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Abstract: Antioxidants are deemed useful in controlling oxidative stress associated with extrinsic skin
aging and pigmentation disorders. Resveratrol is a polyphenol compound found in many edible
plants such as Vitis vinifera, and its inhibitory effects on the catalytic activity, gene expression, and
posttranslational modifications of tyrosinase, a key enzyme in the melanin biosynthetic pathway,
provide a mechanistic basis for its antimelanogenic effects seen in melanocytic cells, three-dimensionally
reconstituted skin models, and in vivo animal models. As a potent antioxidant and a modulator of
nuclear factor erythroid 2-related factor 2 (Nrf2), and sirtuin 1, resveratrol can also regulate multiple
signaling pathways associated with inflammation and premature aging. Recent clinical studies have
supported the efficacy of resveratrol and its analogs, such as resveratryl triacetate (RTA) and resveratryl
triglycolate (RTG), in human skin lightening and antiaging. These findings suggest that resveratrol and
its analogs are potentially useful as skin lightening and antiaging agents in cosmetics.
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1. Introduction

Human skin is an active organ with various physiological functions [1], and its appearance
contributes to personal beauty and attractiveness to other individuals [2]. Elderly people with skin
that appears younger than how it should look at their actual age are reported to be more satisfied with
their life [3]. The cosmetics industry is expanding because consumers are increasingly demanding
highly active skin care products that can control skin aging and abnormal pigmentation [4,5].

Skin aging can be classified into intrinsic and extrinsic types [4,5]. Intrinsic skin aging occurs
inevitably as a result of physiological changes over time, and it is highly dependent on individual
genetics, ethnicity, anatomy, and hormonal status. Extrinsic skin aging is caused by various environmental
factors and/or health-related factors such as ultraviolet radiation (UV) exposure, pollution, and lifestyle.
Skin aging is accompanied by various invisible physiological dysfunctions and visible morphological
changes [6,7]. As the skin ages, the elasticity decreases, making it appear to be sagging and wrinkled, and
additionally, the skin becomes dry. In aging skin, the number of melanocytes decreases gradually, but the
melanogenic activity can irregularly increase, resulting in an uneven mixture of hypopigmentation and
hyperpigmentation of the skin. Both skin aging and pigmentation are important topics in dermatology
and cosmetology [8,9].

Antioxidants 2019, 8, 332; doi:10.3390/antiox8090332 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0001-9895-2066
http://www.mdpi.com/2076-3921/8/9/332?type=check_update&version=1
http://dx.doi.org/10.3390/antiox8090332
http://www.mdpi.com/journal/antioxidants


Antioxidants 2019, 8, 332 2 of 18

Melanogenesis inhibitors are potentially useful as skin lightening agents [10]. Resveratrol is
a dietary antioxidant contained in various plants such as Vitis vinifera L. [11,12], and evidence supporting
its antimelanogenic activity has accumulated in the last decade [13,14]. As an approach to enhance
the stability and efficacy of resveratrol, our research team developed its analogs, resveratryl triacetate
(RTA) and resveratryl triglycolate (RTG), and undertook human trials to evaluate their skin lightening
efficacy [15–17]. In this review, we scrutinize recent literature on the anti-melanogenic activities and
skin lightening efficacies of resveratrol and its analogs to examine their potential as active ingredients
for skin lightening in the cosmetics industry.

2. Melanin and Skin Pigmentation Disorders

Melanin pigments are classified into three basic types: (1) pheomelanin and (2) eumelanin found
in the skin, hair, iris of eyes, and the stria vascularis of the inner ear, and (3) neuromelanin found in
the brain. In human skin, melanin is produced in a specialized organelle called “melanosome” in the
melanocytes, which localizes in the basal layer of skin epidermis [18]. Mature melanosomes filled with
melanin are transferred from a single melanocyte, via dendrites, to several keratinocytes in the outer
proximity, distributing melanin throughout the epidermis [19]. Melanin is an effective absorbent of UV,
reducing the risk of photoaging and photocarcinogenesis [20], and is a key player in maintaining skin
homeostasis [21].

The number of melanocytes per unit area of skin is similar for most people, but melanocytes of
individuals from different ethnic groups produce variable amounts of pheomelanin and eumelanin,
resulting in a variety of different skin color [21,22]. The distribution of melanin vertically and horizontally
in the skin layers also contributes to skin color [23].

Ethnic differences in skin color are permanently determined mainly by genetic background,
e.g., mutations in the SLC24A5 and SLC45A2 genes encoding the solute carrier proteins [24,25].
The single-nucleotide-polymorphisms in these genes alter the potassium-dependent sodium-calcium
exchanger activity and affect melanosome biogenesis [26,27]. In addition, various non-genetic factors
can affect the expression of melanin-related genes, contributing to acquired skin color changes [28].
Hormonal changes, chronic inflammation, and UV exposure are some examples of pathophysiological
conditions under which disrupted melanogenesis causes hypo- or hyper-pigmentation [29].

