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Palliative Care & Social Practice

Novel drug treatments for pain in advanced 
cancer and serious illness: a focus on 
neuropathic pain and chemotherapy-induced 
peripheral neuropathy
Mellar P. Davis

Abstract: Drugs that are commercially available but have novel mechanisms of action 
should be explored as analgesics. This review will discuss haloperidol, miragabalin, 
palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol 
is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors 
act as a chaperone protein, which downmodulates opioid receptor activities and opens 
several ion channels. Clinically, there is only low-grade evidence that haloperidol improves 
pain when combined with morphine, methadone, or tramadol in patients who have cancer, 
pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid 
approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, 
patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life 
on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA 
belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury 
antagonist amides), which have a sense role in modulating numerous biological processes 
in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic 
inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA’s 
effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an 
alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug 
Administration approved for attention deficit hyperactivity disorder in children, Tourette’s 
syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation 
at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), 
which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron 
membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill 
patients with poorly controlled symptoms, in particular pain and agitation.
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Review

Introduction
The improvement in life expectancy of patients 
with cancer and the common use of chemother-
apy agents such as paclitaxel and oxaliplatin for 
lung, breast, pancreatic, colorectal, esophageal, 
and prostate cancer has led to a significant preva-
lence of neuropathic pain among patients living 
with cancer or in cancer survivorship.1 
Bortezomib, Revlimid, and vinca alkaloids cause 

neuropathic sensory and motor symptoms in 
patients treated for hematologic malignancies.2–6 
In addition to chemotherapy, other anti-cancer 
treatments, including surgery and radiation ther-
apy, may cause chronic pain, with a subset of 
patients experiencing neuropathic pain. Since 
cancer occurs in an older population, many 
patients have comorbid illnesses such as diabetes 
and may have had neuropathic pain before their 
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cancer, which is worsened with treatment. 
Effective analgesics for cancer-induced neuro-
pathic pain (CIPN) are few and far between. 
Duloxetine is the only analgesic that has demon-
strated benefit in a randomized controlled trial. 
Gabapentin is ineffective.7 Pregabalin lacks a ran-
domized trial that tests its benefit against a 
placebo.

Neuropathic pain, in general, is difficult to treat.8 
There are a limited number of analgesic options 
outside of effective opioids. Tricyclic antidepres-
sants and gabapentinoids are the main class of 
adjuvants used to treat neuropathic pain. Tricyclic 
antidepressants have significant side effects, and 
gabapentin and pregabalin potentiate the respira-
tory depression and sedation associated with opi-
oids.9–13 Gabapentinoids are subject to abuse 
potential and have a “drug-liking” effect. Novel 
agents with distinctly different mechanisms of 
action are needed and can genotype the mecha-
nism causing the pain. Trials to validate may 
require a transition to mechanistically informed, 
personalized, and stratified trials.14

Recent studies based upon preclinical animal 
models have used established medications with 
novel targets as analgesics for neuropathic pain, 
including CIPN. These drugs are haloperidol, 
miragabalin (available in Japan). palmitoylethan-
olamide (PEA), and clonidine. Each of these 
commercially available medications has a target 
that causes improved pain behaviors in animals 
(antinociception) or reduces pain severity in 
humans (analgesia). Miragabalin has analgesic 
mechanisms similar to gabapentinoids but has a 
distinctly different interaction with voltage-gated 
calcium channels that improve gabapentinoid 
responses and reduce side effects.

Neuropathic pain, which arises from damage to 
somatosensory neurons, is clinically manifested 
by allodynia (pain from innocuous stimuli), 
hyperalgesia (exaggerated response to usually 
painful stimuli), and spontaneous or continu-
ous pain described as paresthesia or dysesthe-
sia, or lightening-like unprovoked pain.15–17 
The correlation between animal pain behaviors 
and subjective pain responses in clinical trials is 
imperfect and sometimes leads to disappointing 
results in clinical trials. Each drug discussed in 
this review requires more rigorous clinical trial 
data before being adopted into standard 
practice.

