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Abstract

Background

We evaluated plasma samples HIV-infected individuals with different phenotypic profile

among five HIV-infected elite controllers and five rapid progressors after recent HIV infection

and one year later and from 10 individuals subjected to antiretroviral therapy, five of whom

were immunological non-responders (INR), before and after one year of antiretroviral treat-

ment compared to 175 samples from HIV-negative patients. A targeted quantitative tandem

mass spectrometry metabolomics approach was used in order to determine plasma meta-

bolomics biosignature that may relate to HIV infection, pace of HIV disease progression,

and immunological response to treatment.

Results

Twenty-five unique metabolites were identified, including five metabolites that could distin-

guish rapid progressors and INRs at baseline. Severe deregulation in acylcarnitine and

sphingomyelin metabolism compatible with mitochondrial deficiencies was observed. β-oxi-

dation and sphingosine-1-phosphate-phosphatase-1 activity were down-regulated, whereas

acyl-alkyl-containing phosphatidylcholines and alkylglyceronephosphate synthase levels

were elevated in INRs. Evidence that elite controllers harbor an inborn error of metabolism

(late-onset multiple acyl-coenzyme A dehydrogenase deficiency [MADD]) was detected.

Conclusions

Blood-based markers from metabolomics show a very high accuracy of discriminating HIV

infection between varieties of controls and have the ability to predict rapid disease progres-

sion or poor antiretroviral immunological response. These metabolites can be used as
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biomarkers of HIV natural evolution or treatment response and provide insight into the

mechanisms of the disease.

Background

The average period for HIV progression from acute infection to AIDS is 8 years[1]. However,

elite controllers are able to naturally control HIV-1 replication and maintain adequate CD4+

T cell levels[2], while rapid progressors may evolve to AIDS in a period as short as 2 years[1].

Furthermore, 30% of the HIV-infected population, referred to as immunological non-

responders (INR), fail to increase CD4+ T cell counts by at least 30% despite being treated

with antiretrovirals and achieving viral suppression for a year or more[3].

Metabolomics, the unbiased identification and quantification of small molecules in biologi-

cal fluids[4], can serve as a path to the understanding of biochemical state of an organism and

aid in the discovery of biomarkers. Furthermore, quantitative measurement by mass spectros-

copy of specific metabolic products in plasma, urine or cells from cases compared to those

from controls has begun to reveal critical differences in the products of diseased versus normal

tissues for a wide variety of conditions, including prostate cancer [5], colon and stomach can-

cer [6], and Parkinson’s disease [7], and HIV. In this regard, profound misbalanced functions

related to energy, protein, lipid and glucose metabolism have been reported in HIV-infected

individuals since recognition of the disease and introduction of ART [8–12]. Increases in

metabolism are reported to be present already during asymptomatic periods and can reach

even higher levels during opportunistic infections[10–13]. Very recently, the metabolic path-

way related to the transport of the amino acid alanine was proved to be important for T cell

activation; Indeed, impairments of alanine transport in CD4 T cells might contribute to HIV-1

pathogenesis through modulation of virus production, weakening of the adaptive immune

response as well as enhancement of CD4 T-cell loss [13]. In the current study, we hypothesized

that distinct individual phenotype among HIV-infected individuals will display distinct meta-

bolomics profile.

The purpose of this study was to identify metabolites that are unique to HIV-infected indi-

viduals and to identify biomarkers that relates to HIV natural evolution and biomarkers that

relate to immunological response to antiretroviral treatment using a targeted quantitative tan-

dem mass spectrometry (MS/MS) metabolomics approach in order to gain insights into the

mechanisms of HIV.

Methods

We analyzed four panels of previously unthawed frozen plasma samples from HIV-infected

individuals prospectively every 3 months using a targeted quantitative tandem mass spectrom-

etry (MS/MS) metabolomics approach. Twenty patients were selected from a HIV recent infec-

tion cohort in Sao Paulo, Brazil. Individuals were identified as recent HIV infections using the

Serologic Testing Algorithm for Recent HIV Seroconversion[14]. Written Informed consent

has been obtained from all participants and Institutional Review Board (Comitê de Ética em

Pesquisa da Universidade Federal de São Paulo / Escola Paulista de Medicina–CEP/UNIFE-

SP-EPM) approved study (#1586/11).

All patients were randomly selected according to their phenotype (elite controllers or rapid

progressors) or their response to antiretroviral treatment. Elite controllers were defined as hav-

ing a viral load below 400 copies/mL plasma after recent infection for a period of at least 2

years, and T+ CD4 cell counts with a positive slope using linear regression (Panel A in S1 Fig).
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Rapid progressors were defined as having higher viral load positive slopes and a faster decrease

in CD4+ T cell counts using linear regression (Panel B in S1 Fig). Selected patients were not

using any concurrent medications or supplements, did not have any detected comorbidities,

and did not have any laboratory abnormalities related to blood cell counts, glycose, liver, kid-

ney or pancreatic measurements.

Group A comprised samples from five elite controllers collected during recent HIV infec-

tion (Panel A1 in S1 Fig) and after one year of follow-up (Panel A2 in S1 Fig). Group B (in S1

Fig) used the same strategy for 5 HIV-1 rapid progressors, with samples collected during

recent HIV infection (Panel B1 in S1 Fig) and after one year of follow-up (Panel B2 in S1 Fig).