3. Regulation of Melanin Synthesis

In the melanin biosynthesis, L-tyrosine or L-3,4-dihydroxyphenylalanine (DOPA) is oxidized to
DOPA quinone by tyrosinase (TYR, monophenol, dihydroxyphenylalanine:oxygen oxidoreductase,
EC 1.14.18.1), and these reactions are followed by multiple polymerization reactions leading to the
synthesis of brownish black eumelanin or reddish-yellow pheomelanin depending on whether thiol
conjugations are adopted or not [30].

Gene expression of tyrosinase and other melanogenic enzymes, such as tyrosinase-related
protein 1 (TYRP1) and dopachrome tautomerase (DCT), and biogenesis of melanosomes are
directed by microphthalmia-associated transcription factor (MITF) in melanocytic cells [18,31].
Proopiomelanocortin-derived peptide hormones such as α-melanocyte stimulating hormone (α-MSH),
β-MSH and adrenocorticotrophic hormone regulate skin pigmentation and inflammation in response to
UV and/or inflammatory stimuli [28,32]. On the binding ofα-MSH to the melanocortin 1 receptor (MC1R)
and subsequent activation of cyclic AMP (cAMP)-producing adenylate cyclase, cAMP-dependent
protein kinase A (PKA) phosphorylates and activates cAMP-responsive element-binding protein
(CREB) transcription factor, which in turn induces MITF gene expression and activation [33]. Other
signaling pathways involving Wnt, glycogen synthase kinase 3β, and mitogen-activated protein
(MAP) kinases can also stimulate MITF [34,35]. MITF is active in its phosphorylated form, but is
degraded following ubiquitination [36]. For a more comprehensive overview of signaling pathways in
melanogenesis that are not covered in this review, please refer to other recent reviews that are more
focused on this topic and contain detailed schematic figures [37,38].
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Unwanted abnormal skin pigmentations are clinically and aesthetically significant conditions that
can cause mental stress and lower the quality of life [39]. Various approaches are used to control hyper-
and hypo-pigmentation in dermatology and cosmetology. Hydroquinone is primarily used to treat
hyperpigmentation in medicine, by itself or in combination with other adjuvants [40]. Various ingredients,
e.g., arbutin and kojic acid are used in the cosmetics industry to control hyperpigmentation [41]. However,
the satisfaction of consumers is low, and they therefore demand more effective and safer skin lightening
ingredients [42,43]. A variety of natural and synthetic compounds that inhibit the catalytic activity of
tyrosinase, which is a key enzyme in the melanin biosynthesis, have previously been reported in the
literature [43,44], but their clinical efficacies are largely unknown.

4. Resveratrol: An Antioxidant with Diverse Bioactivities

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenolic compound found in various plants,
including grapes, berries and peanuts [45,46]. It is believed to act as a phytoalexin in several plants,
providing defense from attack by insects and pathogens [47,48].

As shown in Figure 1, excessive reactive oxygen species (ROS) formation due to internal and
external factors can induce oxidative damages, inflammation, and age-related disorders. Resveratrol can
act as an antioxidant and can modulate the cell functions, signal transduction and gene expression [49].
It scavenges hydroxyl radical (•OH), nitric oxide (NO•), and superoxide anion radical (O2•

−), which
are generated by pulse radiolysis in aqueous media and detected by transient absorption spectra of
reaction intermediates [50]. It also scavenges peroxynitrite (ONOO−), as evidenced by the reduction in
nitration of bovine serum albumin reacted with authentic peroxynitrite in solution [51].
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Figure 1. Potential mechanisms for the antioxidant action of resveratrol. Various internal and external
factors can cause oxidative stress by increasing the formation of reactive oxygen species (ROS) in excess
of cellular antioxidant capacity. Resveratrol, available from various natural sources, can attenuate the
oxidative stress, by scavenging ROS, and/or enhancing cellular antioxidant capacity via nuclear factor
erythroid 2-related factor 2 (Nrf2)-mediated mechanisms. Resveratrol stimulates phosphorylation
of Nrf2 by a phosphoinositide 3-kinases/Akt (protein kinase B)-dependent mechanism, and releases
Nrf2 from Kelch-like ECH-associated protein 1 (Keap1). The nuclear translocation of Nrf2 leads to
the activation of antioxidant response elements (ARE) linked to gene expression of many cellular
antioxidant enzymes. In this way, resveratrol can reduce oxidative damage, premature skin aging,
abnormal pigmentation, and other age-related disorders.
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Transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), plays a crucial role in
regulating cellular redox status [52–54]. Kelch-like ECH-associated protein 1 (Keap1) binds to Nrf2
under normal conditions and promotes Nrf2 degradation through the ubiquitin–proteasome pathway.
Under oxidative stress, conformational changes of either Keap1 or Nrf2 lead to their dissociation.
The free Nrf2 is then translocated into the nucleus and binds to the antioxidant response element (ARE)
of the genes to induce the expression of many downstream genes coding for antioxidant enzymes.
Resveratrol has been shown to activate the Nrf2/ARE pathway by a phosphoinositide 3-kinases/Akt
(protein kinase B)-dependent mechanism [52–54]. It has been shown to induce nuclear accumulation
of Nrf2 and gene expression of reduced nicotinamide adenine dinucleotide phosphate (NADPH)
quinone dehydrogenase 1, glutathione peroxidase 2, and the catalytic and modulatory subunits of
glutamate-cysteine ligase, in the primary culture of normal human keratinocytes [55].