Haloperidol

Introduction
Physicians know haloperidol as a classic antipsy-
chotic that binds to D2 (dopamine) receptors, 
which are of questionable benefit in treating delir-
ium but are an effective antiemetic.18,19 Very few 
are aware that haloperidol is a high-affinity irre-
versible sigma-1 receptor antagonist with analge-
sic potential.20–24

Mechanism of action
Sigma-1 receptors are a unique class of receptors 
distinct from opioid receptors, single transmem-
brane receptors on the endoplasmic reticulum 
(ER) on mitochondria-associated membranes.25 
In specific neurons (such as those at the spinal 
cord), sigma-1 receptors are clustered at ER 
membranes that abut postsynaptic plasma mem-
branes.26 Under stress and neuropathic injury, 
sigma-1 receptors act as a chaperone protein, 
which downmodulates opioid receptor activities 
and opens several ion channels, exerting a role in 
pain transmission.27–31 This presents a target to 
treat neuropathic pain.32 Sigma-1 receptors are 
over-expressed in neuropathic pain and, when 
tonically active, are “anti-opioid” for mu (MOR) 
and kappa (KOR) receptors.21,22,33,34 Activation 
of sigmoid-1 receptors reduces pain thresholds 
under pathologic conditions such as nerve injury 
but not in normal circumstances.35 Hence, 
sigma-1 receptor antagonists are unlikely to be 
effective in treating acute pain, but multiple pre-
clinical studies have demonstrated that haloperi-
dol reduces neuropathic pain behaviors in 
animals.28,36–42

Preclinical studies
Chemotherapeutic-induced neuropathic pain is 
reported to reduce sigma-1 receptor levels in the 
spinal cord. Paclitaxel-exposed Chinese hamster 
ovarian cells caused overexpression of sigma-1 
receptors in clusters. In one study, the sigma-1 
receptor agonist SA4503 inhibited neuropathy 
induced by oxaliplatin and paclitaxel. In a second 
study, a sigma-1 receptor antagonist given before 
paclitaxel reduced neuropathic pain in animals 
by preventing the upregulation of extracellular 
signal-regulated kinases.43,44 Fluvoxamine, a 
sigma-1 receptor inducer and agonist, signifi-
cantly reduced paclitaxel neuropathic pain and 
neurotoxicity.45–47 Furthermore, activation of the 
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sigma1R is necessary for developing the sensory 
nerve mitochondrial damage and neuropathic 
pain caused by paclitaxel.48 More preclinical 
studies are needed to explain the opposite find-
ings found in these preclinical studies.

Preclinical studies: Comparison with 
gabapentin and morphine
Haloperidol is a very potent noncompetitive 
sigmoid-1 receptor blocker that has been shown 
to enhance gabapentin opioid analgesia in pre-
clinical models and case studies.36,38,49–56 In a 
chronic constrictive injury neuropathic model, 
male Wistar rats responded better to haloperi-
dol than gabapentin. The combination of 
gabapentin and haloperidol produced synergis-
tic antinociception.49 Haloperidol does not 
increase pain response latencies in normal rats 
but extends latencies to tail-flick responses in 
neuropathically injured animals.57 Haloperidol 
was given before morphine in animal models; 
dose-dependently improves the antinociceptive 
effect of morphine and reduces physical 
dependence.36,58

Clinical studies
Clinically, there is only low-grade evidence that 
haloperidol improves pain when combined with 
morphine, methadone, or tramadol in patients 
who have cancer, pain from fibrosis, radiation 
necrosis, or neuropathic pain.51,55,56,59,60 Two 
clinical studies confirmed the lack of benefit of 
haloperidol when treating acute pain.61,62

Evidence of potential clinical benefits 
from other sigma-1 receptor blockers for 
neuropathic pain
There is sufficient preclinical evidence and some 
low-grade clinical experience to suggest that 
haloperidol may be an effective analgesic for 
neuropathic pain as an adjuvant to opioid ther-
apy. MR309, a novel selective sigma-1 receptor 
ligand, reduced the proportion of patients with 
severe chronic neuropathy (3.0% vs 18.2% with 
placebo; p = 0.046). The total amount of oxalipl-
atin delivered was greater in the active arm, 
however. In an animal model, the sigma-1 recep-
tor antagonists BD-1063 or S1RA given 30 min 
before each paclitaxel dose prevented the devel-
opment of cold and mechanical allodynia in 
mice.

