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Abstract

Towards a reliable identification of the onset in time of a cancer phenotype, changes in transcription levels in cell models
were tested. Surprisal analysis, an information-theoretic approach grounded in thermodynamics, was used to characterize
the expression level of mRNAs as time changed. Surprisal Analysis provides a very compact representation for the measured
expression levels of many thousands of mRNAs in terms of very few - three, four - transcription patterns. The patterns, that
are a collection of transcripts that respond together, can be assigned definite biological phenotypic role. We identify a
transcription pattern that is a clear marker of eventual malignancy. The weight of each transcription pattern is determined
by surprisal analysis. The weight of this pattern changes with time; it is never strictly zero but it is very low at early times and
then rises rather suddenly. We suggest that the low weights at early time points are primarily due to experimental noise. We
develop the necessary formalism to determine at what point in time the value of that pattern becomes reliable. Beyond the
point in time when a pattern is deemed reliable the data shows that the pattern remain reliable. We suggest that this allows
a determination of the presence of a cancer forewarning. We apply the same formalism to the weight of the transcription
patterns that account for healthy cell pathways, such as apoptosis, that need to be switched off in cancer cells. We show
that their weight eventually falls below the threshold. Lastly we discuss patient heterogeneity as an additional source of
fluctuation and show how to incorporate it within the developed formalism.
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Introduction

Monitoring the changing expression levels of mRNAs and more

recently miRNAs [1,2] is carried out primarily for identification of

disease and the response to treatment. One can probe the change

in a cell culture as time changes or examine the variation among

different patients, different environments etc with special reference

to large data sets, e.g., [3]. We propose to use changing expression

levels to obtain evidence for oncogenesis earlier in time before a

cancer phenotype can be detected by more conventional means.

The input that we require is transcription level of mRNAs

measured at different points in time, spanning many cell divisions.

The ongoing changes will be quantitated by surprisal analysis [4],

a technique that integrates and applies principles of thermody-

namics and maximal entropy towards the unbiased thermody-

namic characterization of systems that change in time. Unlike

clustering methods surprisal analysis determines first a base line, a

state of maximal thermodynamic entropy. Once the system

reaches its maximal entropy, it can no longer initiates or

participates in spontaneous processes. The baseline pattern is

very much the same in cells of different patients [5]. The Surprisal

Analysis next determines sets of transcripts that collectively

represent a deviation away from the reference state. Each such

pattern is a signature of a process. All the transcripts in a given

signature have a common variation with time. We determine these

signatures from microarray or from deep sequencing data. It is

found that very few, two, three four, processes suffice to

quantitatively describe the expression levels of many thousands

of transcripts. Our paper addresses the question of how do we

know that we have extracted all but no more than all the

information about the process that is contained in the data. Why is

there an issue about no more than all? Because we are analyzing

real experimental data and such data has always some noise. So it

is not meaningful to provide a perfect fit of the data. Much of the

effort in getting a perfect fit will be to fit the noise. In this paper we

discuss the cutoff beyond which the identification of a phenotype is

not reliable.

Clustering methods [6,7] have been extensively and successfully

used to seek significant patterns in microarray data. The method

we use also groups transcripts into expression patterns with key

differences. First, a pattern is not a cluster since a given transcript

can belong to more than one pattern. Surprisal analysis is also not

a statistical method because the grouping is based on assigning an

inherent baseline weight to each transcript. This weight is

thermodynamic-based. The measured expression pattern is

profiled through the deviations from the base line. These

deviations are small [5] because the base line reflects the cell
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machinery or ‘housekeeping’ genes [8]. The limited deviations

from the base line means that detecting the weight of a disease

pattern is numerically not straightforward. Lastly, our analysis

determines the state of the cell and thereby enables us to predict

the effect of a perturbation such as the addition of a drug [9].

Our paper provides both the basic theory and two illustrative

applications to data from the laboratories of Varda Rotter [10,11]

and Alexander Levitzki [4,12]. For both experiments we are able

to demonstrate that rather suddenly and many cell divisions before

a phenotype is evident, we detect the onset of a new process and

the turning off of processes that can be identified with

maintenance of healthy cells. It is the ability to put clear bounds

on what is and what is not biologically warranted by the data that

enables us to make categorical statements.