Many biochemical properties of resveratrol are potentially useful in cosmetics as an active
ingredient for preventing skin aging and pigmentation [56–58]. Extrinsic skin aging caused by
environmental factors, such as solar radiation and pollutants, involves changes in the composition
of the dermal extracellular matrix [59,60]. Matrix metalloproteinases (MMPs), which are a family of
zinc endopeptidases, play a key role in the turnover of extracellular matrix macromolecules, such as
type I collagen [61]. Activated MMPs in skin cells can impair the structural integrity of skin and
trigger skin tissue remodeling, resulting in the formation of wrinkles and other phenotypes associated
with skin aging [62]. Oral administration of resveratrol increased the protein levels of Nrf2 and heme
oxygenase 1, while decreasing those of MMP1 and MMP9, in the skin of institute of cancer research
(ICR) mice exposed to UV, and its efficacy was evidenced by the reduction of UV-induced skin edema
and wrinkles in resveratrol treated animals [63].

Resveratrol directly or indirectly activates sirtuin 1, an NAD-dependent deacetylase, that is
involved in metabolic regulation, stress response, and aging processes [64,65]. Resveratrol inhibits
tumor necrosis factor (TNF)-α–induced expression of inflammatory cytokines and MMPs by a sirtuin
1-dependent mechanism [66,67]. It also attenuates the expression of inflammatory mediators induced
by UV or airborne particulate matter [68–70]. Resveratrol can also directly inhibit the activity of
MMPs [71].

5. Resveratrol as a Tyrosinase Inhibitor

Various stilbenoids, including resveratrol, inhibit mushroom tyrosinase activity [72–74].
Oxyresveratrol has been shown to exhibit more potent inhibition of L-tyrosine oxidation catalyzed
by murine tyrosinase (IC50, 52.7 µM) than resveratrol (IC50 > 100 µM). Piceatannol has been shown
to be a very potent inhibitor of mushroom tyrosinase (IC50, 1.53 µM), compared to kojic acid (IC50,
50.1 µM) and resveratrol (IC50, 63.2 µM) [75]. Oxyresveratrol is found in many plants, such as Morus
alba, and shows antioxidant activity mitigating oxidative stress and inflammatory reactions [76,77].
Anthraquinones from Polygonum cuspidatum, such as physcion, emodin, citreorosein and anthraglycoside
B) have also been shown to be more potent inhibitors of mushroom tyrosinase than resveratrol and piceid
(resveratrol 3-β-mono-D-glucoside) [78]. Gnetin C, a resveratrol dimer isolated from melinjo (Gnetum
gnemon) has been shown to be as effective as resveratrol with regard to its inhibitory activity against
mushroom tyrosinase, but the former has a much weaker inhibitory activity against murine tyrosinase
than the latter [79]. Vitis vinifera extracts containing gallic acid, chlorogenic acid, epicatechin, rutin, and
resveratrol show competitive inhibition against mushroom tyrosinase activity [80]. Collectively, these
studies suggest that resveratrol is a modest, and not very potent, inhibitor of mushroom tyrosinase.

Although mushroom tyrosinase, which is commercially available in a purified form, has been
widely used as a substitute for human tyrosinase, it is significantly different from human tyrosinase in
terms of amino acid sequence [81,82]. Tyrosinases derived from different organisms have been shown
to be inhibited to markedly different extents by a single inhibitor [83,84]. Thus, it is unreasonable
to expect that these mushroom tyrosinase inhibitors would be effective for human skin lightening
through the same action without direct evidence.
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Our team has developed a cell line transformed from human embryonic kidney (HEK) 293 cells
to constitutively express human tyrosinase [85,86]. Using the cells as a source of human tyrosinase,
various compounds and plant extracts were tested for their inhibitory effects on human tyrosinase
activity [85–88]. As a result, several compounds, such as p-coumaric acid, were found to strongly
inhibit human tyrosinase [85,89]. Resveratrol has been shown to be an active component of Vitis
vinifera extracts that inhibit human tyrosinase activity [87]. Resveratrol inhibited human tyrosinase
activity more strongly (IC50, 0.39 µg mL−1) than p-coumaric acid (IC50, 0.66 µg mL−1) and arbutin
(IC50 > 100 µg mL−1). Resveratrol had much lower effect on mushroom tyrosinase activity than on
human tyrosinase activity.