Rationale for haloperidol in chemotherapy-
related neuropathy
The acute administration of both sigma-1 recep-
tor antagonists dose-dependently reversed both 
types of paclitaxel-induced chronic allodynia. 
Therefore, it would be reasonable to propose a 
randomized trial of haloperidol versus placebo or 
the combination of haloperidol plus duloxetine 
versus duloxetine alone in patients receiving either 
paclitaxel or oxaliplatin chemotherapy, with neu-
ropathic pain as the primary outcome, and nausea 
and vomiting as secondary outcomes.

Rationale for combining haloperidol with 
morphine or gabapentin for cancer-related 
neuropathic pain
In patients with cancer neuropathic pain, a rand-
omized trial of an opioid versus an opioid plus 
haloperidol or gabapentin/pregabalin alone versus 
gabapentin/pregabalin plus haloperidol should be 
considered. In preclinical studies, haloperidol did 
not increase the lethality of morphine. As a result, 
the combination of morphine and haloperidol 
may be safer than the combination of morphine 
and gabapentin.63 There may be a concern about 
combining methadone and haloperidol since both 
prolong the QTc interval. However, torsades de 
pointe from haloperidol occurs mostly at doses 
greater than 3 mg/day.64–66

Pharmacokinetics: The dose needed for 
analgesia
What haloperidol dose is needed to block sigma-1 
receptors? In humans, haloperidol occupancy of 
sigma-1 receptors is high at relatively low doses.67 
A dose of 10 mg by mouth occupies 65% of dopa-
mine (D2) receptors, whereas a 3 mg binds to 
80% of the central nervous system (CNS) sigma-1 
receptors.68,69 Haloperidol does not downmodu-
late sigma-1 receptor mRNA, so recovery will 
occur when the drug is stopped.70 A reduced 
haloperidol metabolite also readily crosses the 
CNS, binding and blocking sigma-1 receptors.71

Side effects
Extrapyramidal side effects, including akathisia, 
bradykinesia, Parkinsonism, and tremor, can 
occur in 10% of treated individuals. Elevated liver 
function tests, depression, dizziness, and sedation 
(at high doses) occur in less than 10%. 
Prolongation of the QTc and torsades de pointes 
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and the neuroleptic malignant syndrome occur in 
less than 0.1%.

Mirogabalin besylate

Introduction
Miragabalin is a gabapentinoid approved for the 
treatment of neuropathic pain in Japan since 
2019.

Mechanism of action
So how is mirogabalin different from gabapentin 
and pregabalin, and why would it improve anal-
gesia when neuropathic pain is unresponsive to 
other gabapentinoids? Similar to pregabalin, pre-
gabalin is a ligand for the voltage-gated calcium 
channel subunit alpha2/delta1 and alpha2/delta2. 
Mirogabalin, like pregabalin, blocks presynaptic 
voltage-gated calcium channels, which prevents 
neurotransmitter release across the synapse.72 
The alpha2/delta1 subunit is upregulated in 
somatosensory dorsal horn neurons with neuro-
pathic injury.73 In CIPN, the alpha2/delta2 com-
plexes with an-methyl-d-aspartate receptors 
through the C-tail of the calcium channel unit, 
which increases the neurotransmitter traffic 
across the synapse.74 The result is enhanced 
excitatory postsynaptic responses significantly 
curtailed by mirogabalin.75