From cell lines we proceed to human patient cells in renal

cancer using the data reported in Stickel [13]. The new feature in

patient data is that quite typically the disease pattern is different in

different patients [5]. The patient variability introduces an

additional source of fluctuation in the data that must be taken

into account.

The mathematical details are given in section S1 of Supporting

Information S1. In the main text we give the sense of the

derivations and the working results. Here we note that our

theoretical considerations are based on the maximum entropy

formalism [14]. For the time series data that we use this means

that each time point the entropy of the transcription system is at

the maximal possible value that is allowed by the constraints that

act on the transcripts [4]. The constraints are imposed using the

mathematical technique of the Lagrange multipliers [15]. The

change of the expression level of the transcripts with time is

represented through the Lagrange multipliers varying with time as

shown in equation (1) below. The very large number of transcripts

makes it convenient to use the Singular Value Decomposition

(SVD) method [16] as a means of computing the Lagrange

multipliers. SVD has been very effectively used in the analysis of

microarray data [17,18,19,20]. Here we use this mathematical

technique in a different way and for us it is a method for effectively

diagonalizing a non square matrix and thereby it provides [4] an

efficient means of performing surprisal analysis. We also present

an error analysis that takes advantage of features unique to the

SVD procedure.

Methods

We outline the theory that we developed and applied and we

provide more details around the working results. In particular, the

most practical form of the results is fully discussed. The notation

used is that of surprisal analysis and this is introduced first. The

role of patient variability is presented last. Mathematical details

including those elements of Singular Value Decomposition, SVD,

that are special to our application, are referred to the Supporting

Information S1.

Surprisal Analysis
The expression level of transcript i at time t is given by the

procedure of maximal entropy as a fold change compared to the

base line

surprisal~{ln
Xi(t)
zffl}|ffl{

measured expression level
of transcript i at time t

X o
i|{z}

the base expression level
of transcript i

2
6666664

3
7777775

~{ ln Xi(t)
� �

{ln X o
i

� �� �

~{
X

a~1
Gia

z}|{
weight of

transcript i
in pattern a

la(t)
zffl}|ffl{Lagrange multiplier
at time t

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sum of deviations from the base line
characteristic for transcript i at time t

ð1Þ

The fold difference is known as the surprisal. Surprisal analysis

is the act of fitting of the surprisal by a sum of terms as shown in

equation (1). There are typically very few terms that are needed in

the sum. But exactly how many terms need to be included? This is

the question addressed in this paper.

The Data and the Error
Surprisal analysis consists in essence of the fitting of equation (1)

to Xi(t) the measured expression level of transcript i at each time t.

The best fit is sought by varying the values la(t) of the Lagrange

multipliers. The practical way for minimizing the error is by using

SVD as discussed in the SI and elsewhere (4). When expression

levels are quantitated for example via a microarray the data is

measured several times. The reading of the expression level of

transcript i in different replicas are typically not quite the same. A t

test is usually employed to reject such readings that differ too much

between different replicas. But even those results that are kept after

this test the different replicas do not quite yield the same level for a

given transcript. This is the experimental error that we are

discussing. The variability of different readings implies that the

fitted values of the Lagrange multipliers will vary. It is the

magnitude of this variation that we are after. The operational

procedure that we will follow is to fit the Lagrange multipliers to

the mean of the level of expression, mean over replicas. What we

seek is the error bar on the value of each Lagrange multiplier.

The Principle of Error Estimate in Surprisal Analysis
At each time t the importance of each term in the sum in the

surprisal is determined by the value of the Lagrange multiplier

la(t) at that time. By inspection of equation (1) if the value of the

Lagrange multiplier is zero, la(t)~0, then that term is unimpor-

tant at that time and can be omitted.

One can state the conclusion about which constraint is

important also in information theoretic terms: The value of the

Lagrange multiplier is exactly by how much the constraint a
causes a lowering of the entropy from its global maximum,

achieved at the base line. If at a time t we find that la(t)~0 then

the constraint a does not lower the entropy. In other words, at the

time t constraint a does not provide information on the state of the

transcription system.