Resveratrol can be biotransformed by mushroom tyrosinase to its oxidized form, which is a more
powerful inhibitor of mushroom tyrosinase than resveratrol itself [90–92]. The reaction products of
resveratrol by tyrosinase were more toxic than resveratrol itself [93]. Oxyresveratrol is also a substrate
of mushroom tyrosinase [94]. Thus, it is necessary to study whether the same mechanism also applies
to human tyrosinase. The potential cytotoxic effects of resveratrol and its metabolites would be an
important topic for future studies, keeping in mind the recent social impacts observed in the case of
rhododendrol, another depigmenting agent [95].

6. Other Antimelanogenic Mechanisms of Resveratrol and Its Analogs

Although resveratrol inhibited tyrosinase activity less effectively than oxyresveratrol in vitro,
the former inhibited cellular melanogenesis more effectively than the latter [96]. When resveratrol was
used in combination with 4-n-butyl resorcinol or oxyresveratrol, they synergistically inhibited tyrosinase
activity and tyrosinase gene expression [97,98]. Various chemical modifications have been attempted
to enhance the therapeutic potential of resveratrol [99,100]. Some chemically synthesized resveratrol
analogs showed more potent inhibition of tyrosinase activity, tyrosinase gene expression, and/or cellular
melanin synthesis than resveratrol demonstrated [101–104]. Semi-synthetic derivatives from resveratrol
showed altered inhibition against tyrosinase activity and cellular melanin synthesis [96,105–107].

MITF binds to the E-box (CAYRTG) and M-box (TCAYRTG or CAYRTGA) sequences in the
promoter regions of target genes such as MC1R, tyrosinase, TYRP1 and DCT, and transactivates these
genes [108]. Resveratrol inhibited MITF promoter activity induced by UV or forskolin in B16 cells [109].
Resveratrol, resveratryl triacetate (RTA), and resveratryl triglycolate (RTG) lowered the mRNA and
protein levels of tyrosinase, DCT and MITF in human epidermal melanocytes [96,106]. Resveratrol and
its trimethyl ether decreased the tyrosinase protein level and tyrosinase activity in B16 cells stimulated
by α-MSH [107]. Therefore, resveratrol and its analogs are assumed to reduce the gene expression of
MITF and downstream melanogenic enzymes by inhibiting the cAMP-dependent pathway.

Resveratrol activates sirtuin 1, which in turn activates transcription factors p53 and forkhead
box O (FOXO) [110]. Resveratrol has been shown to increase both sirtuin 1 and FOXO3a in human
melanocytes [111]. The inhibitory effects of resveratrol on the expression of MITF and tyrosinase were
not affected by sirtuin 1 inhibitor but was reduced by c-Jun N-terminal kinase (JNK) inhibitor that also
modulates FOXO3a. Thus, although additional direct evidence is needed, it has been suggested that
resveratrol can confer the antimelanogenic activity through a FOXO3a-dependent mechanism [111].
Resveratrol is also known as a potent inducer of autophagy [112], which is a lysosome-dependent
mechanism for removing misfolded or damaged proteins or unnecessary organelles [113]. Resveratrol
increased expression levels autophagy-related gene 5 (ATG5) while decreasing MITF, tyrosinase, and
TYRP1 in Melan-A cells stimulated by α-MSH [114]. Small interfering RNA-mediated depletion of
ATG5 rescued the expression of MITF, tyrosinase, and TYRP1 in the presence of resveratrol, indicating
that autophagy is associated with the antimelanogenic effects of resveratrol.

