the start or/and end position of a chromosome, mostly observed in 
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chromosome 2, 4 and 21 (Figure 2). There are less correlation drops in FLARE3 vs. RFMix than 

that in FLARE7 vs. RFMix. This inconsistency between inferences reflects differences in inferred 

mean proportions of different ancestries. In chromosome 2, the mean African proportion 

decreased, relative to the RFMix inference at the starting regions, whereas the Amerindian 

ancestry proportion increased (Supp. Figure 4, 5). However, in chromosomes 10 and 21, there 

are regions where both the mean Amerindian and European ancestry proportions dropped 

while the African ancestry proportion increased (Supp. Figure 4, 5). A similar pattern is 

observed in variances of African and Amerindian ancestry counts (Supp. Figure 6, 7).  

We also considered a stricter QC metric, increasing the imputation quality threshold R2 applied 

on variants from the FLARE datasets from 0.8 to 0.95, to assess its impact on the low-

correlation regions between RFMix and FLARE3 inferences. Even after filtering, the SNP 

(FLARE3) – interval (RFMix) pairs continued to exhibit low correlations in the same regions 

(Supp. Figure 3). These low-correlation regions were subsequently examined in greater detail. 

In the comparison of FLARE3 and RFMix inferences, 31,148 pairs (0.93%) showed low 

correlation (correlation coefficient < 0.9) in any ancestry. Of these, 26,921 pairs (86.42%) were 

mapped to either ENCODE blacklist (10,340 pairs, 38.41%) or annotated gene clusters (18,399 

pairs, 68.34%) in UCSC genome browser, overall corresponding to 54 unique annotated 

genomic regions (Supp. Table 1). By contrast, for the high-correlation pairs (correlation 

coefficient > 0.97) that were randomly selected, 3350 (7.67%) were mapped to the ENCODE 

blacklist and none were in proximity to the identified gene clusters. This suggests that the low 

correlations are enriched in the mapped genomic regions.  
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Figure 2 Pearson correlation between the RFMix and FLARE3 (A) and between RFMix and FLARE7 (B) for 
each matched SNP and ancestry block across chromosomes 1 to 22. 
 

(B)

(A)
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Admixture mapping results 

 
The most statistically significant chromosomal regions from the admixture mapping and the 

ancestry driving the phenotypic differences align with the published findings: N-acetylarginine 

(chromosome 2, driven by African ancestry), 3-aminoisobutyrate (chromosome 5, driven by 

Amerindian ancestry), PC 16:0/20:4 (chromosome 11, driven by Amerindian ancestry), and PE 

16:0/20:4 (chromosome 15, driven by Amerindian ancestry) (Table 2). The computed 

significance thresholds of batch 1 from the RFMix (2.05	 ×	10!"), FLARE3 (2.58	 ×	10!"), and 

FLARE7 (1.95	 ×	10!") are similar. After accounting for genome-wide multiple testing burden 

in each inference, the test statistics in both African and Amerindian ancestries show statistically 

significant associations at the same chromosomal regions for PC 16:0/20:4 (Table 2). However, 

the association is stronger for Amerindian ancestry, suggesting that the unknown underlying 

causal variant (or variants) have stronger frequency difference when comparing Amerindian to 

combined European and African local ancestries, than the difference when comparing African 

ancestry to the combined European and Amerindian local ancestries. 

 

Within each batch and metabolite, the p-value levels for the most significantly associated 

genomic region (p*) identified using RFMix local ancestry inference are very similar to the p-

values of the most significant variants estimated from both FLARE3 and FLARE7 at the same 

region (Table 2, Figure 3, Figure 4). In the most statistically significant regions, most of the 

identified variants are in high proximity to the associated genes previously reported (Supp. 

Figure 9, 11, 12). Several of the most significant variants are located at a greater distance from 

the reported genes (Supp. Figures 8, 10). Notably, this includes variants identified through 
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admixture mapping with N-acetylarginine on chromosome 2 and a variant associated with PC 

16:0/20:4 via FLARE7 inference in batch 1 individuals using African local ancestry. Nonetheless, 

all identified variants are situated within 1 Mb of the corresponding reported genes.  

