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Abstract: With the increase in CO2 emissions worldwide and its dire effects, there is a need to reduce
CO2 concentrations in the atmosphere. Alpha-carbonic anhydrases (α-CAs) have been identified as
suitable sequestration agents. This study reports the sequence and structural analysis of 15 α-CAs
from bacteria, originating from hydrothermal vent systems. Structural analysis of the multimers
enabled the identification of hotspot and interface residues. Molecular dynamics simulations of
the homo-multimers were performed at 300 K, 363 K, 393 K and 423 K to unearth potentially
thermostable α-CAs. Average betweenness centrality (BC) calculations confirmed the relevance of
some hotspot and interface residues. The key residues responsible for dimer thermostability were
identified by comparing fluctuating interfaces with stable ones, and were part of conserved motifs.
Crucial long-lived hydrogen bond networks were observed around residues with high BC values.
Dynamic cross correlation fortified the relevance of oligomerization of these proteins, thus the
importance of simulating them in their multimeric forms. A consensus of the simulation analyses
used in this study suggested high thermostability for the α-CA from Nitratiruptor tergarcus. Overall,
our novel findings enhance the potential of biotechnology applications through the discovery of
alternative thermostable CO2 sequestration agents and their potential protein design.

Keywords: alpha-carbonic anhydrase; homology modelling; motif analysis; MD simulations; dynamic
residue network analysis; hydrothermal vents

1. Introduction

The accumulating concentrations of greenhouse gases (GHGs) over the years have led to the
warming of the earth’s atmosphere [1–3]. CO2 is considered to be one of the GHGs contributing to
a significant amount of global warming, with the major source of these gases being the combustion
of fossil fuels, rice paddies, and livestock fields [3–6]. CO2 concentrations have increased from
approximately 280 ppm (parts per million) in the pre-industrial period to approximately 410 ppm in
2019 [7]. Thus, the discovery and implementation of mitigation strategies is crucial.

Sequestration of CO2 via biomineralization, which involves the aqueous precipitation of minerals
in the presence of CO2 to form mineral carbonates, is a storage strategy currently being explored [8,9].
The use of a catalyst in this process is important, because otherwise the hydration of CO2 is very
slow [10]. Some of the reactions that take place during biomineralization, however, require conditions,
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including high temperatures exceeding 100 ◦C and an alkaline pH [11,12]. Consequently, thermo-alkali
stable enzymatic catalysts are being sought.

Carbonic anhydrases (CAs) are enzymes responsible for the reversible catalytic reaction between
CO2 and H2O. They are viable CO2 sequestration agents due to their fast CO2 hydration with catalytic
turnover rates (kcat) exceeding 104 s−1 for the majority of CAs [11,13,14]. They are metalloenzymes
containing a Zn2+ metal ion in the active site, with some having shown the ability to utilize iron (Fe2+)
or cobalt (Co2+) instead of Zn2+, and still maintain their catalytic activity [15–17]. Three major classes
of the CA family, α, β, and γ, have been widely studied. The other classes identified include δ, ζ, η, θ,
and ι-CAs, with the ι-CAs being the most recently discovered [18–22].

CO2 hydration proceeds as shown in Reaction (1) (Figure 1A), resulting in the formation of
carbonic acid which dissociates to bicarbonate and hydrogen ions. After being released from the
catalytic site into the solvent, the bicarbonate ions further dissociate to carbonate ions (Reaction (2)
in Figure 1A) which then react with the metal ions (shown as X2+), such as Ca2+ or Mg2+, during
biomineralization to form the mineral carbonate XCO3 [10,23]. This is illustrated in Reaction (3)
(Figure 1A).
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have monomeric structures, in contrast to their bacterial counterparts which have been revealed to 
have a dimeric assembly [27,28]. A unique tetrameric assembly, absent in all other α-CAs to date, has 
been observed for the α-CA from Thermovibrio ammonificans (TaCA, PDB ID: 4C3T) (Figure 1B), 
which is held together by a core of two disulfide bonds (Figure 1C) [29]. Each monomer has a 
functional independent active site, containing a Zn2+ metal ion in tetrahedral coordination by three 

Figure 1. Biological assembly of the alpha-carbonic anhydrase (α-CA) from Thermovibrio ammonificans
(TaCA, PDB ID: 4C3T). (A) illustrates the equations for CO2 hydration and dehydration (1 and 2) as
well as metal carbonation (3), while (B) shows the tetrameric structure of TaCA. (C) shows the disulfide
core formed by four Cys residues in the tetramerization interface. The catalytic cavity is enlarged in (D),
with CO2 binding pocket residues colored red, proton transfer residues in blue and Zn2+ coordinating
His residues colored green.

α-CAs are the most widely studied class of carbonic anhydrases, and have been found in
mammals, algae, and plants, with numerous reports in bacteria as well [24–26]. Most human α-CAs
have monomeric structures, in contrast to their bacterial counterparts which have been revealed to
have a dimeric assembly [27,28]. A unique tetrameric assembly, absent in all other α-CAs to date,
has been observed for the α-CA from Thermovibrio ammonificans (TaCA, PDB ID: 4C3T) (Figure 1B),
which is held together by a core of two disulfide bonds (Figure 1C) [29]. Each monomer has a functional
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independent active site, containing a Zn2+ metal ion in tetrahedral coordination by three His residues
as well as a water molecule [14,30–32]. They also have a hydrophobic pocket close to the active site
where the CO2 molecule is normally held during catalysis (Figure 1D). This pocket has been identified
in most α-CAs, including the human CA II [33–37].

Given the high environmental temperatures, CAs from hydrothermal vents may already possess
attributes to withstand the extreme conditions in the CO2 sequestration process, thus providing a
viable alternative to engineering CAs. This has been observed in vitro on α-CAs from hydrothermal
vent bacteria Caminibacter mediatlanticus (CmCA), Persephonella marina (PmCA) and TaCA, with CmCA
and PmCA revealing stability up to 70 ◦C and 100 ◦C, respectively, and the wild-type and variants
of TaCA appearing stable up to 95 ◦C [38–41]. Another CA, found in previously isolated DNA from
the Logatchev hydrothermal field (LOGACA), has also proven to be thermostable, withstanding
temperatures up to 103 ◦C [35]. The structures of these α-CAs, except CmCA, have been experimentally
solved and reported [29,35,42]. Consequently, the in silico analysis of the thermostability attributes of
α-CAs from hydrothermal vents, is the focus of this study.

To date, in silico studies on α-CAs have been for monomeric forms of the proteins. The multimeric
occurrence of these enzyme complexes, which is brought about by the interaction of residues between
monomers, a region termed the interface or the buried surface area (BSA), is often overlooked [43,44].
The BSA contributes to function as well as stability of the protein complex with a group of residues,
termed “hotspot residues”, contributing significantly to protein stability [45,46]. This study considers
their biological assemblies (BAs), revealing the relevance of simulating the CAs in their multimeric
states. We report here computationally solved dimeric structures and the analysis of 12 α-CAs,
including CmCA, from various bacteria coming from hydrothermal vent systems. Analysis was also
included for LOGACA, PmCA and TaCA. Sequence alignments and motif analyses were performed to
identify conserved and possible functionally important regions in the proteins, followed by phylogenetic
tree construction, to view the evolutionary relationships amongst the CAs [47,48]. Analysis of the CA
interfaces revealed the presence of hotspot residues, present in conserved motifs, which contribute to
the stability of these proteins. Similar results have been shown in Enterovirus capsids [49]. Furthermore,
the importance of some interface residues in protein communication was fortified through average
betweenness centrality (BC) analysis of molecular dynamics (MD) simulation trajectories at 300 K [50].
Hydrogen bond networks centered on high communication residues recognized in average BC analysis
were identified through hydrogen bond analysis. Patterns of thermostability were monitored for the
proteins through the radius of gyration (Rg), root mean square fluctuation (RMSF), and dynamic cross
correlation (DCC) analysis of MD simulations at increasing temperatures, 300 K, 363 K, 393 K and 423 K,
and were compared to previously characterized CmCA, LOGACA, PmCA and TaCA. Maintenance of
active site cavity compactness, low residue fluctuations and high correlated motions at temperatures
of 423 K were conspicuous for Nitratiruptor tergarcus’ CA (NtCA). Analysis of inter-subunit hydrogen
bonds at all four temperatures showed interface disruptions in some proteins at high temperatures,
indicative of fluctuations and reduced thermostability. Overall, the computational approach combined
data retrieval, sequence alignment, motif analysis, phylogenetic tree calculations, homology modeling of
biological assemblies, protein–protein interface analysis coupled with molecular dynamics simulations,
dynamic residue analysis and dynamic cross correlation; and thus brought novel aspects to the field of
carbonic anhydrases as carbon dioxide sequestration agents. The novelty of our findings enhances
the knowledge base of biotechnology applications through the discovery of alternative thermostable
sequestration agents as well as their potential protein design.