Post-translational modifications of tyrosinase and other melanogenic enzymes are required for full
activation [115,116]. Normal human melanocytes contain mainly the mature, Golgi-processed form of
tyrosinase, but the cells treated with resveratrol contain mostly endoplasmic reticulum (ER)-retained,
immature tyrosinase. This indicates that resveratrol can disrupt trafficking of tyrosinase from the
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ER to the Golgi and maturation of tyrosinase [117]. Thus, resveratrol and its analogs are considered
to regulate cellular melanin synthesis by multiple mechanisms, including the inhibition of catalytic
activity, gene expression, and posttranslational maturation of tyrosinase in melanocytes. The potential
anti-melanogenic action mechanism of resveratrol is shown in Figure 2.
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Figure 2. Potential mechanisms for the antimelanogenic action of resveratrol. On the binding of
α-melanocyte stimulating hormone (α-MSH) to the melanocortin 1 receptor (MC1R) and subsequent
activation of cyclic AMP (cAMP)-producing adenylate cyclase (AC), leads to the phosphorylation of
cAMP-responsive element-binding protein (CREB) by protein kinase A. Phosphorylated CREB enters
nucleus and binds to cAMP response elements (CRE) on the promoter of its target genes including
microphthalmia-associated transcription factor (MITF), activating their gene expression. Resveratrol can
inhibit the gene expression of MITF, tyrosinase, tyrosinase-related protein 1 (TYRP1) and dopachrome
tautomerase (DCT) stimulated by α-MSH or forskolin, a director activator of AC, which is mediated by
a cAMP-dependent mechanism. Resveratrol can suppress MITF activation by a FOXO3a-dependent
mechanism. Resveratrol can also stimulate autophagy-related gene 5 (ATG5) expression inducing
autophagy, and reduce the protein levels of MITF and tyrosinase. The antimelanogenic enzymes such as
tyrosinase undergo posttranslational modifications in the endoplasmic reticulum (ER) and Golgi, and
resveratrol can inhibit these processes. Resveratrol can also inhibit enzyme reactions of tyrosinase
involved in the synthesis of eumelanin and pheomelanin in the melanosomes. Although the synthetic
route of pheomelanin is simply drawn here, it is very complicated and involves many enzymes and
metabolites. There are many other pathways that are involved in the regulation of cellular melanin
synthesis, but are not covered in this figure.

Resveratrol has been reported to rather increase melanin synthesis in melanoma cells [118].
In this study, resveratrol inhibited cell proliferation and increased melanin synthesis, which was
accompanied by increased tyrosinase activity. Phosphorylation of CREB increased and phosphorylation
of extracellular signal regulated kinase (ERK) decreased, but MITF remained unchanged. Because
tyrosine protein levers were not shown in this study, the precise mechanism for this phenomenon is
currently uncertain.

7. Hypopigmentation Effect of Resveratrol

In vivo experiments and human tests on the skin lightening and antiaging activity of resveratrol and
its analogs are listed in Table 1. In dark-skinned Yucatan swine, topical treatment with 1% resveratrol
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twice a day, 5 days per week, for 8 weeks resulted in visible skin lightening without signs of irritation or
other undesired effects [109]. In another experiment using light-skinned Yucatan swine, skin tanning was
induced by exposing them to one minimal erythema dose (MED) of UVB, once per day, on three alternate
days. Topical treatment with 1% resveratrol once daily for 2 weeks, immediately after each UVB exposure
and on non-UVB exposure days, reduced the UVB-induced pigment deposition in Yucatan swine.

Lee et al. have tested the hypopigmentation effect of resveratrol in brownish guinea pigs [13,119,120].
In one study [13], pigmentation was induced by exposing the dorsal skin of guinea pigs to UVB (λmax,
310 nm) at 390 mJ cm−2 thrice per week, for two weeks, and thereafter, 1% resveratrol solution was
topically applied every day to these animals for 2 weeks. As a result, UVB exposure increased the
pigment index from 40.7 ± 1.6 in the base-line group to 62.6 ± 2.3 in the vehicle control group and
53.4 ± 1.0 in the 1% resveratrol treatment group, indicating a hypopigmentation effect of resveratrol.
Histological data suggested that resveratrol reduced melanin synthesis by decreasing DCT among the
melanogenic enzymes. In subsequent studies, resveratrol-enriched rice extract and the same extract
encapsulated in nanoparticles were shown to exhibit hypopigmentation effects in guinea pigs [119,120].

Table 1. In vivo and clinical studies on the skin lightening efficacy of resveratrol and its analogs.

Literature Tests Models Treatments Assessments

Lin et al., 2002 [109] Yucatan swine
Natural pigmentation

1% Resveratrol Visual Evaluation
UV-induced tanning

Lee et al., 2014 [13] Guinea pigs UV-induced tanning 1% Resveratrol
Instrumental methods

Visual Evaluation

Wu et al., 2013 [14] Humans UV-induced tanning 1% Resveratrol Instrumental methods

Ryu et al., 2015 [15] Humans
UV-induced tanning

0.4% RTA Instrumental methods
Natural pigmentation

Boo, 2016 [16] Humans UV-induced tanning 0.8% RTA
Instrumental methods

Visual Evaluation

Ryu et al., 2018 [121] Humans Natural pigmentation 0.8% RTA Instrumental methods

Ryu et al., 2018 [17] Humans UV-induced tanning 0.4% RTG
Instrumental methods

Visual Evaluation

Abbreviations: RTA, resveratryl triacetate; RTG, resveratryl triglycolate.