 

Among the regions inside the relatively low correlations between RFMix and FLARE inferences 

(< 0.9), in any of the ancestries, interval chr16:29,222,050-29,296,362 is mapped to the 

ENCODE blacklist and the region has a statistically significant association to propyl 4-

hydroxybenzoate sulfate previously reported (Supp. Table 1) [27]. The local African ancestry 

association in this low correlation region is less significant in FLARE datasets than RFMix (Supp. 

Figure 13). Besides this region of low correlation in local ancestry counts, admixture mapping 

results from both FLARE inferences identify a significant association region with African 

Ancestry beginning from 16q11.2, where in RFMix there were no mapped intervals so that the 

association region begins at 16q12.1 (Supp. Figure 13). This may be due to the RFMix inference 

being performed using the hg19 coordinates.
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Figure 3 Admixture mapping using local ancestry counts in RFMix and FLARE3 at the chromosome 
with most significant admixture mapping associations using the driving local ancestry for the four 
metabolites: N-acetylarginine at chromosome 2 (A), 3-aminoisobutyrate at chromosome 5 (B), PC 
16:0/20:4 at chromosome 11 (C), and PE 16:0/20:4 at chromosome 15 (D). Results from the 
discovery and replication datasets are displayed as mirrored plots, with the upper panel 
representing the discovery (batch 1) and the lower panel representing the replication (batch 2) 
datasets.  

(A) (B) 

(C) (D) 
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Figure 4 Admixture mapping using local ancestry counts in RFMix and FLARE7 at the chromosome 
with most significant admixture mapping associations using the driving local ancestry for the four 
metabolites:  N-acetylarginine at chromosome 2 (A), 3-aminoisobutyrate at chromosome 5 (B), PC 
16:0/20:4 at chromosome 11 (C), and PE 16:0/20:4 at chromosome 15 (D). Results from the 
discovery and replication datasets are displayed as mirrored plots, with the upper panel 
representing the discovery (batch 1) and the lower panel representing the replication (batch 2) 
datasets. 

(A) (B) 

(C) (D) 
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Table 2 Comparison of p-values from the most significant variant associations (p*) detected in the most statistically significant associated genomic regions from 
RFMix admixture mapping results. The p* values are compared across the three inferences (RFMix, FLARE3, and FLARE7) as well as between the discovery batch 1 
(b1) and replication batch 2 (b2). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.04.636481doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.04.636481
http://creativecommons.org/licenses/by/4.0/


   
 

Discussion  

 
Past local ancestry inference in HCHS/SOL used RFMix and was based on a limited number of 

genotypes. It was the basis for multiple admixture mapping analyses, and we expect the uses of 

local ancestry inference to continue to develop. As such, it is important to compare the past 

inference to that by FLARE – a new popular method that is being applied to HCHS/SOL and 

other datasets. We compared the RFMix and new FLARE3 and FLARE7 inferences, that rely on 3 

and 7 reference populations respectively, via visualizations and correlation in global ancestry 

proportions, local ancestry counts across the genome, and admixture mapping focusing on a 

few previously reported association regions. 

 

Estimated global ancestry proportions of Amerindian, African, and European ancestries were 

similar between the three inferences, and similar to global ancestry proportions previously 

computed using ADMIXTURE. The few observed discrepancies between RFMix, FLARE3, and 

ADMIXTURE may arise because ADMIXTURE models ancestry based on allele frequencies across 

the genome [5,36]. This results in some assignments of portions of European ancestry to African 

and Amerindian components, resulting in deflated European ancestry estimates and inflated 

estimates for the other ancestries compared, in comparison to inferences based on local 

analyses (Figure 1). Local proportions computed over HCHS/SOL individuals across the genome 

provide a more detailed view, demonstrating that local ancestry counts between RFMix and 

both FLARE inferences are highly correlated, as suggested in the previous study using real data 

from admixed individuals [37]. Additionally, as expected, that the correlations between RFMix 
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and FLARE7 ancestry counts are lower compared to those between RFMix and FLARE3, due to 

the use of a different set of reference populations. The correlations between RFMix and FLARE7 