2. Results and Discussion

Sequence and structural analysis of 15α-CA proteins, of which 14 were from 13 bacteria and one from
isolated DNA, was performed (Table 1 and Table S1). The organisms were previously isolated in or around
hydrothermal vents, and were mainly Gram-negative [51–57]. They are classified under four groups
(Table 1): Aquificacea, Campylobacteria (formerly known as Epsilonproteobacteria), Deltaproteobacteria
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(δ-proteobacteria) and Gammaproteobacteria (γ-proteobacteria) [58,59]. Campylobacteria are the most
abundant in these locations [60–62].

Table 1. Alpha-carbonic anhydrase (α-CA) proteins from hydrothermal vent bacteria with
taxonomic classifications.

CA Organism Taxonomic Classification

Class Family Genus Reference

CmCA Caminibacter mediatlanticus Campylobacteria Nautiliaceae Caminibacter [58]

GEprmCA Geothermobacter sp. EPR-M Deltaproteobacteria Geobacteraceae Geothermobacter [63]

GHr1CA Geothermobacter sp. HR-1 Deltaproteobacteria Geobacteraceae Geothermobacter [63]

HtCA Hydrogenimonas thermophila Campylobacteria Hydrogenimonaceae Hydrogenimonas [58]

LOGACA Hydrothermal vent metagenome — — — —

NtCA Nitratiruptor tergarcus Campylobacteria Nitratiruptoraceae Nitratiruptor [58]

PhCA Persephonella hydrogeniphila Aquificacea Hydrogenothermaceae Persephonella [63]

PmCA Persephonella
marina Aquificacea Hydrogenothermaceae Persephonella [63]

SlCA Sulfurovum lithotrophicum Campylobacteria Sulfurovaceae Sulfurovum [58]

SNbcCA Sulfurovum sp. NBC37-1 Campylobacteria Sulfurovaceae Sulfurovum [58]

SrCA Sulfurovum riftiae Campylobacteria Sulfurovaceae Sulfurovum [58]

TaCA Thermovibrio ammonificans Aquificacea Desulfurobacteriaceae Thermovibrio [63]

VaCA1
VaCA2 Vibrio antiquarius Gammaproteobacteria Vibrionaceae Vibrio [63]

VdCA Vibrio diabolicus Gammaproteobacteria Vibrionaceae Vibrio [63]

Confirmation of the origin sites of these organisms was crucial to this study, as some genera
are not confined to inhabiting hydrothermal environments alone. For example, the genus Vibrio is
widespread in marine environments [64,65]. Although Geothermobacter iron reducers are predominantly
confined to hydrothermal systems [66–69], they have also previously been identified in paddy soils [70].
Bacteria from the families Hydrogenimonaceae, Nautiliaceae, and Nitratiruptoraceae are known to be
found entirely in vent systems [71].

2.1. Sequence Analysis

The reference sequence from PmCA will be used for α-CA residue numbering going forward
unless stated otherwise. All corresponding residues for other sequences are outlined in Table S2.

2.1.1. Multiple Sequence Alignment Reveals the Extent of Conservation in the α-CA Sequences

Multiple sequence alignments (MSAs) are important in the identification of conserved regions,
which are assumed to be structurally and functionally significant. The MSA produced by Tree-based
Consistency Objective Function for Alignment Evaluation (T-Coffee) [72,73] gave an accurate alignment
of functional residues across all species and was used for further analysis of the α-CAs. The three His
residues that coordinate the Zn2+ metal ion in the active site, His107, His109 and His126, were conserved
across all sequences and are denoted in Figure 2A by the cyan boxes. CAs of this class have been
reported to contain Cys residues (Cys44 and Cys197) that form an intra-subunit disulfide bond affecting
structural stability [29,34,74–77]. These are usually the only two Cys residues in the sequence, indicated
by the yellow boxes in the MSA, and were present in all the α-CA sequences sampled (Figure 2A).
TaCA, however, possesses a third Cys residue in position 67 (TaCA numbering), which is responsible
for its tetrameric quaternary structure [29]. This Cys residue forms a disulfide bond with another Cys
in the same residue position of another subunit, resulting in a core of two disulfide bonds by four
monomers (Figure 1C) [29]. The rest of the sequences, though of similar origins, and other previously
characterized α-CAs, do not possess that particular Cys residue, as shown by the magenta-colored star
in Figure 2A. The corresponding amino acid position in the other sequences is moderately variable,
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with the residue Lys or Asn being the most common substitute. A dimeric architecture, compared to
TaCA’s tetrameric structure, was thus assumed for the rest of the bacterial CAs during homology
modelling (Section 2.2.1).
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Figure 2. Multiple sequence alignment (MSA) and phylogenetic tree of retrieved α-CA sequences
calculated by Tree-based Consistency Objective Function for Alignment Evaluation (T-Coffee) and
MEGA7, respectively. (A): The red box indicates the signal peptide residues removed during modelling.
Proton transfer residues are indicated by the arrows above them and the other functional residues are
color coded: cyan—Zn2+ coordinating residues; green—CO2 binding pocket residues; yellow—Cys–Cys
disulfide bond residues. The magenta star indicates the Cys position in TaCA responsible for its
tetramerization. (B): The evolutionary relationship amongst the 15 retrieved sequences was inferred
using the Maximum Likelihood method under the WAG + G + I model and a 100% gap deletion.
Bootstrap values from 1000 bootstrap replicates are shown as decimals at their respective nodes.
The heat map for the all-versus-all pairwise sequence identity calculations, generated using the T-Coffee
MSA, is displayed next to the phylogenetic tree with the magnitude of identity between sequences
increasing from 0, shown by the blue color, to 1, shown by red. Classes A, B, C and D indicate the bacteria
classes Deltaproteobacteria, Gammaproteobacteria, Campylobacteria and Aquificacea, respectively.

The hydrophobic pocket necessary for CO2 binding has been reported in numerous α-CAs,
and was present in all structures modelled [27,30,34,78,79]. It contains the hydrophobic residues Val128,
Val138, Leu192, Val201, and Trp203 [29,37,75]. All these residues, except Leu192, were completely
conserved across the sequences. In NtCA the Leu was substituted by Phe, which is also a hydrophobic
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amino acid, thus maintaining the hydrophobicity of the pocket. His82 has been reported to be involved
in proton shuttling, and was conserved across all the sequences [29,77]. This residue, along with other
residues involved in proton transfer as indicated in Figure 2A, as well as Thr83, are part of a cavity
including the active site and the hydrophobic CO2 binding pocket (Figure 1D). The proton transfer
residues form a pocket, referred to as the tertiary CO2 binding pocket in hCA-II, which has also been
previously observed binding the inhibitor acetazolamide in TaCA [28,29,80–82].