Group C consisted of five patients who underwent antiretroviral therapy after reaching CD4

+ T cell counts below 350 cells/ μ L, and in whom viral loads reached levels below detection

limits of 50 copies/mL and CD4+ T cell counts increased to at least 30% from baseline upon

treatment. Group D used the same strategy for five INR. Antiretroviral treatment on groups C

and D was homogeneously comprised of an association of fixed dose combination of zidovu-

dine and 3TC administered BID, and a QD dose of Efavirenz, according to the local Brazilian

guidelines at that time. We analyzed samples from patients who experienced different paces of

disease progression (Group A versus Group B) compared to patients who were either viremic

(Groups B, C1 and D1), naturally aviremic (Group A), aviremic upon antiretroviral treatment

(Group C2 and D2), or presented a distinct immunological response upon treatment (groups

C versus D). The clinical characteristics of the subjects are depicted in Table A in S1 File.

All metabolomics data were used as received from Biocrates. Samples were blindly ana-

lyzed, and no data points were removed. The experimental metabolomics measurement tech-

nique is described in detail by US patent 2007/0004044 (accessible online at Free Patents

Online). The company had no access to phenotype information that would have permitted

any data pre-filtering other than objective quality control for measurement errors based on

internal controls and duplicates.

A summary of the method can be found in [15–17] and a comprehensive overview of the

field and the related technologies is given in the review paper by Wenk[18]. Briefly, a targeted

profiling scheme was used to quantitatively screen for known small molecule metabolites

using multiple reaction monitoring, neutral loss and precursor ion scans. Quantification of the

metabolites of the biological sample was achieved by referencing to appropriate internal stan-

dards. The method is in conformance with 21CFR (Code of Federal Regulations) Part 11,

which implies proof of reproducibility within a given error range. The concentrations of all

analyzed metabolites were reported in μM and the results were compared to tumor response

rates and tumor intrinsic subtypes. This method has been used in different academic and

industrial applications[19].

The metabolite panel is composed of 186 different metabolites: 40 acylcarnitines, 19 protei-

nogenic amino acids, ornithine and citrulline, 19 biogenic amines, the sum of hexoses, 76

phosphatidylcholines, 14 lyso-phosphatidylcholines and 15 sphingomyelins.

Glycerophospholipids are further differentiated with respect to the presence of ester (a) and

ether (e) bonds in the glycerol moiety, where two letters (aa = diacyl, ae = acyl-alkyl, ee = dia-

lkyl) denote that two glycerol positions are bound to a fatty acid residue, while a single letter

(a = acyl or e = alkyl) indicates the presence of a single fatty acid residue.

Lipid side chain composition is abbreviated as Cx:y, where x denotes the number of carbons

in the side chain and y the number of double bonds. For example, ‘‘PC ae C38:1” denotes a

plasmalogen/plasminogen phosphatidylcholine with 38 carbons in the two fatty acid side

chains and a single double bond in one of them.

In addition to individual quantification, groups of metabolites related to specific functions

were analyzed. Groups of AAs were computed by summing the levels of AA belonging to
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certain families or chemical structures depending on their functions such as essential AA,

non-essential AA, glucogenic AA, total AA, branched-chain AA, Aromatic AA, glutaminolysis

AA (Ala+Asp+Glu). Groups of ACs, important to evaluate mitochondrial function, were also

computed by summing (Total AC, C2+C3, C16+C18, C16+C18:1, C16-OH+C18:1-OH).

Groups of lipids, important to evaluate lipid metabolism, were also analyzed by summing

(total LPCs, total PC aa, total PC ae, total SMs, total lipids) (Table B in S1 File).

Proportions among metabolites such as the Fischer’s ratio, a clinical indicator of liver

metabolism and function [13] or the clinical indicators of isovaleric acidemia, tyrosinemia and

urea cycle deficiency were calculated, as the ratios of branched chain amino acid (leucine+iso-

leucine+valine) to aromatic amino acid (tyrosine+phenylalanine), valerylcarnitine to butyryl-

carnitine (C5/C4), tyrosine to serine (Tyr/Ser) respectively. A complete list of ratios reflecting

enzyme activities of specific metabolic pathways have been previously described. [5]

To unambiguously identify and quantify metabolites, stable isotope dilution-multiple reac-

tion monitoring mass spectrometry was performed using targeted quantitative metabolomics

platforms at Biocrates (Life Sciences AG, Innsbruck, Austria) in 215 plasma samples; 40 from

HIV patients and 175 from controls (58 healthy volunteers, 53 colon cancer patients and 64

breast cancer patients, because the metabolic profile of activated inflammatory cells is similar

to tumor cells[20]).Multivariate profile-wide predictive models were constructed using Cross

Validated Partial Least Squares Discriminant Analysis (PLS-DA). For each metabolite, the data

were mean centered and scaled to unit variance[21]. Associations between the 28 blood metab-

olites and HIV-1 infection were assessed using Pearson’s r analysis. We do not report in this

study the metabolite profiles that are common between the study group and control groups,

but only metabolites that were unique to HIV infection.

The number of latent variables in each model was selected using stratified 10-fold cross vali-

dation and calculating associated R2 and Q2 statistics. The predictors were subjected to permu-

tation testing. The results (p<5e-04) confirmed our PLS-DA analysis and revealed a clear

discrimination between plasma samples from 40 samples from 20 HIV-infected individuals and

175 HIV negative counterparts employing PLS-DA and permutation testing analysis (p<5e-04

after 2000 permutations) (S2 Fig). Receiver operating characteristic (ROC) curves were deter-

mined during training and validation sets such that an accurate assessment of discriminatory

ability could be made confirming the existence of highly discriminative metabolites.

Training cases were used for marker discovery and to identify any clinical variable that

might be associated with a response by logistic regression analysis. Quantification of metabo-

lite concentrations and quality control assessment was performed with the MetIQ software

package (BIOCRATES Life Sciences AG, Innsbruck, Austria). Internal standards served as the

reference for the metabolite concentration calculations. An Excel file was then exported, which

contained sample names, metabolite names and metabolite concentration with the unit

of μmol/L of plasma.