European ancestry counts dropped (compared to RFMix-FLARE3 comparison) across the 

genome, from an average of 0.956 to an average of 0.916, likely because some genomic 

segments that have been attributed to European ancestry in FLARE3 were assigned to Middle 

Eastern ancestry in the FLARE7 inference. There are patterns of fluctuating correlations 

between RFMix and FLARE local ancestries across the genome for both FLARE3 and FLARE7 

(Figure 2). Some variability is expected, especially as FLARE inferences relied on a denser set of 

SNPs. Specific regions showed substantial differences in correlations, with observed correlation 

lower than 0.9. In the most extreme case, the correlations between RFMix and FLARE7 local 

African ancestries were less than 0.7. A few notable regions where correlations between local 

ancestry counts dropped substantially compared to the genome-wide average are close to the 

telomeres, in proximity to either the regions from the ENCODE blacklist or gene clusters 

annotated by UCSC genome browser (Supp. Table 1). For example, a region with a drop in 

correlation between RFMix and both FLARE local ancestry inferences at chromosome 6 is 

around the major histocompatibility complex (MHC) region (chr6: 28,510,019-33,480,577), 

which is famous for containing clusters of closely linked supergenes that are related to immune 

responses [38,39]. The low correlation of local ancestry counts in the MHC region can be 

attributed to differences in the reference populations used. Both RFMix and FLARE infer an 

excess of African ancestry in the MHC region compared to genome-wide proportions (Supp. 

Figures 4, 5), which aligns with findings from multiple previous studies that reported a similar 

pattern of MHC-specific excess of African ancestry across various Latino/Hispanic populations 
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[40–43]. However, the inference quality and potential selection mechanism in this region are still 

not well-understood due to the complexity of long-range linkage disequilibrium in the MHC 

region [40,44]. Another study on the local ancestry of admixed American individuals identified an 

excess of Amerindian ancestry on chromosome 8p23.1, an inverted region with extended LD, as 

well as a positive selection signal in this region for admixed populations but no selection signal 

when all Amerindian reference populations were pooled. Our analysis did not observe a 

significant excess of Amerindian ancestry at chromosome 8p23.1 (Supp. Figures 4, 5), which 

may be explained by the use of reference panels from multiple American populations. Note 

that a mapped blacklisted region for low local ancestry correlations is also located at 

chromosome 8p23.1 (Supp. Table 1), close to the reported inverted region [45]. It is possible that 

the FLARE inferences have better accuracy in these specific regions comparing to RFMix (and 

this could be related to differences in reference panel individuals and genotyping methods), but 

we cannot conclude that with certainty. The differences in local ancestries in genetically 

“complicated” regions, (blacklisted regions or gene clusters), which likely indicate higher 

variance and less certainty in local ancestry inference, do not appear to substantially affect the 

reported metabolite associations (Supp. Figure 14). However, we were unable to determine 

how these differences influenced the accuracy of the inference based on the observed 

variations in the correlations and the admixture mapping results.  

 

FLARE7 includes more ancestral populations. However, the inclusion of multiple additional 

ancestries appears to have a limited practical impact. Participants did not have local ancestry 

counts identified as Central/South Asian or Oceanian, and most participants only had minimal 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.04.636481doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.04.636481
http://creativecommons.org/licenses/by/4.0/


   
 

East Asian ancestry. Consequently, these additional ancestry counts offer limited information 

and increase the computational burden. For Hispanic/Latino populations in the U.S., it is 

probably sufficient to use three continental ancestral populations (European, African, and 

Amerindian). Researchers may want to include more populations for compatibility with other 

datasets, for example.  

 

For both FLARE inferences, the admixture mapping results for the four metabolites align with 

the previous admixture mapping associations identified using the RFMix dataset. The FLARE 

inferences provided a higher resolution to the variant level compared to that in the RFMix 

results, and their reproducibility across batches for the admixture mapping result is also verified 

[27] (Figure 2, 3).  When comparing global and local ancestry and the admixture mapping results, 

note that the discrepancies can stem from multiple differences between datasets aside from 

the method of local ancestry inference: arrays and reference panels used in genotyping and 

genotype imputation, as well as the fact that the two FLARE datasets are based on imputed 

data from HCHS/SOL.  