2.1.2. Signal Peptides in Most α-CA Sequences Are Confirmed by Signal Peptide Prediction Servers

The cell wall of Gram-negative bacteria is known to be encircled by an outer membrane
with a periplasmic space in between [83]. The signal peptide identified in α-CAs is believed to
be a useful coping mechanism for the secretion of the CAs, either into the periplasmic space or
extracellularly. There it executes CO2 hydration, thus, aiding the movement of bicarbonate through
the cell membrane [14,29,84]. This is in contrast to the β-CA and γ-CA classes that are found in
the cytoplasm [14]. Previously isolated bacterial α-CAs, including LOGACA, PmCA and TaCA,
possess signal peptides at the N-terminal of the protein [29,35,85]. In this study, probable cleavage
sites for the retrieved sequences were calculated by two signal peptide prediction programs.
SignalBLAST [86] uses the BLAST package to predict signal peptides, comparing the query sequence
to reference data, whereas Phobius [87] predictions are based on the hidden Markov model (HMM).
Results are outlined in Table S3. Predictions from Phobius were in agreement with those from
SignalBLAST concerning the absence of a signal peptide in both Geothermobacter α-CAs, suggesting
cytoplasmic localization for these particular CAs. This observation was also supported by motif
analysis (Section 2.1.4) where Motif 11, which was perceived as an indication of a signal peptide,
was found to be absent in both Geothermobacter spp. CAs. The signal peptide sequence (see Figure 2A),
was therefore excluded from the calculation of all structures except the two mentioned above during
the modelling of α-CAs in Section 2.2.1. Residues excluded from the modelling of GEprmCA and
GHr1CA were as a result of their absence in the template structure, which also possessed a signal
peptide. Phylogenetic tree calculations, however, proceeded with complete sequences including the
signal peptide.

2.1.3. Evolutionary Relationships amongst the α-CAs Through Construction of a Phylogenetic Tree

The top three models had Bayesian Information Criterion (BIC) values of 7788, 7796 and 7806,
respectively. The phylogenetic relationship amongst the retrieved α-CA sequences was inferred by
MEGA under the best-fit protein substitution model, WAG + G + I, with a gap deletion of 100%.
Phylogenetic analysis evidenced the clustering of the bacteria to match their all-versus-all pairwise
sequence identities (Figure 2B). The pairwise identity heat map, which was derived from the MSA
in Figure 2A, revealed high sequence identities in CAs belonging to similar lineages. CAs which
belonged to the Sulfurovum genus had high sequence identities (above 80%) and clustered together.
VaCA2 and VdCA were highly similar, in contrast to the comparison of either of the sequences to VaCA1.
The Geothermobacter spp. CAs also showed high sequence identities (above 80%). Tree branching
suggested that unclassified LOGACA belonged to the class Aquificacea and genus Persephonella.
This α-CA showed the closest relation to PhCA, with a sequence identity of 87% and a branch bootstrap
value of 0.912. Clustering patterns by some of the sequences align with phylogenetic tree calculation
results obtained by Nakagawa et al. [57]. Common bacteria to both studies include H. thermophila,
N. tergarcus, S. lithotrophicum, and Sulfurovum sp. NBC 37-1. Trees were calculated using 16s rRNA
sequences and branching of these bacteria proved similar to those observed in this study [57].

2.1.4. Motif Analysis Reveals Functionally Important Motifs as Well as Conservation across Sequences

Motif analysis was performed to elucidate conserved patterns amongst the sequences. 14 unique
motifs were identified for the α-CAs and generally, a high conservation of motifs across the sequences
was perceived, with 11 being conserved in the dataset (Figure 3). Several motifs have been identified
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as functionally important, as they contain residues that are critical to the function of the CAs (Table 2).
Motif numbering is aligned to results produced by Multiple Expectation Maximisation for Motif
Elicitation (MEME) software [88]. Start and end positions of motifs for each sequence, as well as motif
E-values, are outlined in Table S4.

Functional residues previously identified were observed and highly conserved in the MSA of
the α-CAs in this study and were located in various motifs (Table 2). Residues in the interface of
the dimers (Section 2.2.2) also signified the structural importance of some motifs and are included in
Table 2. Asn80 and Lys85 are proton shuttling residues present in Motif 6, with HtCA possessing a Lys
residue in place of Asn80. Lys85 position was occupied by either a Lys or Gln residue in the retrieved
sequences. The α-CAs that possessed Gln in this position included both Geothermobacter CAs, all three
Sulfurovum α-CAs and all three Vibrio α-CAs. The rest had Lys in that position. Functional importance
of motifs 8, 9, 10, 12, 13 and 14 is unknown. Motif 11 was located at the N-terminal, except in the
Geothermobacter spp. α-CAs, correlating with signal peptide predictions in Section 2.1.2, as this motif
was observed to be part of a signal peptide with residues 1 to 16.
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Figure 3. Motif analysis of the α-CA sequences sampled. (A): Heat map showing the frequency of each
motif and coloring is based on the extent of conservation of the motif across the sequences. (B): Motif
numbering and the motif web logos, which depict the extent of the amino acid conservation in each
position, are based on results generated by Multiple Expectation Maximisation for Motif Elicitation
software (MEME). Residue colors are indicative of their chemical properties as follows: blue–most
hydrophobic residues (A, C, F, I, L, M, V and W); red–positively charged residues (K and R); green–polar,
non-charged and non-aliphatic residues (N, Q, S and T); magenta–most acidic residues (D and E);
light pink, orange, turquoise and yellow are for H, G, Y and P respectively. (C): Motifs are mapped onto
the structure of Sulfurovum lithotrophicum (SlCA). Identified interface residues are shown as spheres and
colored according to the color of the motif on which they are found. Motif web logos displayed in (C) are
those for motifs containing interface residues. Motif 11 was omitted due to its absence in the modelled
structures. Interface and hotspot residues are indicated by the black and red arrows, respectively.
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Table 2. Motifs containing known functional residues in α-CAs. Motif residues displayed are
from Persephonella marina (PmCA), and those in bold and underlined have been identified as
functionally important.

Motif E-Value Residues Function

1 1.5 × 10−251 YYRYSGSLTTPPCSEGVRWI

Cys197—intra-subunit disulfide Cys [29,34,74–76]
Leu192, Val201 & Trp203—CO2 binding pocket residues [29,37,75]

Thr193 & Thr194—proton shuttling residues [29,34]
Arg187, Tyr188, Ser189, Glu199, Gly200, Val201 & Arg202—interface

residues (present study)

2 9.9 × 10−180 QFHFHAPSEHKLKGQHYPFE His107 & His109—Zn2+ coordinating residues [30–32]

3 1.6 × 10−146 MGGDTNRPVQPLNARMIME Asn236, Ala237, Arg238, Met239 & Met241—interface residues
(present study)

4 7.8 × 10−146 AHFVHADKHGNLAVIGVFFK
His126—Zn2+ coordinating residues [30–32]

Val128 & Val138—CO2 binding pocket residing residues [29,34,37,75]
Asn135—interface residue (present study)

5 2.4 × 10−119 YHGEHGPEHWGDLKDEYIMC
Tyr25—proton shuttling residue [29,34]

Asp39, Ile42 and Met43—interface residues (present study)
Cys44—intra-subunit disulfide Cys residue [29,34,74–76]

6 3.3 × 10−110 NNGHTIKVSYEPGSYIVVDG Asn80, His82 & Lys85—proton shuttling residues [29,34,77]
Asp97—interface residues (present study)

7 7.2 × 10−77 KNQSPVDINRIVDAKLKPIK Lys48, Asn49, Arg57, Val59, Asp60, Ala61, Lys62 & Leu63—interface
residues (present study)

2.2. Homology Modelling and Structural Analysis

3D protein structures were calculated via homology modelling. These structures were then used
for mapping sequence and motif information, structural analysis, and MD simulations which helped
to understand the differences between monomeric and multimeric forms of the proteins, as well as the
identification of key interface residues.