For metabolomic data analysis, log-transformation was applied to all quantified metabolites

to normalize the concentration distributions. The data were uploaded into the web-based ana-

lytical pipeline MetaboAnalyst 2.0 (MetaboAnalyst) and normalized using MetaboAnalyst

normalization protocols[22] for uni- and multivariate analysis, high dimensional feature selec-

tion, clustering and supervised classification, functional enrichment and metabolic pathway

analysis. Significantly altered metabolites were defined by a T Test analysis with p-value <0.05

and FDR�0.05.

The data were also imported to ROCCET (ROC Curve Explorer & Tester; available at

ROCCET) for the generation of uni- and multivariate Receiver Operating Characteristic

(ROC) curves obtained through Support Vector Machine (SVM), Partial Least Squares-Dis-

criminant Analysis (PLS-DA) and Random Forests.
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Curves were generated by Monte-Carlo cross validation (MCCV) using balanced subsam-

pling where two thirds (2/3) of the samples were used to evaluate the feature importance. Sig-

nificant features were then used to build classification models that were validated on the

remaining 1/3 of the samples. The same procedure was repeated multiple times to calculate the

performance and confidence interval of each model.

Results and Discussion

A descriptive analysis of 28 blood metabolites and their correlation with HIV-1 infection is

shown in Table 1 (and S3 Fig). Unsupervised multivariate analysis using Heat Map (Fig 1) and

Randon Forest classification were also conducted between cases and controls. Results demon-

strated the existence of metabolites whose blood concentrations can clearly differentiate con-

trols from patients either on acute or chronic phases. The out of the box (OOB) error, after

5000 trees, is 0.0 according Random Forest classification.

Very low concentrations of sphingomyelins and dopamine in parallel with high levels of

dicarboxylicacylcarnitines, L-aspartate and many plasmalogen/plasminogen phosphatidylcho-

lines, such as PC ae C38:1 and PC ae C40:3, were detected in the blood of HIV-1-infected indi-

viduals compared with controls.

Table 1. The top 28 metabolites whose concentrations were statistically elevated or decreased in HIV patients compared to controls.

FDR = False Discovery Rate; C5-M-DC = Methylglutarylcarnitine; lysoPC a C24:0 = Glycerophospholipids; C5:1-DC = Glutaconylcarnitine; PC aa

C42:5 = Glycerophospholipids; lysoPC a C14:0 = Glycerophospholipids; PC aa C30:0 = Glycerophospholipids; Phosphatidylcholines PC aa

C28:1 = Glycerophospholipids; C12-DC = Dodecanedioylcarnitine; SM = Sphingomyelin.

Metabolite Correlation T test pValue FDR

PC ae C38:1 0.84706 10.205 8.0647E-13 1.9306E-5

C5-M-DC 0.84089 99.488 1.71E-08 2.01E-07

lysoPC a C24:0 0.82279 92.698 1.29E-07 1.44E-06

C5:1-DC 0.79126 82.856 2.69E-06 2.68E-05

Glutamate 0.71738 65.935 6.20E-04 5.58E-03

PC ae C40:3 0.57136 4.4578 6.2893E-5 1.082E-11

Aspartate 0.7492 72.427 7.50E-05 7.09E-04

PC aa C42:5 0.6687 57.588 9.53E-03 8.19E-02

SM C26:0 -0.57777 -4.5326 4.9721E-05 3.0639E-4

lysoPC a C14:0 -0.63814 -53.072 4.15E-02 3.14E-02

PC aa C30:0 -0.64955 -54.703 2.44E-02 1.92E-01

PC aa C28:1 -0.66539 -57.075 1.13E-03 9.26E-02

SM C26:1 -0.79524 -83.987 1.89E-06 1.99E-06

C12-DC -0.8409 -99.493 1.70E-08 2.01E-07

SM C20:2 -0.8444 -10.093 1.12E-08 1.51E-11

Nitrotyrosine -0.86159 -10.869 1.20E-10 1.75E-08

Dopamine -0.86968 -11.282 3.79E-11 5.97E-10

SM C18:1 -0.87877 -11.791 9.42E-11 1.62E-09

SM C18:0 -0.88526 -12.187 3.26E-12 6.15E-10

SM (OH) C16:1 -0.89156 -12.605 1.09E-11 2.28E-10

SM C16:0 -0.90533 -13.649 7.69E-13 1.82E-11

SM (OH) C24:1 -0.91078 -14.124 2.40E-13 6.49E-12

SM (OH) C14:1 -0.91275 -14.307 1.55E-13 4.88E-12

SM C24:1 -0.91696 -14.716 5.85E-14 2.21E-12

SM C16:1 -0.92619 -15.729 5.71E-15 2.70E-13

SM (OH) C22:1 -0.93876 -17.445 1.40E-16 8.83E-15

SM (OH) C22:2 -0.94566 -18.622 1.29E-17 1.22E-15

SM C24:0 -0.94912 -19.298 3.47E-19 6.56E-16

doi:10.1371/journal.pone.0161920.t001
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The severe deregulation in acylcarnitine and sphingomyelin metabolism suggests that HIV

infection leads to deficiencies in mitochondrial function. Therefore, we assembled ratios of

certain metabolite concentrations as proxies for enzymatic activity. We examined the propor-

tion of esterified to free carnitines, β- and O-oxidation, and the rate-limiting step in the uptake

of fatty acids into the mitochondria related to carnitine palmitoyl transferase I (CPT1) activity.

We also examined the SYNE2 locus because of its relation to SGPP1 (sphingosine-1-phosphate

phosphatase 1) activity, a key player in the sphingosine rheostat that governs the interchange

between pro-apoptotic ceramides and S1P, a well-established ligand in survival signaling[23].