 

Because of the smaller number of individuals, a higher p-value (lower significance) from the 

results in the replication batch is expected (Table 2). As previously reported, metabolites in N-

acetyl amino acid and is associated with a region in gene ALMS1, which was found to be 

associated with chronic kidney disease [27,46]. The SNP with the most significant association 

identified is rs56016348 and rs75054060 for batch 1 in FLARE3 and FLARE7, respectively, both 
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of which are situated within 1Mb from the 5' end of ALMS1 in terms of genetic distance (Supp. 

Figure 8).  

 

For the association with 3-aminoisobutryate (beta-aminoisobutyric acid), the variants with the 

most statistically significant associations in the region for both FLARE3 and FLARE7 are clearly 

localized to the gene AGXT2, which was shown in HCHS/SOL to be associated with Mild 

Cognitive Impairment (MCI) in Hispanic/Latino adults, and the genetic association is mediated 

by the levels of beta-aminoisobutyric acid [47] (Supp. Figure 9). For PE:16:0/20:4 and 

PC:16:0/20:4, the variants with most statistically significant associations in both FLARE3 and 

FLARE7 are not in the exact same gene as previously identified variants (rs2070895 in LIPC and 

rs174562 in FADS2) [27], but still in high proximity with the reported genes (Supp. Figure 10, 11, 

12). This should be interpreted with caution, because LD between local ancestries are extensive 

(long ranged) reducing precision in localizing signals; the observed statistically significant 

variants could be in high local ancestry LD with the identified variants that were found to 

explain the significant admixture mapping signals[17].  

 

Despite the FLARE inference method enhancing the resolution of local ancestry information to 

the variant level, the presence of high LD still hampers identification of causal variants driving 

the admixture mapping signal. Thus, there is still a need of fine mapping using variant-level 

genotyping data[15,27].  
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In summary, we compared the old HCHS/SOL RFMix-based local ancestry inference to newer 

FLARE3 and FLARE7 inferences. The resulting local inferred European, African, and Amerindian 

ancestries are overall similar, with some differences that are clearly attributable to different 

reference populations (FLARE7 used 7 continental reference populations), and those that are 

possibly found in regions that are more difficult for genotyping (gene heavy, high LD) and 

perhaps for local ancestry inference as well. In other words, regions with slightly weaker match 

between the RFMix and FLARE inferences cannot be resolved to be more accurate in one 

compared to the other.  

 

Materials and Methods 

The HCHS/SOL  

 
The Hispanic Community Health Study / Study of Latinos (HCHS/SOL) is a multi-center 

prospective study (2008-2011) for individuals of Hispanic/Latino origin aged 18-74 years old at 

recruitment. The study aims to identify the prevalence and factors impacting specific chronic 

conditions such as cardiovascular diseases, asthma, and sleep disorders in Hispanic/Latino 

individuals [48]. Participants were recruited from four US field centers: Bronx (New York), 

Chicago (Illinois), San Diego (California), and Miami (Florida) [5,48]. Individuals were sampled for 

the study via a two-stage probability sample of household in census-block groups, which were 

predefined by communities that are enriched for Hispanics/Latinos near the study centers. Each 

study participant self-reported their Hispanic/Latino background, with major groups being 

Cuba, Dominican Republic, Mexico, Puerto Rico, Central America, and South America [30,31].  
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Demographic information (sex and age at the time of participant’s clinic visit), clinical measures 

including body mass index (BMI), and the estimated glomerular filtration rate (eGFR) were 

recorded at baseline [9]. EGFR levels were estimated based on serum cystatin C without 

demographic factors using the equation developed from Chronic Kidney Disease Epidemiology 

Collaboration [49].  