8. Human Skin Lightening Efficacy of Resveratrol

The effects of resveratrol against skin pigmentation and sunburn caused by repetitive UV irradiation
were examined in a human trial employing 15 healthy volunteers [14]. Six sites on the non-exposed dorsal
skin of each volunteer were exposed to solar simulating UV at a dosage of 1.5 MED for 4 consecutive
days, and different test materials were topically applied immediately after each UV exposure.

The skin color can be expressed using the Commission Internationale de l’Eclairage Lab color space
composed of the degree of lightness (L*), degree of green to red (a*), and degree of yellow to blue
(b*) [122]. In this study, the skin color parameters, L*, a*, and b were measured using Spectrophotometer®

CM-2500d (Minolta, Tokyo, Japan) [122].
Four days after UV irradiation, L* values decreased from 63.89 to 55.91 in the control group, and

from 64.20 to 59.3 in the 1% resveratrol treatment group, indicating reduced tanning in the treatment
group. The a* values increased from 7.62 to 16.29 in the control group, and from 7.51 to 13.43 in the
treatment group, indicating that sunburn was reduced in the treatment group. Histological analysis
supported that UV-induced sun burn and sun tan were reduced by resveratrol treatment.
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9. Human Skin Lightening Efficacy of Resveratryl Triacetate (RTA)

In cosmetics, not only the efficacy and safety of the active ingredient, but also its stability, are
important considerations; however, resveratrol is not stable enough to be used in cosmetics [123,124].
Various approaches have been developed to enhance its stability in cosmetic formulations [123,125].
As an approach to improve the stability of resveratrol as an active ingredient in cosmetics, resveratrol
was acetylated to RTA as a “prodrug” form [96,126]. RTA showed higher stability in solutions, lower
cytotoxicity, and similar inhibitory effect on melanin synthesis in cultured melanocytes, as compared
to resveratrol itself [96]. It is assumed that the acetylated compound may be converted to resveratrol
by the esterase enzymes in cells.

The safety and skin lightening efficacy of RTA were investigated in human studies [15,16].
The primary skin irritation potentials of resveratrol and RTA were assessed at 0.1% and 0.5% concentrations
in thirty three healthy women [15], via a closed patch testing method [127,128]. Inert Quadrate (IQ)
chambers loaded with a test material were applied to the test sites on the dorsal skin of each volunteer
for 48 h, and the occurrence of adverse skin reactions was examined at 30 min and 24 h after the patch
was removed from the skin; the overall irritation potentials were graded using the criteria described by
Frosch and Kligman, with a slight modification [129,130]. On testing, resveratrol was observed to induce
weak skin irritation at 0.5%, whereas RTA did not induce any adverse skin reactions [15].

The human skin lightening efficacy of RTA was evaluated [15] using the artificial tanning and
natural hyperpigmentation models [131,132]. The color parameters, L*, a*, and b were measured using
Spectrophotometer® CM-2500d (Minolta) [122,133]. The skin color was represented by the individual
typology angles (ITA◦) which were calculated using the equation: ITA◦ = (arc tangent [(L* − 50)/b*])
180/3.14159 [134]. The higher the ITA◦ value, the lighter the skin color.

In all, 22 women with Fitzpatrick skin types III or IV were enrolled in the test using the artificial
tanning model. Skin tanning was induced by exposing two test sites (15 mm × 15 mm) on the forearms
of each volunteer to UV from a solar simulator at 2 MED and waiting for 7 days. The volunteers were
randomly divided into two groups, and depending on the group, each of the two test sites in each
volunteer received either the test product containing 0.4% RTA or the control product, twice daily,
for 8 weeks.

As tanned skin underwent the depigmentation process, the ITA◦ increased continuously for 8
weeks, in both test and control groups. The application of the test and control products for 8 weeks
increased the ITA◦ by 17.60% and 13.81%, respectively, and the difference was statistically significant
(p < 0.05). In another study using the natural hyperpigmentation model, 21 women were enrolled.
The volunteers were divided into two groups and depending on the group, the right or left sides of the
face of each volunteer received either the test product containing 0.4% RTA or the control product,
twice daily, for 8 weeks. The pigmentation intensity of the highly pigmented area decreased by 2.67%
and 1.46% in the test and control groups, respectively, and the difference was statistically significant
(p < 0.05). These studies supported the human skin lightening efficacy of topically applied 0.4 % RTA.