ANOVA statistical analysis confirmed our hypothesis by demonstrating that HIV infection

is associated with a substantial deterioration in mitochondrial function. This conclusion is

supported by a decrease in the proportion between esterified and free carnitines ((Total esteri-

fied carnitines(AC)/ free carnitines (C0)) (p = 9.8245E-11 and False Discovery Rate (FDR) =

4.1977–10) (Fig 2A), decreased β-oxidation (p = 1.3529E-13 and FDR = 8.4782E-13) (Fig 2B)

in parallel with increased O-oxidation (p = 6.9445E-11 and FDR = 3.1085E-10) (Fig 2C),

and decreased uptake of fatty acids by the mitochondria (CPT1) (p = 0.0016126 and FDR =

0.0026136) (Fig 2F). As a consequence, the direct products of normal mitochondria, such as

non-essential amino acids (p = 1.5306E-47 and FDR = 7.1938E-46) (Fig 2D) and sphingomye-

lins (p = 1.1088E-18 and FDR = 6.74E-19) (Fig 2E) were down-regulated in patients with HIV

(Fig 2A to 2F). Disturbances in fatty acid oxidation (FAO), as revealed by declines in CPT1

and β-oxidation functions, were recently reported to be very important in T cell survival and

the promotion of CD8+ TM cell development[24]. Furthermore, it has been shown that per-

turbations on sphingolipids and glycerophospholipids altering membrane lipid composition

may impair innate immune responses.[25] As depicted in Fig 2B, β-oxidation is particularly

down-regulated (p = 2.5195E-8; FDR = 1.1412E-7) among INR.

Furthermore, there was a significant decline in sphingosine-1-phosphate phosphatase 1

activity (SGPP1, SYNE2 locus) after treatment, particularly among INR, when evaluated by the

Fig 1. Unsupervised Heat map Clustering Analysis depicting identification of metabolites able to

differentiate between Cases and Controls.

doi:10.1371/journal.pone.0161920.g001
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Fig 2. Proportion of Esterified to free Carnitines (Total AC/C0) (A; p = 9.8245E-11 and FDR = 4.1977–10),

Beta oxidation (B; p = 1.3529E-13 and FDR = 8.4782E-13) Omega Oxidation (C; p = 6.9445E-11 and FDR =

3.1085E-10), Non-Essential Amino acids other than Glu and Asp (D; p = 1.5306E-47 and FDR = 7.1938E-46),

sphingomyelin (E; p = 1.1088E-18 and FDR = 6.74E-19) and uptake of fatty acids to mitochondria (CPT1)

(F; p = 0.0016126 and FDR = 0.0026136). Y Axis is depicting micro molar plasma concentrations. Cont =

controls; Elite = elite controllers; RP = rapid progressors; IR = immunological responders;

INR = immunological non-responders.

doi:10.1371/journal.pone.0161920.g002
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ratio PC aa C28:1/PC ae C40:2 (p = 8.4667E-7, -log10(p) = 6.0723, FDR = 1.2712E-5) (Fig 3).

Importantly, Sphingosine-1-Phosphate (S1P) is involved in lymphocyte egress from lymphoid

organs[26, 27] and bone marrow[28, 29] into circulatory fluids via a gradient of S1P. Because

SGPP1 (SYNE2 Locus) is correlated to CD4+ T cell counts (p = 0.0071195; FDR = 0.16446, Fig

3), it is tempting to speculate the existence of a link between Sphingosine-1-Phosphate Phos-

phatase 1 activity and INR.

The amount of ether lipids as measured by the total acyl-alkyl-containing phosphatidylcho-

lines to total phosphatidylcholines (AGPS) ratio was down-regulated after 1 year of follow-up

in all groups but INR (p = 1.1405E-5, -log10(p) = 4.9429, FDR = 9.6586E-5, Fig 4). Because

ether lipids activate thymic and peripheral semi-invariant natural killer T cells known to be

evolutionarily conserved lipid reactive T cells, we hypothesized that the metabolic enzyme

alkylglycerone phosphate synthase (AGPS), a critical step in the synthesis of ether lipids, could

be aberrantly activated among INR, leading to impaired CD4+ T cell recovery. We therefore

evaluated ether lipid biosynthesis activity after treatment vis a vis viral load level and CD4/CD8

in all patients who naturally control viremia (Elite controllers) or Immunological Responders.

The results revealed a significant negative correlation (p = 8.5025E-7; FDR = 1.1053E-4) be-

tween Ether Lipids (AGPS) and increasing levels of CD4 (from 160 to 1215 mm3) (PostHoc =

160> 1215; 361> 1215), with opposite results observed for increases in viral load (p =

8.5025E-7 –Log10(p) = 4.9429, FDR = 1.1053E-4). In addition, the amount of ether lipids

remains elevated among INR even during periods of undetectable viral load (p = 1.1537E-4,

FDR = 3.5435E-4) when significant declines in SGPP1 (p = 1.0626E-20, FDR = 3.046E-19) and

in β-Oxidation (p = 3.3247E-5,FDR = 1.0212E-4) are also observed. Lipid alterations in HIV-

infected individuals receiving protease inhibitors based antiretroviral treatment determined

Fig 3. Histogram representing the mean Sphingosine-1-Phosphate Phosphatase 1 activity (ratio SGPP1) in different groups.