Pharmacodynamic differences between 
miragabalin and other gabapentinoids
Mirogabalin differs from pregabalin in several 
ways. Mirogabalin dissociates from the alpha2/
delta1 subunit more slowly than gabapentin and 
pregabalin and is more selective for alpha2/
delta1 than alpha2/delta2.72 The dissociation 
constant (Kd) is four times lower than pregaba-
lin (13.5 nM vs 62.5 nM), demonstrating a 
greater affinity and five times lower for the 
alpha2 delta2 subunit (22.7 nM vs 125 nM).76,77 
Dissociation from alpha2/delta2 is 11.1 h, 
whereas it is 1.4 h for pregabalin.76 The relative 
duration of binding differences between alpha2/
delta1 and alpha2/delta2 between mirogabalin 
and pregabalin, which favors mirogabalin alpha2/
delta1 interactions, may be an important margin 
to efficacy, benefits, and side effects.76 Alpha2/
delta2 binding leads to gabapentinoid side effects, 
and alpha2/delta1 binding is necessary for analge-
sia.78 Supratherapeutic doses (fourfold to seven-
fold) of mirogabalin are needed before 

experiencing a “drug-liking” effect, whereas” 
drug-like” effects of pregabalin occur at therapeu-
tic doses.79

Clinical studies
In randomized trials involving 834 patients with 
diabetic neuropathy, miragabalin 30 mg daily sig-
nificantly reduced pain over 14 weeks (p = 0.027), 
and analgesia was sustained over 52 weeks without 
serious side effects. Treatment-emergent side 
effects (somnolence, edema, and weight gain) 
occurred in 27%.80 In a second study of 763 
patients with post-herpetic neuralgia, treatment 
mirogabalin doses of 15, 20, and 30 mg/day over 
14 weeks. The pain was significantly improved 
over the placebo. A 52-week open extension of the 
study demonstrated no analgesic tolerance. 
Treatment emerging side effects occurred in 
39.7%.81 A third study involved 150 patients with 
spinal cord injury. Progressive mirogabalin doses 
from 10 to 30 mg daily significantly reduced pain 
intensity (p = 0.0001). The odds of experiencing a 
30% reduction in pain was 1.91, and a 50% reduc-
tion at 2.52.82 A fourth study involved 210 patients 
with central neuropathic pain. The dose was 
15 mg twice daily. The short form of the McGill 
pain questionnaire significantly improved. Adverse 
effects were similar to those in other studies, 
including somnolence, edema, and dizziness.83

Comparison with other gabapentinoids
Mirogabalin has been compared to pregabalin in 
the treatment of CIPN and retrospective studies 
of patients with pancreatic cancer and oxaliplatin-
induced neuropathy. Mirogabalin doses ranging 
from 10 to 30 mg daily and pregabalin doses of 75 
to 150 mg/day were compared. Though baseline 
neuropathic pain was worse in those started on 
mirogabalin, pain significantly improved with 
miragabalin over 6 weeks (92.3%) compared with 
pregabalin (33.3%).84 In a single-arm prospective 
study involving 52 patients treated with pacli-
taxel, mirogabalin 10–30 mg daily reduced 
numerical rating scores (0 no pain, 10 severe 
pain) by 30%, with a mean change of 1.7 points.85 
Mirogabalin has reduced pain, whereas pregaba-
lin has failed to reduce pain or cause side effects, 
limiting pregabalin dosing.84,86

Disadvantages to mirogabalin
There are disadvantages to mirogabalin. 
Mirogabalin does not effectively reduce pain 
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associated with fibromyalgia.87,88 Opioids do not 
appear to improve mirogabalin analgesia but do 
increase adverse effects.77,89 Alcohol, benzodiaz-
epines, and tramadol increase sedation when 
combined with mirogabalin.90