The first step is determining how many constraints are

informative is to note that there can be no more than T where

T is the number of measured time points. (This need not be a small

number, see [21] for an example where T = 48). In general T is

much smaller than the number N of transcripts. Even so it is shown

in Supporting Information S1 that using the SVD method to

Surprisal Analysis of Noisy Transcripts Level Data
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diagonalize the covariance matrix with T21 constraints and a

baseline X o
i of N values one can reproduce the input data exactly.

It is the numerically perfect fit that the T21 Lagrange

multipliers provide that is the source of the issue we address in

this paper. There is invariably some noise in the measured

expression levels. So with T21 Lagrange multipliers we fit both

the real data and the noise. In this paper we estimate at what point

the Lagrange multipliers begin to fit the noise [22].

The criteria we employ is direct: A Lagrange multiplier provides

no additional information if its value is zero. So in the presence of

noise, when there is an error range associated with each Lagrange

multiplier, a Lagrange multiplier provides no new information

when zero is a possible value. If d la(t) is the error range of the

Lagrange multiplier for pattern a at the time t, then it is not

informative at that time if

dla(t)§la(t) a non informative constraint at time t ð2Þ

The remainder of the paper is how to determine the error

bound on a Lagrange multiplier.

The Constraints
In the maximum entropy formalism the numerical value of the

Lagrange multipliers is determined by the mean value of the

constraints. In terms of the time-independent variables Gia the

mean value of the constraint a at the time t is given by

SGaT(t)~
X

i
GiaXi(t) ð3Þ

The time dependence of the mean value is due to the expression

levels Xi(t) of the different transcripts that vary with time. The

mean value SGaT(t) has an experimental error because the

transcription levels Xi(t) are only known to a finite accuracy that

we denote as + dXi(t). The prefix + is because the sign of the

error is not known and even more so, the correlation of the sign of

the errors of different transcripts is not known. So we cannot

compute the error in the mean value of SGaT(t) directly from its

definition, i.e. using dSGaT(t)~
X

i
Gia + dXi(t)ð Þ. Note that in

the expression for the error, dSGaT(t), of the constraint we take it

that the only source of error in the value of SGaT(t) is due to the

uncertainty in the expression levels meaning that there is no error

in the values Gia themselves. When we use SVD these values are

determined from the data, (see Supporting Information S1), and

so, potentially, there is another source of error.

The Strict Upper Bound on the Error
Alhassid and Levine [23] have shown how to use the Schwarz

inequality [24] as a practical way to compute an estimate of the

error dSGaT(t) of the mean value of the constraint. There are a

few differences between what we do here and the formalism used

by Alhassid and Levine [23] These all stem from the fact that the

sum of the expression levels does not have to equal unity nor need

the sum be the same at different times. An adaptation of the

method of [23] to the expression level data is discussed in the

Supporting Information S1. The final result is an upper bound on

the error of the Lagrange multipliers expressed in terms of the

error measure s and a covariance matrix M

dla(t)ƒs
X

b
M{1
� �

ab
Mbb

� �1=2 ð4Þ

Here s is a (time-dependent) fold error that is summed over all

expression levels

s(t)2~
X

i
dlnXi(t)
� �2

Xi(t): ð5Þ

dlnXi(t)~dXi(t)=Xi(t) is the fold error in the expression level of

transcript i so that, for example, it equals 0.1 to represent an

experimental error of 10%. If the fold error is about the same for

all transcripts then s2~0:01:
X

i
Xi(t) and note that in general s2

will scale with the total level of transcription,
P

i Xi(t). The

elements Mab are the elements of the covariance matrix and are

time dependent because the expression levels vary with time

Mab~SGaGbT~
P

i GiaGib Xi(t) ð6Þ

The upper bound given by equation (4) is a strict upper bound

and it is the result we use when a careful analysis is required. But

the computation requires inverting a matrix. So we turn next to a

more accessible and practical expression that takes direct

advantage of the use of SVD to diagonalize a matrix and thereby

compute the surprisal expansion.