Sphingolipid metabolism is decreased in HIV patients compared to healthy controls (T Test = 0.012128) particularly in the INR group

after antiretroviral treatment (arrow) as demonstrated by the ANOVA analysis of SGPP1 activity (p = 2.5266E-7, -log10(p) = 6.5975,

FDR = 2.8123E-6). Y Axis is depicting micro molar plasma concentrations. Cont = controls; A1 and A2 are Elite controlers during recent

infection and after one year of enrollment; B1 and B2 = Rapid Progressors during recent infection and after one year of enrollment; C1 and

C2 = Immunologic Responders before treatment and after one year of treatment, D1 and D2 = INR before treatment and after one year of

treatment.

doi:10.1371/journal.pone.0161920.g003
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using untargeted metabolomic profiling of plasma, has been previously linked to markers of

inflammation, microbial translocation, and hepatic function, suggesting that dysregulated

innate immune activation and hepatic dysfunction are occurring among HIV antiretrovirally-

treated individuals[11]. Furthermore, metabolomic profile in HIV-infected children shows

hypoleptinemia and hypoadiponectinemia and is the activation of critical adipose tissue storage

and function in the adaptation to malnutrition[30]. Also, alterations in the Cerebrospinal fluid

metabolome among HIV antiretrovirally-treated individuals harboring HIV-associated neuro-

cognitive disorders reveal that persistent inflammation, glial responses, glutamate neurotoxicity,

and altered brain waste disposal are associated with cognitive alteration[31]. In the current

study, we did not assess markers for microbial translocation or the nutritional status of recruited

patients. We were not able to find any difference in the metabolomics profile between gender

and age, and this may be attributed to the small sample size of this study, since only 3 women

were included and only three individuals were over 50 years old out of 20 participants.

We investigated the presence of a metabolomic signature that can be used to identify

“Rapid Progression” and “INR” at baseline. As seen in S1 Fig, a combination of five different

metabolites and ratios were able to accurately identify Rapid Progressors or INR at baseline

with 88.89% sensitivity, 92.31% specificity, 88.89% positive predictive value and 92.31% nega-

tive predictive value (AUC = 0.871; 95% CI: 0.619–1; p = 0.01). During the discovery phase,

the results repeatedly pointed to metabolites and ratios linked to metabolism affecting acylcar-

nitine hydroxylation and carboxylation as well as the catabolism of branched chain amino

acids, lysine, organic acids, and tryptophan (Table 1). Notably, when elevated, as seen among

Elite controllers, these biochemical markers are highly suggestive of an inborn error of

Fig 4. Histogram representing the mean Ether lipid concentration in different groups. Ether lipid production returns to normal levels

after 1 year of follow-up except in the INR group (arrow, p = 1.1405E-5, -log10(p) = 4.9429, FDR = 9.6586E-5). Y Axis is depicting micro

molar plasma concentrations. Cont = controls; A1 and A2 are Elite controllers during recent infection and after one year of enrollment; B1

and B2 = Rapid Progressors during recent infection and after one year of enrollment; C1 and C2 = Immunologic Responders before

treatment and after one year of treatment; D1 and D2 = INR before treatment and after one year of treatment.

doi:10.1371/journal.pone.0161920.g004
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metabolism named late-onset multiple acyl-coenzyme A dehydrogenase deficiency (MADD,

MIM#231680)[32]. Therefore, we quantified the amount of organic acids, branched chain

amino acids and lysine as a diagnostic approach for MADD[32], in addition to using the ratio

C7-DC/C8 as a proxy to analyze the activity of a MADD related enzyme, electron-transferring

flavoprotein dehydrogenase (ETFDH). The results demonstrated increased levels of alpha ami-

noadipic acid (p = 0.029658, -log10(p) = 1.5279, FDR = 0.078855), lysine (p = 0.02768, -log10

(p) = 1.5578, FDR = 0.075369) and Branch Chain Amino Acids (BCAA) (p = 3.2721E-12,

-log10(p) = 11.485, FDR = 1.6189E-11) among Elite controllers. Moreover, the ETFDH activity

is significantly less active among Elite controllers compared to the other HIV-infected groups

(T-Test = 6.505E-4) and to HIV-uninfected controls (T-Test = 0.0092744). Therefore, possibly

an inborn error of metabolism (MADD) and its reduction of ETFDH activity, which can be

asymptomatic in many individuals, relates to a control of HIV replication and a functional

cure of HIV infection. In order to tease out if any metabolomics profile were related to antire-

troviral use, we compared the profile of samples from individuals under antiretroviral therapy

(last time point of immunological responders and IRN) with samples from other patients/time

points, and we have not been able to identify any specific signature that might be related to

antiretroviral use (data on file).

Suppressing HIV replication using antiretrovirals does not completely abrogate the acceler-

ated tissue and organ damage among HIV-infected individuals compared to HIV-uninfected

controls[33]. The results presented here make it clear that in addition to their utility as reliable

biomarkers, metabolomic profiles of HIV-infected individuals can provide insights into mech-

anisms of HIV-related tissue and organ damage, and further the development of interventional

strategies, such as fixing the decrease levels of dopamine seen among HIV-infected individuals

in this study. Of note, low dopamine levels have been implicated in the mechanisms of psychi-

atric diseases such as depression [34–36] and schizophrenia[37]. As an example and corrobo-

rating the predicative abilities of the metabolic signatures identified in blood collected at

baseline, of patients that years later developed specific HIV phenotypes, a recent study have

been able to identify functional annotations that accurately predicted the inflammatory

response of cells derived from patients suffering from inborn errors of metabolism solely on

their altered membrane lipid composition[25].

We recognize that further external validation with larger groups of patients is necessary to

consolidate the results presented here. Furthermore, metabolites among HIV-infected individ-

uals should also be adjusted by clinical manifestation, biochemistry parameters, cytokines pro-

files, cell activation, apoptosis and translocation markers, etc.