Pharmacokinetics
Mirogabalin is 85% bioavailable, with peak con-
centrations (T-max) occurring approximately 1 h 
after oral intake. The mean terminal plasma half-
life ranges between 2.57 and 3.08 h, but as men-
tioned, the clinical effects are long-lasting due to 
its binding time to alpha2/delta1 receptors, so it 
is given twice daily.91 Oral dosage forms available 
in Japan are 2.5, 5, 10, and 15 mg. The starting 
dose is 5 mg twice daily, slowly titrated over 
45 days to a maximum of 15 mg twice daily, 
depending on response.92 No dose adjustments 
are needed for a creatinine clearance greater than 
50 mL/min per 1.73 m2. Doses should be adjusted 
to 50% of normal for a creatinine clearance of 
30–50 ml/min per 1.73 m2 and 25% or a creati-
nine clearance of less than 30 mL/min per 
1.73 m2.93 Doses do not need to be adjusted for 
mild to moderate hepatic impairment.94 
Mirogabalin does not interact with cytochrome 
P450 enzymes but is a substrate for organic anion 
transporter 1 and 2, organic cation transporter 2, 
and multidrug and toxin extrusion 
transporters.95

Side effects
The adverse effects commonly encountered with 
mirogabalin are dizziness (8%–16%), somno-
lence (6%–24%), and headache (6%–14%). 
Constipation, diarrhea, edema, fatigue, nausea, 
vomiting, and weight gain have rare side effects.96

Future randomized trials should include a com-
parison of miragabalin with duloxetine for CIPN.

Palmitoylethanolamide

Introduction
PEA belongs to a group of endogenous bioac-
tive lipids called ALIAmides (autocoid local 
injury antagonist amides), which have a sense 
role in modulating numerous biological pro-
cesses, particularly non-neuronal neuroinflam-
matory responses to neuropathic injury and 
systemic inflammation.97–102

Mechanism of action
PEA accumulates in tissues as a biological 
response to inflammation and increases in brain 
regions involved in nociception and the spinal 
cord in response to neurologic injury and inflam-
mation.102–110 PEA is formed from cell mem-
branes in response to stress. The “on-demand” 
production targets mast cell activation, degranu-
lation, and microglial responses to nerve injury. 
Downstream, it inhibits cytokine release and 
intra-nuclear transit of NF-κB, which prevents 
interleukin, tumor necrosis factor, and prosta-
glandin responses.97,102,105,110–118 There is a deli-
cate balance between ALIAmide lipid responses 
to neuropathic injury and the subsequent neuro-
inflammatory response to injury, determining 
neuropathic pain experiences.98

PEA targets multiple receptors as a modulator 
of pain
PEA has multiple targets: the orphan receptor 
GPR-55 as the principal one, vanilloid receptors, 
particularly TRPV-1 (the capsaicin receptor), 
and does indirectly interact with classical can-
nabinoid receptors (CB1, CB2) through increased 
anandamide levels (through competition with 
fatty acid amide hydrolase) and inhibits gluta-
matergic neurotransmission.119–126 However, 
most evidence suggests that the antiallodynic and 
antihyperalgesic effects are related to peroxisome 
proliferator-activated receptor (PPAR) activation 
and mast cell degranulation and activation inhibi-
tion.105,111,113,127–134 PPARs are a family of nuclear 
receptors that modulate inflammation by down-
regulating inflammatory gene responses, thus 
impairing chemokine expression. PPAR agonists 
are a new class of analgesics that target non-neu-
ronal reactions to neuropathic injury.135,136

Preclinical studies
Multiple animal models have demonstrated the 
benefits of PEA in neuropathic injury. PEA 
reduced hypersensitivity to mechanical and ther-
mal stimuli in neuropathically injured animals, 
and this reduction was dependent on PPAR and 
classic cannabinoid receptors.137 PEA in mice 
subjected to chronic constrictive injury-related 
neuropathic pain delayed mast cell recruitment 
and degranulation, abolished nerve growth factor 
activation, preserved the constricted nerve from 
degeneration, and reduced microglia numbers in 
the spinal cord, associated with pain reduction.138 
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PEA improved the pain behaviors associated with 
selective nerve injury in Sprague Dawley rats.139