 

Genotyping, imputation, and relatedness inference 
 
 
HCHS/SOL individuals from the previously-reported RFMix-inferred local ancestry dataset were 

genotyped using the Illumina Omni2.5M SNVs array, which included ~150K custom SNPs 

designed to capture genetic variation relevant to Hispanic/Latino individuals [27]. The RFMix-

inferred dataset uses genome build GRCh37 (hg19) coordinates. Details about genotyping, 

phasing, imputation, and relatedness inference for this dataset has been published [35]. The 

HCHS/SOL individuals in the FLARE newly-inferred datasets (described below) were genotyped 

using the Multi-Ethnic Genotyping Array (MEGA), as part of the HCHS/SOL participations in the 

Population Architecture Using Genomics and Epidemiology (PAGE) consortium [50]. The 

genotyped data were then imputed using The Trans-Omics in Precision Medicine (TOPMed) 1.0 

reference panel [51]. Both reference haplotypes and HCHS/SOL variant data were phased using 

Beagle v.5.4 before applying FLARE [52].  In the FLARE files, SNPs were retained for analysis if 

their minor allele frequency (MAF)≥ 0.005 and (if imputed) imputation quality score R2≥	0.8 as 

a high and run-time efficient imputation quality threshold [20,53]. The FLARE-inferred datasets 

use genome build GRCh38 (hg38) coordinates [20,53].   
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All association analyses used principal components (PCs), and kinship matrix computed based 

on the Omni2.5M array genotyping [35]. Genetic PCs and kinship matrix were computed using 

the KING-robust [54] for initial kinship coefficient estimates, and then PC-AiR [55], and PC-relate 

[56] algorithms implemented in the GENESIS R package [57] as previously reported [35]. This prior 

work demonstrated the first 5 PCs are sufficient to account for population structure in 

association analysis for HCHS/SOL and developed “genetic analysis groups”, groups of 

individuals that are largely overlapping their self-reported Hispanic/Latino background but 

modified so that each group is genetically homogeneous on the Euclidian space defined by the 

first 5 PCs. These groups assigned individuals with “other” or missing Hispanic/Latino 

background into one of the 6 major groups (Central American, Cuban, Dominican, Mexican, 

Puerto Rican, and South American). The term “genetic analysis group” reflects the use of these 

grouping solely for genetic analysis purposes and should not be confused with self-reported 

Hispanic/Latino ethnic background. 

 
 
Local ancestry inference: RFMix and FLARE 

 
RFMix local ancestry was inferred using reference genotypes from three continents (Africa, 

America, and Europe). The reference panel was constructed using data from the Human 

Genome Diversity Project (HGDP) and the 1000 Genomes Project (1000G), comprising 195 West 

African, 63 Amerindian, and 527 European participants genotyped with either the Illumina 

HumanHap650Y array (HGDP) or the Omni2.5M array (1000G) [19,34]. Participants who had a 
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whole-chromosome anomaly on any of the autosomes were excluded from the autosomal local 

ancestry calculation. The detailed process of genotyping, imputations, and local ancestry calls, 

were published [5,27]. The inferred dataset includes 12,689 individuals and local ancestry counts 

over 15,500 intervals. Local ancestry inferences were conducted on both the autosomes and 

the X chromosome; however, only the autosomes were included in the analysis to align with 

the FLARE dataset.  

 

FLARE-inferred datasets include FLARE7 (using 7 reference populations) and FLARE3 (using 3 

reference populations). Both local ancestry inferences used FLARE v0.3.0 and reference 

haplotypes generated from the Human Genome Diversity Project (HGDP) data [34], which were 

derived from whole-genome sequencing data of 929 participants across seven geographic 

regions: Sub-Saharan Africa (104), Central-South America (61), Europe (155), Central/South Asia 

(197), East Asia (223), Oceania (28), and the Middle East (161). The FLARE7 dataset comprises 

11,928 individuals and 5,105,005 SNPs, utilizing reference populations from all seven regions. In 

contrast, FLARE3 inference was based on reference populations from three regions (Africa, 

America, and Europe) and includes the same 11,928 HCHS/SOL individuals but 3,618,751 SNPs. 