Conclusions

To the best of our knowledge, this is the first description of blood-based markers from metabo-

lomics showing a very high accuracy of discriminating HIV infection between a variety of con-

trols and also have the ability to predict rapid disease progression or poor antiretroviral

immunological response. These data suggest that the metabolites evaluated here can be used as

biomarkers of HIV natural evolution or treatment response and provide insight into the mech-

anisms of the disease.

Supporting Information

S1 Fig. Viral load and CD4+ T cell count linear regression from a period before 2 years of fol-

low up in elite controllers (Panel A) and rapid progressors (panel B).

(TIF)
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S2 Fig. PLS-DA and permutation testing analysis (p<5e-04 after 2000 permutations)

revealing clear differences between patients with HIV and controls.

(TIF)

S3 Fig. Comparison between the multivariate ROC curves obtained in training and valida-

tion sets using the 5 HIV predictive metabolites described in Table 1. The empirical p values

after 100 permutation rounds are also shown.

(TIF)

S1 File. Supplementary tables A and B.

(DOCX)

Acknowledgments

This study was supported with funding from the Fundação de Amparo a Pesquisa do Estado

de São Paulo—São Paulo Research Foundation—(04/15856-9).

Author Contributions

Conceived and designed the experiments: BS LMRJ IDCS RSD.

Performed the experiments: BS MZ.

Analyzed the data: BS MZ MCAS IDCS.

Contributed reagents/materials/analysis tools: IDCS RSD.

Wrote the paper: MCAS HHMT LMRJ IDCS RSD.

References
1. Vergis EN, Mellors JW. Natural history of HIV-1 infection. Infect Dis Clin North Am. 2000; 14(4):809–25,

v-vi. Epub 2001/01/06. PMID: 11144640

2. Olson AD, Meyer L, Prins M, Thiebaut R, Gurdasani D, Guiguet M, et al. An evaluation of HIV elite con-

troller definitions within a large seroconverter cohort collaboration. PLoS One. 2014; 9(1):e86719. Epub

2014/02/04. doi: 10.1371/journal.pone.0086719 PMID: 24489776

3. Gazzola L, Tincati C, Bellistri GM, Monforte A, Marchetti G. The absence of CD4+ T cell count recovery

despite receipt of virologically suppressive highly active antiretroviral therapy: clinical risk, immunologi-

cal gaps, and therapeutic options. Clin Infect Dis. 2009; 48(3):328–37. Epub 2009/01/07. doi: 10.1086/

595851 PMID: 19123868

4. Griffiths WJ, Ogundare M, Williams CM, Wang Y. On the future of "omics": lipidomics. J Inherit Metab

Dis. 2011; 34(3):583–92. Epub 2011/02/15. doi: 10.1007/s10545-010-9274-4 PMID: 21318352

5. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate

potential role for sarcosine in prostate cancer progression. Nature. 2009; 457(7231):910–4. Epub 2009/

02/13. doi: 10.1038/nature07762 PMID: 19212411

6. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al. Quantitative metabolome

profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass

spectrometry. Cancer Res. 2009; 69(11):4918–25. Epub 2009/05/22. doi: 10.1158/0008-5472.CAN-08-

4806 PMID: 19458066

7. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, et al. Metabolomic

profiling to develop blood biomarkers for Parkinson’s disease. Brain. 2008; 131(Pt 2):389–96. Epub

2008/01/29. doi: 10.1093/brain/awm304 PMID: 18222993

8. Munshi SU, Rewari BB, Bhavesh NS, Jameel S. Nuclear magnetic resonance based profiling of bio-

fluids reveals metabolic dysregulation in HIV-infected persons and those on anti-retroviral therapy.

PLoS One. 2013; 8(5):e64298. Epub 2013/05/23. doi: 10.1371/journal.pone.0064298 PMID: 23696880

9. Salas-Salvado J, Garcia-Lorda P. The metabolic puzzle during the evolution of HIV infection. Clin Nutr.

2001; 20(5):379–91. Epub 2001/09/06. doi: 10.1054/clnu.2001.0429 PMID: 11534932

HIV Plasma Metabolomics Biosignature

PLOS ONE | DOI:10.1371/journal.pone.0161920 December 12, 2016 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161920.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161920.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161920.s004
http://www.ncbi.nlm.nih.gov/pubmed/11144640
http://dx.doi.org/10.1371/journal.pone.0086719
http://www.ncbi.nlm.nih.gov/pubmed/24489776
http://dx.doi.org/10.1086/595851
http://dx.doi.org/10.1086/595851
http://www.ncbi.nlm.nih.gov/pubmed/19123868
http://dx.doi.org/10.1007/s10545-010-9274-4
http://www.ncbi.nlm.nih.gov/pubmed/21318352
http://dx.doi.org/10.1038/nature07762
http://www.ncbi.nlm.nih.gov/pubmed/19212411
http://dx.doi.org/10.1158/0008-5472.CAN-08-4806
http://dx.doi.org/10.1158/0008-5472.CAN-08-4806
http://www.ncbi.nlm.nih.gov/pubmed/19458066
http://dx.doi.org/10.1093/brain/awm304
http://www.ncbi.nlm.nih.gov/pubmed/18222993
http://dx.doi.org/10.1371/journal.pone.0064298
http://www.ncbi.nlm.nih.gov/pubmed/23696880
http://dx.doi.org/10.1054/clnu.2001.0429
http://www.ncbi.nlm.nih.gov/pubmed/11534932


10. Sharpstone DR, Murray CP, Ross HM, Hancock MR, Phelan MS, Crane RC, et al. Energy balance in

asymptomatic HIV infection. AIDS. 1996; 10(12):1377–84. Epub 1996/10/01. PMID: 8902067