PEA and preclinical studies of chemotherapy 
neuropathy
PEA has been effective in reducing CIPN in ani-
mals. Animals exposed to oxaliplatin were treated 
with PEA 30 mg/kg intraperitoneal. PEA prevented 
the hypersensitivity associated with oxaliplatin. In 
the spinal cord, there was reduced glia activation 
and improved neuropathic pain behaviors without 
interfering with oxaliplatin anticancer activity.129 
In a second model, PEA (10 mg/kg) reduced pain 
behaviors from oxaliplatin, reduced hyperactive 
glia in the spinal cord, and prevented proinflam-
matory cytokine release from the spinal cord. This 
was due to the downmodulation of the NF-κB 
pathway.140 PEA reduced spinal cord and hip-
pocampal neuroinflammation in animals exposed 
to paclitaxel. The PEA doses were 30 mg/kg. PEA 
also had an antianxiety and antidepressant effect 
noted in animals. The benefits were dependent 
upon the presence of PPAR and CB1 receptors.141 
Two other studies have demonstrated the benefits 
of PEA in preventing and treating paclitaxel-
related pain in animals.142,143

Clinical studies
Clinical studies have demonstrated the benefits of 
PEA. A randomized controlled trial compared 
PEA 600 mg/day with a placebo and found that 
patients with diabetic neuropathy improved in 
pain, sleep, and depression associated with reduc-
tions in circulating Il-6 and C-reactive protein 
(CRP). No side effects were noted.144 A second 
study involving patients with diabetic neuropathy 
used PEA 300 mg twice daily in a prospective 
study. There was a dramatic reduction in pain 
(p < 0.00001) without any adverse events or 
safety issues.145 A recent clinical study involved 
patients receiving neoadjuvant oxaliplatin or 
paclitaxel with neuropathy. They received a PEA 
supplement for 3 months. Motor and sensory 
subjective outcomes were measured. Objective 
neurologic outcomes included deep tendon 
reflexes and vibratory perception. After 3 months, 
the overall clinical benefit, which included stabil-
ity or improvement, occurred in 64%–77% of 
patients. Objective improvement occurred in 
40% of the paclitaxel patients and 31% of the 
oxaliplatin-treated patients. Deep tendon reflexes 
improved by 20% and 16.9%, respectively. The 
quality of life improved in 22%–24% of patients 

with oxaliplatin, and 37.5%–45.9% of patients 
treated with paclitaxel. Only 6%–15% were 
treated with other analgesics.146

A large number of clinical studies have used PEA 
for inflammatory or neuropathic pain with posi-
tive outcomes. Four recently published meta-
analyses have demonstrated that PEA is an 
effective analgesic with side effects no greater than 
placebo compared to randomized trials.147–150

PEA in combination with other analgesics
PEA has been used in combination with other 
analgesics. In preclinical models, PEA improves 
opioid analgesia and delays analgesic toler-
ance.151,152 PEA improves gabapentin and par-
acetamol analgesia.151,153

Advantages to PEA
In all randomized trials, PEA had the same side 
effects as placebo.144,154,155 PEA improves psycho-
logical depression and fatigue associated with 
COVID-19.156–158 PEA in randomized trials is an 
effective adjuvant to the treatment of autism.159,160

Pharmacokinetics
The pharmacokinetics of PEA are unknown. PEA 
has a high first-pass clearance as a highly lipo-
philic compound.124 The intestinal wall and liver 
contain hydrolytic enzymes involved in PEA 
metabolism. Micronized or ultra-micronized 
ultramicronized PEA appears to improve animal 
absorption.161 The volume of distribution is quite 
large. PEA readily crosses into the CNS, accumu-
lates within cells, and passes through cell mem-
branes.124,162 PEA binds to fatty acid binding 
protein 5 and thus competes for binding with 
anandamide. Also, PEA competes with ananda-
mide metabolism by fatty acid amide hydrolase, 
thus increasing anandamide intracellular levels.124 
PEA is also metabolized by N-acylethanolamine 
acid amidase to palmitic acid and ethanola-
mine.124 There are no known drug–drug interac-
tions reported with PEA.