2.2.1. Calculations of Dimeric Models of α-CAs and Their Validation Yields Good Quality Structures

The crystal structure of LOGACA was used as the template for the dimeric structure calculations of
all sequences retrieved except PmCA and TaCA, which already have crystal structures. LOGACA had
a resolution of 2.5 Å and good coverage with all the CA sequences, which ranged between 87%
and 95%. Sequence identities with the retrieved sequences varied between 47% and 84% (Table S5).
The signal peptide sequence, also absent in LOGACA, was excluded from the models, along with a few
residues that were not structurally available from the template and these are indicated by the red box
in Figure 2A. The starting residue numbers for each of the structures after alignment trimming during
modelling are noted in Table S3 along with suggested cleavage sites from the signal peptide prediction
servers. Structures were modelled with an active site Zn2+ metal ion tetrahedrally coordinated by
three His residues and a water molecule. Coordinating His residues were all within the expected
bond length of 2.2 Å to Zn2+ [89]. The active site appeared to be open and accessible to the solvent as
observed in most CAs, with the catalytic pocket extending from the outside of the protein to the metal
ion [34,90,91]. Validation results from various programs revealed that the structures modelled were
of good quality (Table S5). The z-DOPE (Discrete Optimized Protein Energy) scores were all below
the quality threshold of −0.5, with structure quality improving as the score became more negative.
The Ramachandran plots generated using PROCHECK [92] showed that 87% or more of residues
for each of the structures were in the most favored regions. Verify3D [93] compares the protein
sequence (1D) to the 3D structure, producing results as a percentage of residues with scores above 0.2.
Percentages above 80% are considered a pass, and all α-CA structures passed this verification.

2.2.2. Structural Analysis of the α-CA Multimers Reveals Hotspot Residues in the Protein Interface
and Important Inter- and Intra-Subunit Interactions

It was crucial to investigate the interface residues of the multimeric α-CAs and their interactions,
particularly hotspot residues, mutation of which might result in destabilization of the protein [45,94].
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The residues involved in interface formation, as well as hotspot residues as a subset of the interface
residues, were identified using various web servers (Table S6). In TaCA, two different interfaces were
considered; the dimerization interface, which is between two monomers forming the bacterial dimer,
and the tetramerization interface, which is between the dimers responsible for tetramer formation.
Henceforth, residues from a neighboring monomer will be signified by an asterisk (*).

It was interesting to observe marginal asymmetry in the spatial orientation of residues in the
interface. On account of this, similar residues in different chains were found to be contributing
differently to the interface binding energy, thus one could be identified as a hotpot residue but not
the other. Complete conservation was observed in the sequence alignment (Figure 2A) for Asn49,
Arg187, Ala237 and Arg238, which appeared as interface residues across all sequences. The important
inter-subunit interactions formed by these residues were deduced from the Protein Interactions
Calculator (PIC) web server [95]. Asn49 was observed to form hydrogen bonds with a number of
residues including Asn49 * and Ser189 * as well as Glu199 *. Variability in Ser189 position did not
affect the presence of the Asn49–Ser189 * bond in the CAs. Glu199 also formed hydrogen bonds with
the same residue in the neighboring monomer. In Geothermobacter spp., Glu199 was replaced by a
Gln residue, but showed similar interactions in the interface. The Arg187–Ala237 * hydrogen bond in
the interface was common to all proteins. The combination of Arg187–Asp102 and Asp102–Arg207
intra-subunit salt bridges (TaCA numbering) has been previously recognized in TaCA and is referred
to as an ion-pair ‘latch’ [29]. This was observed for the α-CAs in this study, except the Geothermobacter
spp. α-CAs, which lacked an Asp102–Arg207 salt bridge due to an Ile substitution in place of Arg207.

Sulfurovum lithotrophicum’s α-CA (SlCA) contained all 14 motifs identified; thus, it was used as
a representative structure in Figure 3C for the mapping of motifs and interface residues, which are
outlined in Table S6. This was in order to visualize the interface, the motif positions, and their
interactions. High variability of most interface residues in Motifs 5 and 7, besides hotspot residue
Asn49, was observed. Physicochemical properties in each position varied across the sequences with
possible implications to individual stabilities of the proteins, which were searched further through
MD simulation analyses (see Section 2.4.3). Characteristics of the interfaces obtained from the Protein
Interfaces, Surfaces and Assemblies (PDBePISA) web server [96], including the number of hydrogen
bonds, salt bridges formed as well as the BSA of each model, are listed in Table S7. Inter-subunit
hydrogen bonds and salt bridges were also queried from the PIC web server [95]. Results from
PDBePISA revealed the protein subunits to be held together by approximately 7–18 inter-subunit
hydrogen bonds of moderate strength with H-bond distances varying between 2.6 Å and 3.7 Å.
Salt bridges are bonds between groups of opposite charges between the negative carboxyl oxygen atom
from either Asp or Glu residues and the positive nitrogen atom from either His, Lys or Arg residues
within 4 Å of each other [97,98]. Their presence in protein structures has been recognized as potentially
stabilizing, and possibly contributing to and increasing their thermostability [99,100]. Both PIC and
PBDePISA concurred that CmCA, both Geothermobacter CAs, HtCA, VaCA2 and VdCA did not contain
any inter-subunit salt bridges.

The BSA and the total solvent accessible area of each dimer was calculated in Å2 and both are
shown in Table S7. CmCA, HtCA and PmCA had the largest buried surface areas of 2094.6 Å2, 2082.8 Å2

and 2011 Å2, respectively. Dimeric buried interface residue areas are similar to those reported for
the thermophilic α-CA species Sulfurihydrogenibium azorense (PDB ID: 4 × 5S) (2050 Å2), with that of
Sulfurihydrogenibium yellostonense (PDB ID: 4G7A) being much higher at 2300 Å2 [34,74]. In comparison
to the retrieved sequences, the α-CA from the mesophile Neisseria gonorrhoea (PDB ID: 1KOP) was also
put through PISA, and was observed to have a smaller buried surface area of 1691 Å2.

2.3. Dynamic Characterization of the Proteins

Although the analysis of static multimeric models gave an adequate representation of the
important interactions within the structures, proteins often have a number of conformations in vivo,
thus necessitating their simulation and analyses [101]. MD simulations allowed sampling of a wide
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range of these conformations, as shown by the root mean square deviation (RMSD) Kernel density
estimation (KDE) plots in Figure 4. All simulations had equilibrated by 40 ns (Figure S1), substantiating
the 50 ns runs. Average BC and hydrogen bond analysis of the simulations at room temperature (300 K)
gave a clearer picture of the residues with important roles during these conformational fluctuations.
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Figure 4. Kernel density estimation plots for root mean square deviation (RMSD) of the α-CA proteins
simulated at 300 K, 363 K, 393 K and 423 K. The average RMSD of each histogram is shown as a dotted
line colored the same as its respective histogram. The CA from the Logatchev hydrothermal field,
LOGACA, as well as CmCA, PmCA and TaCA which have been previously characterized, are labelled
in red.

2.3.1. Dynamic Residue Network Analysis Confirms Interfacing and Hotspot Residues along with
Previously Identified Functional Residues

Dynamic residue network (DRN) analysis is an approach of MD-TASK designed to observe the
changes in the communication of protein residues during an MD simulation [50]. The Cβ atoms
(Cα for Gly) of residues are represented as nodes as part of this network and the shortest path to
each node is calculated. Average BC calculations were performed to identify residues important
in the communication of these α-CAs. Distributions of the average BC values across the proteins
were positively skewed, thus relevance of high communication residues was considered for the top
5% residues showing the highest average BCs and these are listed in Table 3. Some of the hotspot
and interface residues that we identified (Section 2.2.2) were observed to have significant average
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BCs, displaying frequent usage and noteworthy importance in the functioning of the α-CAs. It was
observed that the asymmetric behavior displayed during interface analysis of static structures was
more pronounced in the MD simulations. Similar residues in different chains showed different average
BC intensities (Figure S2), thus in all proteins, residues appearing above the 5% cut-off were marginally
different for monomers of the same protein. Hotspot residue Asn49 showed relatively high average BC
compared to other residues in their respective structures in the average BC analysis of most proteins.
Interface residue Asn194 (SlCA numbering), which was not found in α-CAs from Aquifaceae and
NtCA, was also found above the cut-off. Residues with high average BCs in TaCA were observed
to be located more towards the tetramerization interface, with the Cys residues that formed the two
inter-subunit disulfide bonds displaying the highest usage. These disulfide bonds have been shown to
be crucial for the thermostability of TaCA [29]. Val64 and Leu68 (TaCA numbering) had relatively high
BCs and were observed to form hydrophobic interactions in the dimerization interfaces of both dimers.
Contributing to the tetramerization interface was Lys65, forming hydrogen bonds with Lys247 in the
opposite monomer in a different dimer.