11. Cassol E, Misra V, Holman A, Kamat A, Morgello S, Gabuzda D. Plasma metabolomics identifies lipid

abnormalities linked to markers of inflammation, microbial translocation, and hepatic function in HIV

patients receiving protease inhibitors. BMC Infect Dis. 2013; 13:203. Epub 2013/05/07. doi: 10.1186/

1471-2334-13-203 PMID: 23641933

12. Grunfeld C, Pang M, Shimizu L, Shigenaga JK, Jensen P, Feingold KR. Resting energy expenditure,

caloric intake, and short-term weight change in human immunodeficiency virus infection and the

acquired immunodeficiency syndrome. Am J Clin Nutr. 1992; 55(2):455–60. Epub 1992/02/01. PMID:

1734684

13. Garcia-Lorda P, Serrano P, Jimenez-Exposito MJ, Fraile J, Bullo M, Alonso C, et al. Cytokine-driven

inflammatory response is associated with the hypermetabolism of AIDS patients with opportunistic

infections. JPEN J Parenter Enteral Nutr. 2000; 24(6):317–22. Epub 2000/11/09. PMID: 11071589

14. Sucupira MC, Sanabani S, Cortes RM, Giret MT, Tomiyama H, Sauer MM, et al. Faster HIV-1 disease

progression among Brazilian individuals recently infected with CXCR4-utilizing strains. PLoS One.

2012; 7(1):e30292. Epub 2012/02/01. doi: 10.1371/journal.pone.0030292 PMID: 22291931

15. Brumme ZL, Goodrich J, Mayer HB, Brumme CJ, Henrick BM, Wynhoven B, et al. Molecular and clinical

epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis.

2005; 192(3):466–74. Epub 2005/07/05. doi: 10.1086/431519 PMID: 15995960

16. de Mendoza C, Rodriguez C, Garcia F, Eiros JM, Ruiz L, Caballero E, et al. Prevalence of X4 tropic

viruses in patients recently infected with HIV-1 and lack of association with transmission of drug resis-

tance. J Antimicrob Chemother. 2007; 59(4):698–704. Epub 2007/03/01. doi: 10.1093/jac/dkm012

PMID: 17327295

17. Goetz MB, Leduc R, Kostman JR, Labriola AM, Lie Y, Weidler J, et al. Relationship between HIV core-

ceptor tropism and disease progression in persons with untreated chronic HIV infection. J Acquir

Immune Defic Syndr. 2009; 50(3):259–66. Epub 2009/02/06. doi: 10.1097/QAI.0b013e3181989a8b

PMID: 19194318

18. Okulicz JF, Marconi VC, Landrum ML, Wegner S, Weintrob A, Ganesan A, et al. Clinical outcomes of

elite controllers, viremic controllers, and long-term nonprogressors in the US Department of Defense

HIV natural history study. J Infect Dis. 2009; 200(11):1714–23. Epub 2009/10/27. doi: 10.1086/646609

PMID: 19852669

19. Hersperger AR, Martin JN, Shin LY, Sheth PM, Kovacs CM, Cosma GL, et al. Increased HIV-specific

CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood. 2011;

117(14):3799–808. Epub 2011/02/04. doi: 10.1182/blood-2010-12-322727 PMID: 21289310

20. Palsson-McDermott EM, O’Neill LA. The Warburg effect then and now: from cancer to inflammatory dis-

eases. Bioessays. 2013; 35(11):965–73. Epub 2013/10/12. doi: 10.1002/bies.201300084 PMID:

24115022

21. Le Stunff H, Giussani P, Maceyka M, Lepine S, Milstien S, Spiegel S. Recycling of sphingosine is regu-

lated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine

kinase 2. J Biol Chem. 2007; 282(47):34372–80. Epub 2007/09/27. doi: 10.1074/jbc.M703329200

PMID: 17895250

22. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0—a comprehensive

server for metabolomic data analysis. Nucleic Acids Res. 2012;40(Web Server issue):W127-33. Epub

2012/05/04.

23. Kilbey A, Terry A, Jenkins A, Borland G, Zhang Q, Wakelam MJ, et al. Runx regulation of sphingolipid

metabolism and survival signaling. Cancer Res. 2010; 70(14):5860–9. Epub 2010/07/01. doi: 10.1158/

0008-5472.CAN-10-0726 PMID: 20587518

24. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory

capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012; 36(1):68–78. Epub

2011/12/31. doi: 10.1016/j.immuni.2011.12.007 PMID: 22206904

25. Koberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, et al. A Conserved Circular

Network of Coregulated Lipids Modulates Innate Immune Responses. Cell. 2015; 162(1):170–83. Epub

2015/06/23. doi: 10.1016/j.cell.2015.05.051 PMID: 26095250

26. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, et al. Promotion of lymphocyte

egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007; 316

(5822):295–8. Epub 2007/03/17. doi: 10.1126/science.1139221 PMID: 17363629

27. Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol.