The Practice of Error Estimate in Surprisal Analysis
When SVD is used to compute the surprisal [4] there is the

advantage that the different deviation terms are orthogonal to one

another, explicitly
P

i GiaGib~dab Here dab is the Kronecker

delta symbol, dab~0 when a=b and ~1 when a~b: By using

this in equation (1) we arrive at a practical expression for the

Lagrange multiplier

la(t)~
X

i
lnð Xi(t)Þ Gia ð7Þ

where the time dependence is due to the expression levels. By

virtue of this linear relation an error in the expression levels

translates to an error in the Lagrange multipliers

dla(t)~
X

i
dlnXi(t)ð Þ Gia ð8Þ

Applying the Cauchy Schwarz inequality (24) to equation (8) we

show in the Supporting Information S1 that

dla tð Þƒe Nð Þ1=2 ð9Þ

where N is the number of measured transcripts and e is the root

mean square error

e2~
1

N

XN

i~1

dXin tð Þ
X in tð Þ

� �2

ð10Þ

The practical error bound, equation (9), has the same value for

all the constriants because it does not depend on the index a. The

output of the SVD procedure is usually arranged such that the

Surprisal Analysis of Noisy Transcripts Level Data
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constraints are listed in order of descending importance. There-

fore, as a rough rule of thumb, one can expect that as the number

of the constraints increases the constraints will become non

informative. The reason that there can be exceptions is the

following technical consideration. The SVD procedure gives the

value of the Lagrange multiplier la(t) as

la(t)~vaPa(t) ð11Þ

where it is the eigenvalues va that are in descending order,

v0§v1§v2:::: The time dependence of the Lagrange multiplier

la(t) is given by the Pa(t)0s which can be viewed as components of

a normalized eigenvector of the time-covariance matrix of the

data, see [4] and Supporting Information S1.

Early Time Forewarning of a Cancer Phenotype
At any time t equation (11) determines the value of the Lagrange

multiplier at that time. To be informative at time t it is necessary

that the error bound is low enough la(t)wd la(t). We are

specifically concerned with such phenotypes a whose multiplier at

very early times is very low and whose multiplier at late times is

much higher. By very low and much higher we specifically mean

that at very early times t and at later times we have that

la(tvery early) vd la(tvery early)

la(tlate)wd la(tlate)
ð12Þ

The earliest time at which the phenotype a can be reliably said to

contribute is when

la(tearliest)^d la(tearliest) ð13Þ

which is the earliest time when the error is small enough.

There is a complementary situation for such phenotypes that

are important in healthy cells and whose role gradually diminishes.

For these we need to reverse the directions of the inequalities in

equation (12). In the examples below the two boundaries coincide.

Phenotypes that need to be switched off in cancer cells are no

longer important at the same time range when the phenotype can

be reliably discerned.

The Role of Patient Variability
A source of noise that requires a separate discussion is when the

data is not from a cell culture but represents an average over

different patients. Using equation (1) for the Lagrange multiplier of

a particular patient whose index is m, we define �lla tð Þ as the mean

of lam tð Þ over the M different patients

�lla tð Þ~ 1

M

XM

m~1
lam tð Þ~ 1

M

XM

m~1

X
i
Gia ln Xim tð Þ ð14Þ

From the mean and the individual lam tð Þ0s we can compute the

statistical standard error of the Lagrange multiplier that is due to

patient variability. Then

dla tð Þ=la tð Þð Þ~ standard error of la tð Þð Þ
	

�lla tð Þ ð15Þ

Results

The first example is the fractional error estimate in the

Lagrange multipliers, dla tð Þ=la tð Þ, for steady state (a~0) and

the next 3 constraints a~1,2,3ð Þ calculated using cell culture data

for the WI-38 model developed by the Rotter group [11].