The different number of SNPs is due to the difference in reference populations used. The FLARE 

local ancestry inference includes a smaller set of HCHS/SOL individuals compared to the RFMix 

inferred local ancestries because it used the subset of HCHS/SOL individuals genotyped via the 

MEGA array. Subsequent comparisons between three inferences used individuals participating 

in all datasets (n=11,863). Unlike the RFMix-based local ancestry calls, the FLARE7 and FLARE3 

datasets provided local ancestry calls at the SNP level, without merging into intervals.  
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Global ancestry proportions: RFMix, FLARE, and ADMIXTURE 

 
We computed global ancestry proportions based on the inferred local ancestry counts. For a 

given individual, the RFMix ancestry inference, the global proportion for each ancestry was 

calculated by summing the lengths of all local ancestry intervals, multiplying each by the 

corresponding ancestry counts, and then dividing the resulting number by twice the total length 

of all intervals (since the local ancestry counts can be at most 2). For files derived from the 

FLARE analysis, the global proportion for each ancestry was calculated by taking the equally 

weighted average of local ancestry counts across all SNPs: computing half of the mean local 

ancestry counts for each participant. 

 

We also compared the above global ancestry proportions to those previously computed using a 

supervised ADMIXTURE [36] model over a set of unrelated HCHS/SOL individuals, under the 

assumption of 3 ancestral populations (African, Amerindian, and European, k = 3). The details of 

reference population generation, relatedness thresholding, and SNPs selection were published 

[35]. 

 

Comparison of inferred local ancestries 

 
The previous, RFMix, inference was conducted based on Human Genome Assembly GRCh37 

(hg19), while the new inferences FLARE3 and FLARE7 were based on GRCh38 (hg38). We used 

the LiftOver tool on UCSC Genome Browser [38,58] to align the RFMix-inferred intervals to hg38. 
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Intervals that were mapped into more than one region or that were mapped to a different 

chromosome were discarded.   

 

SNPs in the FLARE3 and FLARE7 inferences were matched to the local ancestry intervals from 

the RFMix inference separately. A SNP was matched to an interval in the RFMix if the SNP 

position was greater or equal to the block starting position and less or equal to the block ending 

position. For each variant-interval pair, and for each of European, African, and Amerindian 

ancestries, Pearson correlation was computed to assess the consistency of the local ancestry 

counts among the inferences across the genome (chromosome 1-22) across all individuals. 

 

Regions with relatively low local ancestry correlation between the RFMix and the FLARE 

datasets (< 0.9) were aligned to annotations from UCSC genome browser, which provides 

coordinates of well-known gene clusters that can yield alignments with low-quality mapping 

scores and discordant read pairs [38], and to the ENCODE “blacklist”, which comprises areas 

exhibiting anomalous, unstructured, or high signal in next-generation sequencing experiments, 

regardless of experiments [59]. To assess whether associations of low correlations between 

RFMix and FLARE local ancestries are enriched in these annotated problematic regions, we also 

selected at random a matching number of regions with high correlations (>0.97) between 

RFMix and FLARE local ancestries and compared the number of regions aligned to the 

annotated problematic regions between the low and high correlation groups. Even though 

genotyping arrays were used, the reference panels and reference haplotypes used in 

imputation and local ancestry inference incorporated whole genome and whole exome 
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sequencing data [19,51,60], therefore could potentially propagate the bias of the blacklisted 

regions into the local ancestry calls. Because local ancestry has long range linkage 

disequilibrium (LD), we allowed up to 0.5 Mb threshold to determine that a region with low 

correlation in inferred local ancestry counts is associated with a blacklisted interval.  

 

Metabolomics data 

 
Metabolomics data were assayed in fasting serum in two separate profiling efforts in 

HCHS/SOL. First, in 2017, 4,002 randomly-selected HCHS/SOL participants who also underwent 

genotyping were assayed (we refer to this dataset as “batch 1”). Next, in 2021, additional 2,368 

serum samples from 2,330 participants were assayed using blood samples collected at baseline 

(“batch 2”) [27]. Batch 2 included repeated samples within it, as well as samples from individuals 

who were assayed in batch 1, for quality control. Batch 2 participants also included individuals 

who were sampled for various ancillary studies: it included (1) individuals who participated in 

the ECHO-SOL ancillary study of echocardiogram [61], (2) individuals who had normal estimated 

glomerular filtration rate (eGFR > 60 at the baseline HCHS/SOL exam and substantial decline 

from the baseline to the second HCHS/SOL exam, and (3) individuals with eGFR measures 

available from both the baseline and second HCHS/SOL exams. 