Table 3. The top 5% residues showing the highest average BC values. All residues with known
functions are in bold and interface residues are italicized.

CA Residues

CmCA
Chain A: Asn53 h, Asn122, Glu132, Ile144, Val146 c, Ala148, Asn197, Glu207 h, Gly208, Val209 c, Trp211 c, Ile247

Chain B: Asn53 h Ile57, Asn122, Glu132, Val146 c, Ala148, Phe196, Asn197, Ser199, Glu207 h, Val209 c

GEprmCA Chain A: Arg48, Asn114, Glu124, Asn135, Val138 c, Ser140, Phe188, Val201 c, Ile202, Trp203 c, Arg238
Chain B: Arg48, Val53, Ile96, Asn114, Glu124, Asn135, Val138 c, Ser140, Val201 c, Trp203 c, Ala237, Arg238

GHr1CA
Chain A: Asn38 h, Glu113, Asn124, Val127 c, Ser129, Phe177, Asn178, Gln188 h, Trp192 c, Arg227

Chain B: Asn38 h, Val42, Asn103, Glu113, Val127 c, Ser129, Asn178, Gly189, Val190 c, Trp192 c, Leu224, Ala226, Arg227 h

HtCA
Chain A: Asn54 h, Glu130, His132 z, Val144 c, Asn196, Ser198, Thr200 p, Glu206 h, Val208 c, Trp210 c

Chain B: Asn54 h, Glu130, His132 z, Val144 c, Ala146, Asn196, Ser198, Glu206 h, Val208 c, Trp210 c, Arg245 h, Ile247

LOGACA
Chain A: Asn59 h, Asp107, His136 z, Val148 c, Ser198, Ser200, Cys206 d, Gly209,Val210 c, Ala246 h, Arg247

Chain B: Asn59 h, Val63, His124, Glu134, Val148 c, Tyr197, Ser200, Gly209, Val210 c,Trp212 c, Arg247

NtCA
Chain A: Gln58, Val61, Asn122, Glu132, Glu143, Val146 c, Ala148, Tyr196, Val209 c, Trp211 c, Arg245 h

Chain B: Asn57 h, Val61, Asn122, Glu143, Val146 c, Ala148, Asp197, Val209 c, Trp211 c, Leu242, His243, Arg245 h

PhCA
Chain A: Asn52 h, His117, Glu127, Val141 c, Ser192, Ser194, Thr196 p, Cys200 d, Glu202 h, Val204 c, Asn239, Arg2410 h

Chain B: Asn52 h, Glu127, Val141 c,Tyr191, Ser194, Glu202 h, Gly203, Val204 c, Arg241

PmCA
Chain A: Asn49 h, Val53, His114, Glu124, Val138 c, Ser189, Ser191, Cys197 d, Val201 c, Ala237,

Chain B: Asn49 h, Val53, Ile55, His114, Glu124, Val138 c, Ser189, Ser191, Cys197 d,Glu199 h, Gly200, Val201 c

SlCA
Chain A: Glu129, Val143 c, Ala145, Arg192 h, Phe193, Asn194, Ser196, Val206 c, Trp208 c, Arg243 h

Chain B: Asn53 h, Ile57, Asn119, Leu128, Glu129, Val143 c, Ala145, Asn194, Val206 c, Trp208 c, Arg243 h, Val244 h, Val245

SNbcCA
Chain A: Asn53 h, Ile57, Glu129, His131 z, Val143 c, Ala145, Asn194, Ser196, Glu204, Val206 c, Trp208 c, Arg243 h

Chain B: Gly51, Asn53 h, Glu129, Val143 c, Ala145, Phe193, Asn194, Val206 c, Trp208 c, Arg243

SrCA
Chain A: Asn54 h, Ile58, Asn120, Glu130, Val144 c, Ala146, Phe193, Glu204 h, Val206 c, Trp208 c, Arg243

Chain B: Asn54 h, Glu130, Val144 c, Ala146, Asn194, Ser196, Glu204 h, Val206 c, Trp208 c, Arg243 h

TaCA

Chain A: Ile58, Ser60, Ala63, Val64 h, Lys65, Cys67 d, Leu68, His119, Val143 c, Gly145, Tyr191, Arg192 h, Val206 c,
Ile209, Lys247

Chain B:Val64 h, Lys65, Cys67 d, Leu68, Gly145, Tyr190, Tyr191, Arg192 h, Tyr193, Val206 c, Trp208 c, Ile209, Lys247
Chain C: Ile58, Val64 h, Lys65, Cys67 d, Leu68, His119, Gly145, Tyr191, Arg192 h, Arg243 h, Lys247

Chain D: Val64 h, Lys65, Cys67 d, Leu68, Tyr190, Tyr191, Arg192 h, Val206 c, Lys247

VACA1
Chain A: Thr45, Ile51, Asn112, Glu122, His124 z, Val136 c, Ser138, Phe185, Asn186, Val198 c, Trp200 c, Ala233 h, Arg234 h

Chain B: Ile51, Asn112, Val136 c, Phe185, Asn186, Ser188, Val198 c, Trp200 c, Ala233 h, Arg234 h

VaCA2
Chain A: Val135 c, Ala137, Arg183 h, Phe184, Gly196, Val197 c, Trp199 c, Met234 h

Chain B: Gln45, Asn46, Ile50, Ile52, Asn111, Glu121, Val135 c, Ala137, Phe184, Asn185, Trp199 c, Asn231, Ala23 h,
Arg233, Met234 h, Val235

VdCA
Chain A: Ile50, Asn111, Glu121, Val135 c, Ala137, Phe184, Asn185, Val197 c, Trp199 c, Ala232 h, Arg233 h

Chain B: Asn46 h, Ile50, Asn111, Glu121, Val135 c, Ala137, Phe184, Asn185, Val197 c, Trp199 c, Arg233 h

h Hotspot residues; z Active site His residue;c CO2 binding pocket residue; d Cys–Cys disulfide bond residue;
p proton shuttling residues.
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Amongst the residues identified were also those previously identified in literature as crucial to the
catalytic activity of the α-CAs. CO2 binding pocket residue Trp211 (CmCA numbering) showed a high
usage in most proteins. Of particular interest was Val201, which was observed to play a role in the
dimer interface as well as operating as a CO2 binding pocket residue. This occurrence was observed
across all the proteins simulated with relatively high average BC. Functionality of the residues without
annotation in Table 3 was unknown from previous literature and was further searched using hydrogen
bond analysis.

2.3.2. Intra-Subunit Hydrogen Bond Analysis Reveals Important Networks Going through High
Communication Residues Identified in Average BC Analysis

Hydrogen bonds play a key role in protein stability [102,103]. Analysis of intra-subunit
bonds substantiated the presence of high communication residues identified in average BC analysis,
whose function was not recognized from previous literature. These residues were queried from the
results produced by cpptraj [104] and the networks shown in this study were constructed on the basis
of persistent hydrogen bonds, i.e., bonds lasting more than 90% of the simulation, around the residues.
All proteins were observed to have a hydrogen bond network around Glu124, which appeared in the
top 5% for most CAs in average BC analysis. This network involved at least two high communication
residues in the proteins, except in HtCA where the Glu residue was the only one. For all proteins,
it included hydrogen bonds between Glu124 and residues His109 and His126, which are functional as
Zn2+ coordinating residues. GEprmCA and GHr1CA had the greatest number of high communication
residues, i.e., four, in a single hydrogen bond network (Glu124, Ser140, Asn114 and Val53—GEprmCA
numbering).