2007; 8(12):1295–301. Epub 2007/11/21. doi: 10.1038/ni1545 PMID: 18026082

HIV Plasma Metabolomics Biosignature

PLOS ONE | DOI:10.1371/journal.pone.0161920 December 12, 2016 12 / 13

http://www.ncbi.nlm.nih.gov/pubmed/8902067
http://dx.doi.org/10.1186/1471-2334-13-203
http://dx.doi.org/10.1186/1471-2334-13-203
http://www.ncbi.nlm.nih.gov/pubmed/23641933
http://www.ncbi.nlm.nih.gov/pubmed/1734684
http://www.ncbi.nlm.nih.gov/pubmed/11071589
http://dx.doi.org/10.1371/journal.pone.0030292
http://www.ncbi.nlm.nih.gov/pubmed/22291931
http://dx.doi.org/10.1086/431519
http://www.ncbi.nlm.nih.gov/pubmed/15995960
http://dx.doi.org/10.1093/jac/dkm012
http://www.ncbi.nlm.nih.gov/pubmed/17327295
http://dx.doi.org/10.1097/QAI.0b013e3181989a8b
http://www.ncbi.nlm.nih.gov/pubmed/19194318
http://dx.doi.org/10.1086/646609
http://www.ncbi.nlm.nih.gov/pubmed/19852669
http://dx.doi.org/10.1182/blood-2010-12-322727
http://www.ncbi.nlm.nih.gov/pubmed/21289310
http://dx.doi.org/10.1002/bies.201300084
http://www.ncbi.nlm.nih.gov/pubmed/24115022
http://dx.doi.org/10.1074/jbc.M703329200
http://www.ncbi.nlm.nih.gov/pubmed/17895250
http://dx.doi.org/10.1158/0008-5472.CAN-10-0726
http://dx.doi.org/10.1158/0008-5472.CAN-10-0726
http://www.ncbi.nlm.nih.gov/pubmed/20587518
http://dx.doi.org/10.1016/j.immuni.2011.12.007
http://www.ncbi.nlm.nih.gov/pubmed/22206904
http://dx.doi.org/10.1016/j.cell.2015.05.051
http://www.ncbi.nlm.nih.gov/pubmed/26095250
http://dx.doi.org/10.1126/science.1139221
http://www.ncbi.nlm.nih.gov/pubmed/17363629
http://dx.doi.org/10.1038/ni1545
http://www.ncbi.nlm.nih.gov/pubmed/18026082


28. Allende ML, Tuymetova G, Lee BG, Bonifacino E, Wu YP, Proia RL. S1P1 receptor directs the release

of immature B cells from bone marrow into blood. J Exp Med. 2010; 207(5):1113–24. Epub 2010/04/21.

doi: 10.1084/jem.20092210 PMID: 20404103

29. Pereira JP, Xu Y, Cyster JG. A role for S1P and S1P1 in immature-B cell egress from mouse bone mar-

row. PLoS One. 2010; 5(2):e9277. Epub 2010/02/23. doi: 10.1371/journal.pone.0009277 PMID:

20174580

30. Mody A, Bartz S, Hornik CP, Kiyimba T, Bain J, Muehlbauer M, et al. Effects of HIV infection on the met-

abolic and hormonal status of children with severe acute malnutrition. PLoS One. 2014; 9(7):e102233.

Epub 2014/07/23. doi: 10.1371/journal.pone.0102233 PMID: 25050734

31. Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D. Cerebrospinal fluid metabolomics reveals altered

waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS. 2014; 28

(11):1579–91. Epub 2014/04/23. doi: 10.1097/QAD.0000000000000303 PMID: 24752083

32. Grunert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydroge-

nase deficiency. Orphanet J Rare Dis. 2014; 9:117. Epub 2014/09/10. doi: 10.1186/s13023-014-0117-5

PMID: 25200064

33. Torres RA, Lewis W. Aging and HIV/AIDS: pathogenetic role of therapeutic side effects. Lab Invest.

2013; 94(2):120–8. Epub 2013/12/18. doi: 10.1038/labinvest.2013.142 PMID: 24336070

34. Brown AS, Gershon S. Dopamine and depression. J Neural Transm Gen Sect. 1993; 91(2–3):75–109.

Epub 1993/01/01. PMID: 8099801

35. Santiago RM, Barbiero J, Gradowski RW, Bochen S, Lima MM, Da Cunha C, et al. Induction of depres-

sive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hip-

pocampal serotonin. Behav Brain Res. 2014; 259:70–7. Epub 2013/11/05. doi: 10.1016/j.bbr.2013.10.

035 PMID: 24183944

36. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, et al. Dopamine neurons

modulate neural encoding and expression of depression-related behaviour. Nature. 2013; 493

(7433):537–41. Epub 2012/12/14. doi: 10.1038/nature11740 PMID: 23235822

37. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, et al. The role of dopamine in schizo-

phrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psy-

chiatry. 2014; 5:47. Epub 2014/06/07. doi: 10.3389/fpsyt.2014.00047 PMID: 24904434

HIV Plasma Metabolomics Biosignature

PLOS ONE | DOI:10.1371/journal.pone.0161920 December 12, 2016 13 / 13

http://dx.doi.org/10.1084/jem.20092210
http://www.ncbi.nlm.nih.gov/pubmed/20404103
http://dx.doi.org/10.1371/journal.pone.0009277
http://www.ncbi.nlm.nih.gov/pubmed/20174580
http://dx.doi.org/10.1371/journal.pone.0102233
http://www.ncbi.nlm.nih.gov/pubmed/25050734
http://dx.doi.org/10.1097/QAD.0000000000000303
http://www.ncbi.nlm.nih.gov/pubmed/24752083
http://dx.doi.org/10.1186/s13023-014-0117-5
http://www.ncbi.nlm.nih.gov/pubmed/25200064
http://dx.doi.org/10.1038/labinvest.2013.142
http://www.ncbi.nlm.nih.gov/pubmed/24336070
http://www.ncbi.nlm.nih.gov/pubmed/8099801
http://dx.doi.org/10.1016/j.bbr.2013.10.035
http://dx.doi.org/10.1016/j.bbr.2013.10.035
http://www.ncbi.nlm.nih.gov/pubmed/24183944
http://dx.doi.org/10.1038/nature11740
http://www.ncbi.nlm.nih.gov/pubmed/23235822
http://dx.doi.org/10.3389/fpsyt.2014.00047
http://www.ncbi.nlm.nih.gov/pubmed/24904434