The human skin lighting efficacy of 0.8% RTA was further examined using the artificial UV-induced
tanning model in a separate study [16]. In this study, 23 women volunteers were enrolled, and the
artificially tanned forearm skins of each volunteer received either the test product containing 0.8% RTA
or the control product, twice daily, for 8 weeks. As an index of skin color, ITA◦ increased continuously
for 8 weeks in both the test and control groups. The test product containing 0.8% RTA and control
products increased ITA◦ by 20.38% and 16.31% after 8 weeks, respectively, indicating that depigmentation
was faster in the test group than in control group. Visual assessment of the pigmentation degree was
conducted by two experienced examiners, using a pigmentation index from 0 (bright and transparent) to
9 (dark and dull), in increments of 0.5. The pigmentation degree had decreased continuously for 8 weeks
in both test and control groups. The pigmentation degrees decreased in the test and the control group
by 35.79% (from 7.07 to 4.54) and 30.93% (from 7.08 to 4.89) after 8 weeks, respectively. The intergroup
difference was statistically significant (p < 0.05). Therefore, 0.8% RTA-containing cosmetic products can
confer skin lightening efficacy in humans.
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10. Human Skin Antiaging Efficacy of Resveratryl Triacetate (RTA)

The human skin antiaging efficacy of 0.8% RTA-containing cream was examined in a study
involving instrumental analyses of facial skin wrinkles, sagging, elasticity, dermis denseness, moisture,
and brightness [121]. In all, 20 women volunteers were enrolled in the study and they used the test
product containing 0.8% RTA on their face twice daily (morning and evening) for 8 weeks.

The skin wrinkles around crow’s feet were evaluated using a three-dimensional image analyzing
system (PRIMOS® Premium, GFMesstechnik GmbH, Teltow, Germany) [135]. The sagging of cheek
was evaluate by analyzing a Moire pattern image, taken by F-ray® (Beyoung, Seoul Korea), using
Image-pro® plus (MediaCybernetics, Rockville, MD, USA) [136]. The elasticity of cheek skin was
evaluated by a suction method using Cutometer® MPA580 (Courage + Khazaka electronic GmbH,
Cologne, Germany) [137]. The denseness of cheek dermis was evaluated using ultrasound images
generated by DermaLab® Series SkinLab Combo (Cortex Technology, Hadsund, Denmark) [138,139].
The moisture content of cheek skin was measured using Corneometer® CM 825 (Courage + Khazaka
electronic GmbH) [140].

Compared with the baseline values before treatments, total wrinkled area decreased (5.12%,
4.86%), total wrinkle volume decreased (10.53%, 8.41%), sagging decreased (4.69%, 5.91%), elasticity
increased (2.84%, 3.98%), denseness increased (15.65%, 20.80%), moisture content increased (5.83%,
7.37%), lightness (L* value) increased (0.79%, 1.07%), and ITA◦ (a skin color index) increased (5.43%,
4.95%) after 4 and 8 weeks of using the test product. Changes of all these parameters were statistically
significant (p < 0.05), and no adverse skin reactions were observed in any participant during the entire
study period. This study supports the skin anti-aging efficacy of RTA, although other ingredients
contained in the test products may also have contributed to the efficacy.

11. Human Skin Lightening Efficacy of Resveratryl Triglycolate (RTG)

RTG is a new hybrid compound between resveratrol and glycolic acid [106]. RTG is different
from RTA, in that resveratrol is chemically coupled to glycolic acid in RTG instead of being coupled
to acetic acid in RTA. Glycolic acid is a kind of α-hydroxy acid widely used in skin care products for
various purposes including chemical peeling of dull skin [141,142]. Compared with RTA that is very
hydrophobic, RTG is moderately soluble in water because of the polar hydroxyl group. The resveratryl
moiety of RTG was expected to reduce the production of new melanin and the glycolic moiety was
expected to remove the keratin that previously accumulated melanin. RTG inhibited tyrosinase activity
in vitro and MITF and tyrosine gene expression, suppressing cellular melanin synthesis as effectively
as, or slightly more effectively than, resveratrol and RTA [106].

Primary skin irritation potential of RTG was tested in a human study where 30 healthy women
participated [17]. The test product contained 0.4% RTG and the control product comprised the same
formula without RTG. In patch testing, neither of the control product nor the test product containing
0.4% RTG induced any adverse skin reactions in any participant.

The depigmenting efficacy of RTG was tested in a human trial using a UV-induced artificial
tanning model [17]. In this trial, 22 women volunteers with Fitzpatrick skin type III or IV were included.
Tanning was induced by UV exposure of the designated skin sites in the forearms of each volunteer
and waiting for 7 days, and thereafter the test product containing 0.4% RTG or the control product
was applied at 20 µL cm−2 twice daily for 8 weeks. Melanin index, the absorptivity of the pigments at
specific wavelengths, was measured using Mexameter® MX18 (Courage + Khazaka electronic GmbH),
in which the probe emits 3 specific light wavelengths (green: λ = 568 nm, red: λ = 660 nm, and infrared:
λ = 880 nm), and a receiver measures the light reflected by the skin.