An illustration of GEprmCA’s Glu network is shown in Figure 5A. The largest hydrogen bond
network, with 11 residues interacting for most of the simulation, was observed for thermostable
PmCA (Figure 5B) and LOGACA (Figure S3K) as well as for PhCA (Figure S4D), which all belong
to the same class. Amongst these 11 residues were CO2 binding pockets Trp203 and Leu192, both of
which formed hydrogen bonds with high communication residue Ser191. The Leu192–Ser191–Trp203
network was also present, but observed to be separate from the Glu124 network in CmCA, HtCA,
SlCA and SrCA (Figures S3D,J and S4H,L). Apart from its Glu network shown in Figure 5C, NtCA was
observed to possess a second unique hydrogen bond network (Figure 5D), centered on Gln58 and
including Leu242 (NtCA numbering), both which showed high usage in average BC analysis. Persistent
hydrogen bonds were observed between Gln58 and hotspot residues Glu207 and Arg245, as well as
intra-subunit disulfide bonds Cys205 and Arg237 (NtCA numbering). Interactions formed by Glu207
(NtCA numbering) in the interface were probed and mentioned in the interface analysis (Section 2.2.2)
This additional network is presumed to be of weighty importance towards stability of the protein both
within and across subunits. Hydrogen bond networks for the rest of the structures are shown in the
(Supplementary Data Figures S3–S5).

2.4. Identification of Potentially Thermostable α-CAs Using High Temperature Simulations

Simulation of the proteins at increasing temperatures of 300 K, 363 K, 393 K and 423 K in this
study unearthed other potentially thermostable α-CAs. Behavior patterns of the uncharacterized CAs
were compared to those of CAs already pre-determined to be thermostable, i.e., CmCA, LOGACA,
PmCA and TaCA, upon trajectory analyses. Similar patterns, and possibly those displaying higher
thermostability properties, were seen for some of the proteins in these analyses, which included Rg,
RMSF, DCC and inter-subunit hydrogen bond analysis. Results from the analysis of the temperature
MD simulations also further substantiated the importance of multimeric simulations.
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Figure 5. Hydrogen bond networks around some residues with high average BC (labelled in blue)
confirmed through average BC analysis. Networks shown for GEprmCA (A), PmCA (B) and NtCA
(C), respectively, pass through the conserved Glu132 (NtCA numbering). (D) shows the hydrogen
bond network around NtCA’s Gln58. All bonds were present for > 90% of the simulation. Functional
residues are annotated as follows: hotspot residues—h; interface residues—i; intra-subunit disulfide
Cys residues—d; CO2 binding pocket residues—c; Zn2+ coordinating residues—z.

2.4.1. Compactness of the Chains and Catalytic Cavities from Each Protein Is Assessed by Rg Analysis
at Increasing Temperatures

The cavity with Zn2+ contains all the catalytically important residues, including those forming
the CO2 binding pocket, His coordinating residues, and proton transfer residues. Maintenance of this
cavity at high temperatures is thus perceived as important for the sustenance of catalytic activity in
these extreme conditions. Rg analysis, which assesses protein compactness, was used to monitor the
compactness of (i) the separate chains and (ii) the catalytic cavity of each chain across all temperature
trajectories; these are illustrated in Figure 6. The length of the vertical lines represent the minimum
and maximum Rg exhibited at each temperature. This approach was recently used for the analysis
of the active and allosteric sites of the main protease of SARS-CoV-2 [105]. Although the CAs are
homo-multimers, the behavior of either the individual chains, the pockets, or both, was asymmetrical
at one or more temperatures for all proteins. This was, however, less evident for CmCA, SlCA and
TaCA. At all four temperature simulations, compactness of the catalytic cavities was maintained for
CmCA, GEprmCA, NtCA, PmCA, SlCA and TaCA, an indication of resisting denaturation at high
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temperatures, and possibly the maintenance of catalytic activity. Decrease in compactness was noted
for GHr1CA and HtCA’s catalytic cavities as well as their chains with an increase in temperatures.
Despite a general increase in Rg for SNbcCA’s chains A and B at 393 K, it was interesting to observe a
maintenance of compactness for the catalytic pockets. This was also seen for GHr1CA’s and SrCA’s
chain B at 423 K, as well as for VaCA2.

2.4.2. RMSF Analysis Reveals Stability of Some Proteins at High Simulation Temperatures

RMSF is a measure of average residue displacement across a trajectory compared to its position
in the initial frame. The effects of increasing temperature on individual residue fluctuations in the
multimeric structures were investigated using RMSF analysis. Rigidity of the residues at lower
temperatures is a desirable characteristic for increased thermostability and is necessary to make up for
fluctuations at high temperatures found in the CO2 sequestration process [106,107]. The N-terminal
is known to be a generally flexible region and exhibited high residue fluctuations in most proteins,
particularly at 393 K and 423 K (Figure S6). This flexibility could also be accredited to the removal of the
signal peptide identified in Section 2.1.2. Referenceα-CAs CmCA and PmCA displayed low fluctuations
at all four temperatures. These proteins are known to possess high thermal stability properties; thus,
a similar effect was explored in the proteins simulated as a speculation of thermostability, and was
observed for NtCA. At 423 K, marginally higher fluctuations were observed for LOGACA compared to
lower temperatures, and a similar behavior was noted for GEprmCA, PhCA, SlCA, SrCA and VaCA1.
The highest fluctuations were seen at 423 K for VdCA, HtCA, GHr1CA, HtCA and SNbcCA, in order of
increasing fluctuations. These results implied a reduced tolerance to high temperatures due to losses
in structural rigidity compared to the other α-CAs.

2.4.3. Disruption of the Interfaces in High Fluctuating α-CAs Is Investigated

The secondary structures adopted by proteins during folding are important for their function
and structural integrity; and consequently, protein unfolding when exposed to extreme conditions is
often accompanied by secondary structure loss [108–110]. As such, the high fluctuations observed for
GHr1CA, HtCA, SNbcCA, as well as VdCA, prompted the investigation of the occurrence of secondary
structure elements of each residue over the 50 ns trajectories using Define Secondary Structure of
Proteins (DSSP) analysis [111]. Particular attention was paid to the interface residues identified in
Section 2.2.2, and this is shown in Figure 7, along with the changes in RMSF as well as the average BC
of each residue with increases in temperature. RMSF of interface residues for the rest of the structures
is illustrated in Figure S7. Loops in protein structures are generally known as regions of high flexibility.
Most interface residues in the proteins in Figure 7 were observed to be present in loop regions upon
DSSP analysis. Hydrophobic interactions formed between HtCA’s Met48, found in Motif 5, and Ile51,
which was not located on any motif, are suggested to prevent solvent accessibility from the N-terminal
end of the interface. This is signified by the relatively lower fluctuations observed in the N-terminal
region of HtCA at 423 K compared to its other interface residues at this temperature. These hydrophobic
interactions were also conserved for CmCA, LOGACA, PhCA and PmCA. The last three CAs however,
also contained hydrophobic residue Ile49 (PhCA numbering) thus lower fluctuations were observed at
423 K (Figure S7) compared to HtCA which had hydrophilic Glu instead. Inevitably, disruption of the
predominantly alpha helical structure involving Met48 and Ile51 (HtCA numbering), in both HtCA
chains was observed at 423 K. Interface residues of HtCA in Motif 7 (Tyr66, Asp67 and Asp69) located
on the opposite periphery to Motif 5 interface residues, were amongst the highest fluctuating residues in
both chains. These residues create a polar environment in this region, allowing easy solvent accessibility.
The remarkable stability of CmCA’s interface towards Motif 7 was observed to be brought about by the
hydrogen bonds formed by Asn68–Thr69, Thr64–Asp105 and Asn68–Asn70. It is also worth noting
that the Cys residues involved in the tetramerization disulfide bridge in TaCA, which are located in
Motif 7, barricade solvent accessibility to the dimerization interface, thus the exceptional interface
stability was observed (Figure S7). In VdCA, the degradation of the anti-parallel beta-sheet involving



Int. J. Mol. Sci. 2020, 21, 8066 15 of 32

Ala58 was also seen in both chains at 423 K. Differences in the structural propensities of interface
residues was also noted between chains, particularly for HtCA (Figure 7B), further highlighting the
asymmetric chain behaviors.