Surprisal analysis of the changes in the transcription pattern

throughout the precancerous state identified three transcription

patterns that suffice to reproduce the ternds in the expression

Figure 1. Reliability of weights of phenotypes during tumer-
ogenesis. The upper bound on the fractional error in the Lagrange
multipliers, dla tð Þ=la tð Þ, at different successive time points in the WI-38
cancer model of Rotter et al [11]. A constraint is warranted by the data
when the fractional error is below unity, see equation (14). a~3 is the
tumor signature and it is seen that it is only valid in later times but well
before the cell is cancerous that is observed at time point 12. Note that
the error in the steady state constraint is minimal.
doi:10.1371/journal.pone.0061554.g001

Figure 2. Soundness of weights of phenotypes during tumer-
ogenesis. The bound for the fractional error of the Lagrange
multipliers, dla tð Þ=la tð Þ, for steady state (a~0) and the next 3
constraints a~1,2,3ð Þ calculated for the four time points measured in
the HPV-16 model [12].
doi:10.1371/journal.pone.0061554.g002

Figure 3. Reliability of weights of phenotypes for a renal
cancer patient. The error bound in the Lagrange multipliers for steady
state (a~0) and the next 2 constraints a~1,2ð Þ calculated for the 2nd

patient of renal carcinoma, using the data reported measured by
Stevanović et al [13] for patient number 2. Quite similar results are
obtained for the other two patients.
doi:10.1371/journal.pone.0061554.g003

(13)

Surprisal Analysis of Noisy Transcripts Level Data
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levels. The major transcript, a~1, represents a contraction of

signaling networks and an induction of cellular proliferation [10].

The fractional error for this constraint remains below unity at all

measured time points, figure 1. The second constraint, a~2, is

seen in figure 1 to be meaningful only at the early time points. This

pattern shows reduced expression of transcripts involved in cell

cycle and cellular development [11]. Beyond the time point 7 the

error for the 2nd constraint (a~2) is already above the magnitude

of the Lagrange multiplier itself dl2=l2w1.

The third constraint, a~3, is the one that in references (10,11)

was identified as the tumor signature pattern. It is seen in figure 1

that this constraint is only truly meaningful at the later times. We

emphasize that also at ealier times the analysis yields a finite value

for the Lagrange multiplier l3(t), see figure 3 in [10] but the

present error analysis shows that at these earlier times

d l3(t)=l3(t)w1 so that the constraint is not reliably warranted.

A technical point of our work is this distinction between a finite but

unreliable weight of the tumor signature pattern at early times and

the sudden increase in reliability at intermediate times.

When using SVD it is a matter of notational convenience to

represent the steady state as {lnX o
i ~l0Gi0. It is typically the case

that l0 is far larger than the Lagrange multipliers so that, as seen

in figure 1, the fractional error in l0 is quite small.

The bounds shown in figure 1 were computed using the strict

upper bound given by equation (4). Using the more practical

expression, equation (9) gives quite similar results.

The second example is the HPV-16 cancer model of Levitzki

et al [12]. The results of the error analysis are shown in figure 2.

There are four time points that were measured so that one can

determine at most three constraints, (plus the base line makes

four). It is seen in figure 2 that at any point in time there are only

two constraints that are meaningful. The major one that is valid

throughout, an early time one and a late time one. The late time

constraint, a~3, is identified as a tumor signature [4].

Lastly we consider the additional ‘noise’ due to patient

variability. For each patient we can compute the Lagrange

multipliers and their error due to noise in the measurements. Such

results are shown in figure 3 for renal cancer at three time points as

measured by Stevanović et al [13]. As in figures 1 and 2 also in the

patient data in figure 3 we see a later in time phenotype becoming

informative. It is informative for the diseased but not the healthy

stage.

For each diseased patient separately we can use the renal cancer

data of Stevanović et al [13] to determine reliably two constraints.

But the disease signature of different patients are often quite

different [5]. When one allows for this variability, using equation

(15) of the results section, the late pattern is no longer reliable as

shown in figure 4.

Discussion

We analyzed transcription level changes over time in prema-

lignant cell models and in cancer patients. A transcription pattern

that is not expressed in healthy patients was seen in diseased

patients. In early stage cells cultures an absent pattern was shown

to become informative at later times. Later times but well before a

cancer phenotype could be identified. Expressed or not expressed

were judged on the basis of a conservative criterion based on an

upper bound on the error in the weight of the transcription

pattern. On both pragmatic and on information theoretic grounds

it was argued that if the bound on the fractional error is below

unity, the data warrants the conclusion that the phenotype is

expressed. This suggest that with additional experience it could be

possible to offer an earlier than currently possible diagnostics.

Supporting Information

Supporting Information S1

(PDF)
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