The melanin index decreased from 205 to 163 in the test group and to 172 in the control group,
and the difference between these two groups was statistically significant (p < 0.05). Analysis of ITA◦

as a skin color index showed that the test product containing 0.4% RTG and the control product
increased ITA◦ by 24.42% and 17.81% in 6 weeks and by 28.96% and 22.06% in 8 weeks, respectively.
The intergroup differences at each time point were statistically significant (p < 0.05). The pigmentation
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degrees visually assessed by two experienced examiners were also supportive for the clinical efficacy of
RTG. The test product containing 0.4% RTG and the control product decreased the pigmentation degree
by 31.9% (from 7.05 to 4.98) and 29.4% (from 7.11 to 4.84) in 8 weeks, respectively. The intergroup
difference was statistically significant (p < 0.05).

12. Conclusions and Perspectives

In conclusion, the results from in vivo studies or clinical studies are supportive of the human
skin lightening and/or antiaging efficacies of resveratrol and its analogs. In animal studies and in
clinical trials, 1% resveratrol has been shown to reduce pigmentation induced by UV when it is
applied topically to the skin. Resveratrol is considered to attenuate cellular melanin synthesis through
inhibition of tyrosinase catalytic activity, and inhibition of processes such as tyrosinase gene expression,
tyrosinase protein maturation, and autophagy. Although there is a lack of direct evidence, resveratrol
might interfere with melanosome biogenesis because it reduced the activity of MITF, which is a key
regulator of melanosome biogenesis as well as melanogenesis.

The resveratrol analogs, RTA and RTG, also showed human skin lightening effects in clinical
trials at the tested concentrations (04% RTA, 0.8% RTA and 0.4 % RTG). Moreover 0.8 % RTA showed
antiaging effects improving various skin parameters such as facial skin wrinkles, sagging, elasticity,
dermis denseness, moisture, and brightness. Comparison of separate clinical studies with regard to
the skin lightening efficacies of RTA and RTG indirectly suggests that the efficacy of RTG is slightly
superior to that of RTA. RTA and RTG might act as “prodrugs” of resveratrol, and their skin lightening
efficacies would depend on their penetration through the skin and biotransformation to resveratrol
in cells.

Based on the current understanding, resveratrol can whiten human skin and retard skin aging by
a number of mechanisms: (1) direct inhibition of the catalytic activity of human tyrosinase, (2) suppression
of gene expression and maturation of tyrosinase and other melanogenic enzymes, (3) direct scavenging
of ROS and/or inhibition of their production, (4) enhancement of cellular antioxidant capacity through
Nrf2-dependent mechanisms, (5) attenuation of inflammatory responses of cells, and (6) direct inhibition
of the catalytic activity of MMPs. This concept is graphically depicted in Figure 3.
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Figure 3. Potential mechanisms for skin lightening and antiaging actions of resveratrol. A variety
internal and external factors can induce hormonal changes and oxidative stress, stimulating multiple
signaling pathways linked to gene expression of melanogenic enzymes and inflammatory mediators.
α-Melanocyte stimulating hormone (α-MSH) stimulates gene expression of melanogenic enzymes
by microphthalmia-associated transcription factor (MITF)-dependent mechanism. Resveratrol can
attenuate oxidative stress of cells either by decreasing levels of reactive oxygen species (ROS), or by
increasing antioxidant capacity via nuclear factor erythroid 2-related factor 2 (Nrf2). It can suppress the
expression of inflammatory cytokines and matrix metalloproteinases (MMPs) by directly or indirectly
activating sirtuin 1, an NAD-dependent deacetylase. It can directly inhibit the catalytic activity of
MMPs. It can inhibit tyrosinase gene expression by multiple mechanisms involving either the activation
of forkhead box O 3a (FOXO3a) or autophagy. Further, it can inhibit tyrosinase protein maturation,
and/or tyrosinase catalytic activity. Topical application of resveratrol or its analogs, such as resveratryl
triacetate (RTA) and resveratryl triglycolate (RTG), can reduce pigmentation and/or skin aging processes.
Metabolites of resveratrol may have negative or positive effects on skin health before they are excreted
from the body.

Future studies will need to technically improve the clinical efficacy of resveratrol and its analogs
to be more satisfactory to the consumers of cosmetics, notably by increasing their content in cosmetic
products and by enhancing their skin permeation via optimized formulations. Higher efficacy may be
expected from a combinatory use of them with other active ingredients modulating different targets
in the skin pigmentation process, such as intercellular melanosome transfer from melanocytes to
keratinocytes [143–145]. Future studies are also needed to critically examine the safety of resveratrol,
its analogs, and their metabolites.
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