Except for the hotspot residue Asn49, the interface residues in Motifs 5 and 7 were observed to be
low communication residues. These residues are oriented closer to the N-terminal as well as being
obscurely accessible for the solvent (see Figure 3C), compared to those located closer to the C-terminal
across all proteins. Asn49, which showed a higher average BC compared to these interface residues,
was completely conserved across all sequences, whereas the rest in Motifs 5 and 7 displayed very low
conservation. Val201 (HtCA numbering) was observed to have higher average BC compared to most
of the interface residues at most temperatures. Hydrogen bond interactions in the interface are further
analyzed in Section 2.4.4.

2.4.4. Effects of Temperature on Hydrogen Bond Interactions in the Interface Are Monitored by
Inter-Subunit Hydrogen Bond Analysis

Following the identification of interface residues in Section 2.2.2, it was interesting to identify
the occurrence of hydrogen bonds in the interface across trajectories with an increase in temperature
(Figures S8–S11). During this analysis, it was important to differentiate between the hydrogen bonds
contributing to interface stability from those formed by temporary proximity of residues due to
fluctuations. The most important hydrogen bonds were identified as those maintained for a larger
fraction of the trajectory, whereas numerous short-lived bonds were an indication of residue fluctuations
in the interface. The latter was seen for proteins HtCA, SNbcCA and SrCA at 423 K, with an absence of
persistent hydrogen bonds being observed at this temperature (Figure 8). HtCA and SNbcCA interface
residues were correspondingly showing large fluctuations at 423 K in Section 2.4.3. NtCA showed a
number of hydrogen bonds present for most of the simulation at all four temperatures (Figure S9),
which led to the low fluctuation in the interface residues (Figure S7). Hydrogen bonds mentioned for
CmCA in Section 2.4.3 were observed at all four temperatures (Figure S8), thus, they are confirmed to
contribute to interface stability. Upon a closer look at the results, it was observed that Val201, which was
identified in the interface in Section 2.2.2 and had a high average BC, was not seen forming any hydrogen
bonds in the interfaces of all the proteins simulated. Its high average BC values across all proteins are
therefore accredited to its role in the CO2 binding pocket. An increase in short-lived hydrogen bonds
was accompanied by the loss of the two Asp60-Lys62 * long-lived hydrogen bonds in PmCA at 393
K and 423 K (Figure S9). In TaCA, the tetramerization interface had adjacent monomers (chain A–D
and chain B–C) showing short-lived hydrogen bonds between Lys65-Ala66 * and Lys65-Lys247 * only,
with the latter having been identified in average BC analysis. The dimerization interfaces contained
a consistent hydrogen bond pattern throughout the temperatures, with the most long-lived bonds
forming between Lys65 and disulfide bonding Cys67 * (Figure S11).
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2.4.5. Correlated Motions Confirm Synchronized Movement of the Dimers through
Interfacing Interactions

To gain insight on the effect of temperature on the synchronized movements between the residues
of each protein, the correlation coefficients of motions between the Cα atoms were calculated as
described in Materials and Methods (Section 3.9). Correlation matrices were plotted as heatmaps to
visualize these motion dynamics (Figure 9). Common to all proteins, highly synchronized motions
were observed between chains, confirming communication through the interface. This observation
also signified the importance of oligomerization to the thermostability of these enzymes, and more so,
their simulation in these states. The highest correlated intra- and inter-subunit motions at 423 K were
observed for GHr1CA, NtCA, PhCA and VaCA1. Interestingly, GHr1CA was amongst the CAs showing
increased fluctuations in RMSF analysis at this temperature. Unsynchronized motions between chains
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observed at 423 K for HtCA, LOGACA and SNbcCA, as well as the reduced correlations between the
chains in PmCA at 393 K and 423 K, were consistent with the increase in intermittent hydrogen bonds
observed in Section 2.4.3.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 21 of 34 

 

 
Figure 9. Dynamic cross correlation (DCC) analysis of α-CAs at 300 K, 363 K, 393 K and 423 K. 
CmCA, LOGACA, PmCA and TaCA, which have been previously characterized, are labelled in red. 

TaCA displayed a behavior slightly different from the dimeric structures. In this tetrameric 
structure, chains A and B, which are diagonally oriented to each other, were observed to exhibit 
higher synchronized motions compared to those between chains A and C, which form the bacterial 
dimer. The same was observed for chains C and D in comparison to the dimer formed by chains B 
and D. This observation corroborates with the average BC analysis results, where the highest 
communication was observed passing through the Cys residues forming the inter-subunit disulfide 
bonds. Low anti-correlated motions were present between the adjacent monomers, i.e., chain A–D 
and chain B–C, forming the dimers in TaCA possibly due to reduced interactions between the 
chains. 
  

Figure 9. Dynamic cross correlation (DCC) analysis of α-CAs at 300 K, 363 K, 393 K and 423 K. CmCA,
LOGACA, PmCA and TaCA, which have been previously characterized, are labelled in red.

TaCA displayed a behavior slightly different from the dimeric structures. In this tetrameric
structure, chains A and B, which are diagonally oriented to each other, were observed to exhibit
higher synchronized motions compared to those between chains A and C, which form the bacterial
dimer. The same was observed for chains C and D in comparison to the dimer formed by chains
B and D. This observation corroborates with the average BC analysis results, where the highest
communication was observed passing through the Cys residues forming the inter-subunit disulfide
bonds. Low anti-correlated motions were present between the adjacent monomers, i.e., chain A–D and
chain B–C, forming the dimers in TaCA possibly due to reduced interactions between the chains.

3. Materials and Methods

The overall methodology is shown in Figure 10.
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3.1. Sequence Retrieval

Retrieval of sequences for this study was conducted in two consecutive parts. In the first part,
Position-Specific Iterated BLAST (PSI-BLAST) in the National Center for Biotechnology Information
(NCBI) [112] was utilized for two iterations to identify sequences that were homologous to the query
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sequences from three organisms originating from hydrothermal vents. These were CmCA (NCBI
Accession Number: WP_007474387), and previously crystallized PmCA and TaCA (NCBI Accession
numbers: WP_015898908.1 and WP_013538320.1, respectively) [29,42,51]. The second part of retrieval
involved searching for published literature on the origins of the organisms, and only those verified to
be from hydrothermal vents were considered. Further sequences that were more than 40% similar to
the query, with query coverage above 90% were selected.

Overall, 15 sequences were identified from the organisms that were previously isolated from
hydrothermal vents (Table S1). These organisms included C. mediatlanticus [51], Geothermobacter sp.
EPR-M [67], Geothermobacter sp. HR-1 [68], Hydrogenimonas thermophila [113], Nitratiruptor tergarcus [114],
Persephonella hydrogeniphila [53], P. marina [40,42], Sulfurovum lithotrophicum [55], Sulfurovum riftiae [56],
Sulfurovum sp. NBC37-1 [57,115], T. ammonificans [29], Vibrio antiquarius [116] and Vibrio diabolicus [54].
Two different α-CA sequences from the bacterium V. antiquarius were included in the list of sequences,
as well as the unclassified sequence ofα-CA structure LOGACA. 3D structures of LOGACA, PmCA and
TaCA (PDB IDs: 6EKI, 6IM3 and 4C3T, respectively) were downloaded from the Protein Data Bank
(PDB) [35,52,117,118]. Table S1 summarizes the accession numbers and query coverages, as well as
E-values corresponding to α-CAs of each bacterium with the class containing a total of 15 sequences.
Sequence lengths and percentage identities to the query sequences are also shown in the table.

3.2. Sequence Alignments and Signal Peptide Prediction

Multiple sequence alignment (MSA) was performed using the Tree-based Consistency Objective
Function for Alignment Evaluation (T-Coffee) [72,73] and Multiple Alignment using Fast Fourier
Transform (MAFFT) [119] alignment programs with default settings, and visualized in Jalview v2 [120].
An all-versus-all sequence identity matrix was produced for the best-fitting alignment by use of an
in-house Python script, which tallied the number of identical amino acid positions between each
sequence and all other sequences in the dataset, representing the total as a fraction of the sequence
length in the matrix [121]. A heat map of the matrix was subsequently generated using GNU Octave
v4.0.0 [122].