There is significant preclinical evidence that PEA 
may effectively treat CIPN and prevent its occur-
rence. One non-placebo controlled trial suggests 
that there are clinical benefits. Presently, a pla-
cebo-controlled randomized controlled study 
tests PEA 400 or 800 mg daily for 8 weeks versus 
placebo in patients with established CIPN. A 
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similar trial in patients receiving oxaliplatin or 
paclitaxel as either an adjuvant or neoadjuvant 
treatment for their cancer should be considered.

Side effects
PEA has no known side effects.

Clonidine

Introduction
Clonidine is an alpha2 adrenoceptor agonist and 
an imidazoline2 receptor agonist, which is U.S. 
Federal Drug Administration approved for atten-
tion deficit hyperactivity disorder in children, 
Tourette’s syndrome, adjunctive therapy for can-
cer-related pain, and hypertension.163–165 There is 
a growing body of literature that suggests that clo-
nidine may be an effective analgesic for neuro-
pathic pain.166–169 There is extensive evidence 
that perioperative clonidine is an effective analge-
sic in children, is opioid-sparing, and is associated 
with reduced postoperative nausea and vomit-
ing.170–177 We will not review spinal clonidine, as 
it is a common practice in interventional pain 
management, but will limit discussions to paren-
teral, topical, oral, and transdermal clonidine, 
particularly for pain.

Mechanism of action
Clonidine binds to imidazoline receptors within 
the CNS and causes hypertension. It also has 
anti-arrhythmogenic activity and activates 
alpha2 adrenoceptors, causing sedation.178 Both 
receptors may be involved in analgesia.179–181 
Clonidine preferentially binds to alpha2 rather 
than alpha1 adrenoceptors (200–1), so sedation 
occurs at low doses, but as clonidine doses are 
increased, anxiety may occur due to binding to 
alpha1 receptors.182–184

Clonidine may reduce pain by several different 
mechanisms. Clonidine binds to nor adrenergic 
receptors descending in the dorsal lateral funicu-
lus, which inhibits incoming sensory nociceptive 
neurotransmission at the level of the dorsal 
horn.185,186 Within the intermediolateral column 
of the dorsal horn, there is a dense population of 
alpha2 adrenoceptors on myelinated Ac and 
unmyelinated C fibers which inhibit excitatory 
neurotransmission within the dorsal horn.187 
Neurologic injury increases the expression of 
alpha2 adrenoceptors in the dorsal root ganglion 

sensory neurons, which are then targeted by clo-
nidine.188 Depending on the subtype of alpha2 
adrenoceptors, activation of these presynaptic 
receptors inhibits the release of substance P, cal-
citonin gene-related protein, and glutamate.189,190 
Clonidine inhibits nerve sprouting from neuro-
pathic injury.191,192

Clonidine activation at alpha2 adrenoceptors 
causes downstream activation of inhibitory 
G-proteins (Gi/Go), which inhibits cyclic adeno-
sine monophosphate (AMP) production and 
hyperpolarizes neuron membranes, thus reduc-
ing allodynia.193–195 In this way, clonidine may be 
synergistic with opioid analgesia.195 Clonidine 
also reduces the expression of the vanilloid recep-
tor TRPV1, which is upregulated with neuro-
pathic injury and contributes to hyperalgesia and 
allodynia.196 Finally, clonidine does appear to 
downmodulate neuroinflammatory responses to 
neural injury.197–200

Preclinical studies
There are preclinical neuropathic pain models 
which demonstrate synergistic analgesia between 
clonidine and opioids.201–204 Synergy has also been 
reported with acetaminophen and N-methyl- 
d-aspartate receptor blockers.205–207 One of the 
advantages of a clonidine/opioid combination is 
that clonidine does not potentiate the respiratory 
depression of opioids, unlike gabapentinoids.208,209

There is preclinical evidence that clonidine 
reduces pain behaviors in animals with oxaliplatin 
and vincristine neuropathy.210–212 CIPN pain 
behaviors induced in male Wistar rats by pacli-
taxel injections were significantly improved with 
clonidine.213 The benefits appeared to be related 
to increased descending noradrenergic activity at 
the spinal cord level. Preclinical studies suggest 
that clonidine may reduce CIPN associated with 
oxaliplatin and paclitaxel. Clinical studies are 
needed to confirm preclinical findings.