 

Serum samples were stored at -70ºC at the HCHS/SOL Core Laboratory at the University of 

Minnesota until analysis by Metabolon, Inc. (Durham, NC) in 2017 (batch 1) and 2021 (batch 2). 

Serum samples were then extracted and prepared using Metabolon’s standard solvent 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2025. ; https://doi.org/10.1101/2025.02.04.636481doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.04.636481
http://creativecommons.org/licenses/by/4.0/


   
 

extraction method. Extracts were split into five fractions to use in four liquid chromatography-

mass spectrometry (LC-MS)-based metabolomic quantification platforms (two reverse phase 

methods with positive ion mode electrospray ionization (EI), one reverse phase method with 

negative ion mode EI, and one hydrophilic interaction liquid chromatography with negative ion 

mode EI), with the fifth fraction reserved for backup. Instrument variability was assessed by 

calculating the median relative standard deviation (SD) for the internal standards added to each 

sample prior to injection into the mass spectrometers. Overall process variability was 

determined by calculating the median relative SD for all endogenous metabolites (i.e., non-

instrument standards) present in 100% of the technical replicate samples.   

 

Comparison of admixture mapping of metabolites in previously-reported association 

regions 

 
In previous work, the two non-overlapping datasets (discovery and replication datasets) 

extracted from metabolomics batch 1 and batch 2 were used to examine genetic associations 

with 640 metabolites via admixture mapping [27]. Four of the metabolites with the strongest 

admixture mapping associations reported (according to the association p-value) were: 3-

aminoisobutyrate, N-acetylarginine, PE 16:0/20:4, and PC 16:0/20:4 [27]. For both metabolomics 

datasets, individuals with complete data for the four metabolites and who also are available in 

the FLARE and RFMix datasets were included in admixture mapping analyses (batch 1 discovery: 

n = 3861, batch 2 replication: n = 1644).  
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Admixture mapping between each considered metabolite and ancestry counts across the 

genome was tested with Score tests using R package GENESIS [57]. We focused on African and 

Amerindian ancestries, where each was tested separately using local ancestry counts from 

RFMix, FLARE3, and FLARE7 inferences. Null models were fitted first, i.e. models without 

genetic ancestry count, adjusting for fixed covariate effects (age, sex, center, eGFR, genetic 

analysis group, and the first five genetic PCs) as well as random effects accounting for the study 

design of HCHS/SOL and relatedness (household, census-block unit, and kinship coefficients) 

[27]. Genome-wide multiple testing burden was computed using STEAM R package [62], with 

significance thresholds determined for each inference and each batch based on the genetic 

distances of a sampled subset of pairs of SNPs obtained from the HapMap GRCh38 genetic map 

[63], correlations between local ancestry counts for each pair of sampled SNPs, and individual 

global ancestry proportions computed from local ancestry counts as described earlier. When 

constructing SNPs correlation matrices using the FLARE7 dataset, the correlations among the 7 

ancestries were simplified to the 3 major ancestries (African, Amerindian and European) and 

one combined local ancestry counts for the other four ancestries. This simplification was 

conducted due to the high sparsity of some ancestries, which made their individual local 

ancestry counts less informative for SNPs correlation and the downstream inference of the 

number of generations since admixture. 

 

To assess replicability of the analyses between the discovery and replication batches in each 

local ancestry inference, we first identified the most significantly associated genomic regions 

using RFMix inference for each metabolite and ancestry in the discovery dataset (taken from 
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batch 1). Then within each specific genomic region, the p-values and rsIDs of the most 

significantly associated variant using FLARE3 and FLARE7 were identified, and the association 

effect sizes as well as p-values were compared across different local ancestry inferences and 

the two batches.      
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