Clinical studies
Oral. Clonidine (0.1 mg oral) has improved low-
dose gabapentin analgesia in diabetic individuals 
with painful neuropathy.166 Oral clonidine 0.1–
0.2 mg by mouth has been compared to zolpidem 
in patients with chronic pain and secondary 
insomnia. Clonidine’s time to sleep onset was 
quicker (p = 0.001), and pain was significantly 
improved relative to zolpidem. Sleep quality was 
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better, and there was no amnesia, confusion, or 
falls with clonidine.214

Transdermal. Transdermal clonidine has been 
used for diabetic neuropathy. A small underpow-
ered crossover trial found that transdermal cloni-
dine 0.3 mg/day was tolerable and reduced pain 
as a trend but not significantly so (−13%, 95% 
confidence interval −29% to +3%).215 The 
“trend” needs to be validated in a large, well-con-
trolled trial. A second study using an enrichment 
enrollment design using the same dose and route 
found that clonidine reduced pain by 20% (95% 
confidence interval +4% to +35%) in a group of 
patients with diabetic neuropathic pain.216

Intravenous. Intravenous clonidine has been 
used in terminally ill patients with poorly con-
trolled symptoms, in particular pain and agita-
tion. One report initiated clonidine at 75 µg IV 
and titrated to response (maximum dose 1200 µg/
day).217 A similar group of patients was initially 
treated with 75–150 µg intravenous in patients 
with refractory pain to opioids or refractory agi-
tation to antipsychotics and benzodiazepine. 
Doses were adjusted to response. Of 115 patients 
treated, 85 responded.218

Clonidine as an adjuvant analgesic
Clonidine is an understudied adjuvant analgesic. 
Clonidine is versatile, with options for parenteral, 
topical, oral, and transdermal administration. 
There is evidence that clonidine improves opioid 
analgesia without adversely influencing respira-
tory function and may reduce opioid analgesic 
tolerance. Clonidine also reduces opioid with-
drawal symptoms. A combination of analgesia 
and improved sleep without benzodiazepine side 
effects suggests that clonidine may be a preferred 
sleeping medication for those individuals with 
chronic pain in palliative medicine or on opioids.

Pharmacokinetics
Oral clonidine is highly bioavailable, with peak 
concentrations between 60 and 90 min. It is 
30%–40% protein bound and has a volume of 
distribution of 3.2–5.6 L/kg.219 This reflects its 
lipophilicity and wide distribution. It rapidly 
crosses into the CNS. Less than 50% is inacti-
vated in the liver. There are no known active 
metabolites. Between 40% and 60% of clonidine 
is excreted by the kidneys unchanged. Renal fail-
ure increases the half-life from 12–16 to 24 h.219

Adverse effects of clonidine
Clonidine’s side effects include drowsiness, hypo-
tension, dry mouth, and sexual dysfunction. In 
comparison with oral clonidine, transdermal clo-
nidine reduces the incidence and severity of such 
symptomatic side effects as dry mouth, drowsi-
ness, and sexual dysfunction. Minor skin reac-
tions occur at the application site of the 
transdermal patch with moderate frequency. 
Adherence to transdermal clonidine therapy is 
high, and patients commonly prefer it to oral 
therapy.220

Conclusion
Haloperidol, miragabalin, PEA, and clonidine 
have unique mechanisms that may effectively 
reduce neuropathic pain. Combinations with 
standard adjuvants should be explored. In addi-
tion, haloperidol on clonidine may be opioid-
sparing, improving analgesia and reducing opioid 
tolerance. The benefits of the commercially avail-
able medications, haloperidol, PEA, and cloni-
dine, should be explored further in randomized 
trials.
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