All α-CA sequences in the dataset, except those for crystallized LOGACA, PmCA and TaCA,
were simultaneously submitted for signal peptide prediction using two different prediction servers,
Signal-Blast and Phobius [86,87]. The consensus of the servers was used to discern the presence or the
absence of a signal peptide in each of the proteins.

3.3. Phylogenetic Tree Analysis

MEGA v7 [123] was employed for phylogenetic tree calculations using the T-Coffee MSA as
the input. The tree models were generated with gap deletions of 90%, 95% and 100%, using the
strong branch filter option. Bayesian Information Criterion (BIC) scores were used to rank the models,
and the first 3 models displaying the lowest BIC scores were selected for phylogenetic tree generation.
The top three models for all gap deletions were the Le and Gascuel (LG) model with discrete gamma
distribution and invariable sites (LGGI), the Whelan and Goldman (WAG) model with discrete gamma
distribution (WAGG), and the WAG model with discrete gamma distribution and invariable sites
(WAGGI) [124,125]. The Nearest-Neighbor-Interchange (NNI) maximum likelihood method was
utilized, with the initial tree made by employment of the default neighbor joining (NJ/BioNJ) method.
A total of nine trees were produced (3 models × 3 gap deletions) with 1000 bootstrap replications each.
Dendroscope v3.5.9 [126] was used to visualize the phylogenetic trees, and the branching consistency
of each tree with its corresponding consensus tree was checked. The best model and gap deletion were
picked from the trees which showed similar branching and bootstrap values to their consensus trees.

3.4. Motif Analysis

Motif analysis was carried out using Multiple Expectation Maximisation for Motif Elicitation
(MEME) v4.11 [88], with a motif width of 3–20 amino acids, to identify conserved patterns in
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potentially important functional regions. A maximum of 20 motifs was searched. Overlapping motifs
were identified using motif pairwise correlations calculated by the Motif Alignment and Search
Tool (MAST) [127]. High correlations observed above 0.6 indicated motif redundancy, and these
motifs were consequently not included in the results. Those that showed statistical insignificance
(E-value > 0.05) were also removed from the results. An in-house MATLAB script which calculates the
frequency of motif occurrence across the sequences was used to produce a heat map displaying motif
conservation [121,128].

3.5. Homology Modelling

LOGACA (PDB ID: 6EKI) was selected as a template and used to model allα-CA proteins except for
PmCA and TaCA, whose structures were obtained from the PDB for further analyses. 3D calculations
proceeded, utilizing the slow refinement option in automodel by MODELLER v9.20 [129]. The α-CA
proteins were modelled as dimers with 100 models being produced per sequence. The first 5 models
exhibiting the lowest z-DOPE scores were chosen for further structural validation using Verify3D [93],
PROCHECK [92] as well as ProSA [130] servers. Motifs, generated using MEME suite, were mapped
onto a representative structure using PyMOL v1.7.2.1 [131], a molecular graphics program.

3.6. Protein–Protein Interface Analysis

To identify interface residues of the multimeric proteins, all models and crystal structures were
subjected to interface analysis using five different web servers: Hotregion [132]; Knowledge-based
FADE and Contacts (KFC) server [133]; the Protein Interfaces, Surfaces and Assemblies (PDBePISA)
web service [96]; PPCheck [134]; and Robetta [94]. The web servers, excluding PDBePISA, were further
queried for hotspot residues in the interface. PDBePISA is a web-based tool that implements the graph
theory method in analyzing macromolecular complex interfaces, producing information such as the
solvent accessible surface areas, BSA and interface residues, as well as inter-subunit hydrogen bonds
and salt bridges [96]. Hotregion and KFC make use of machine learning to predict interfacing residues.
Robetta identifies interface residues and mutates them to alanine, then calculates the change in binding
free energy (∆∆Gbind) upon mutation. A change in ∆∆Gbind above 1 kcal/mol indicates that mutation
of the residue results in destabilization, thus it is regarded as a hotspot residue [94]. PPCheck identifies
hotspot residues using alanine scanning as well. Interface residues and hotspot were then selected by
consensus approach, as such, for interface residues three out of five, and for hotspot residues three
out of four web servers were required to agree. All these residues, along with motifs generated using
MEME suite, were mapped onto a representative dimeric structure using PyMOL [131].

Intra-subunit interactions were analyzed using the Protein Interactions Calculator (PIC) web
server [95]. It uses standardized cut-offs for a wide range of interactions, including disulfide bridges,
hydrophobic, aromatic–aromatic, ionic and cation–Pi interactions as well as hydrogen bonds. In this
study, ionic interactions were queried with a cut-off distance of 4 Å.

3.7. Molecular Dynamics Simulations

MD simulations were performed on the dimeric (tetrameric for TaCA) assemblies of the
proteins at four different temperatures; 300 K, 363 K, 393 K and 423 K. H++ server [135] was
used to protonate the structures at pH 8.00 to mimic the alkaline environment of CO2 sequestration.
All His residues coordinating Zn2+ were manually cross-checked for the correct protonation states.
The first two His residues were confirmed to be HIDs, with the δ-nitrogen protonated and the
third His residue an HIE, with the ε-nitrogen protonated. Zn2+ parameters previously generated
by Sanyanga et al. [82] using AmberTools17 [136] and Gaussian09 [137] were inferred onto the
α-CA structures. The AMBER force field ff14SB [138] was utilized. Coordinate and topology files
were produced using tleap [139] and the system was solvated with a cubic water box of 10 Å.
ACPYPE (AnteChamber PYthon Parser interfacE) [140] was utilized for the generation of gmx files for
minimization as well as subsequent equilibration and simulation using GROMACS 2016.1 [141] at
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each of the four temperatures. Steepest descent minimization was performed with an energy step size
of 0.01, followed by NVT/canonical ensemble equilibration at 300 K, 363 K, 393 K and 423 K in order to
stabilize the temperatures. NPT/isothermal-isobaric equilibration was performed at the temperature
of the corresponding NVT, and a pressure of 1 atm followed by 50 ns MD simulations at the same
temperature. All calculations were performed at Centre for High Performance Computing (CHPC)
clusters in Cape Town (SA). All simulations ran with a time step of 2 fs and coordinates were saved
every 10 ps during the simulation. Root mean square fluctuation (RMSF) values were calculated for the
residues of each complex. The radius of gyration (Rg)was calculated for the individual chains of each
complex, and for the individual catalytic pockets. Hydrogen bond interactions across the multimers
were identified using the hbond command in cpptraj [104] from AmberTools17 with a donor-acceptor
distance cut-off of 3.5 Å. Define Secondary Structure of Protein (DSSP) analysis [111] of interface
residues was performed using the secstruct command, also in cpptraj.

3.8. Dynamic Residue Network Analysis

Betweenness centrality (BC) for each residue in the multimeric α-Cas and Cβ atoms (Cα for Gly),
was calculated by use of the MD-TASK tool [50]. BC measures the usage of a node by calculating how
often the shortest paths from all other nodes pass through it. The script, calc_network.py, in MD-TASK
was used for the calculation of BC over the last 20 ns of the trajectories with a threshold of 6.7 Å,
followed by the calculation of average BC using the avg_network.py script over MD trajectories. Average
BC for each protein was normalized, scaling all values into the range 0–1. High average BC values
directly translate to high residue usage, substantiating its importance in protein communication.

3.9. Dynamic cross Correlation

Dynamic cross correlation (DCC) analysis was implemented for the Cα atoms in each multimeric
protein. Matrices were produced by MD-TASK software using the calc_correlation.py script over the
entire 50 ns trajectories using the following equation:

Cij =
〈∆ ri.∆ r j〉

(〈∆r2
i ∆r2

j 〉)
1
2

(1)

Correlation matrix heatmaps for each trajectory were plotted using Mathematica v11.3 (Wolfram
Research Inc.: Champaign, IL, USA) [142].

4. Conclusions

The urgency of the discovery of thermostable carbon dioxide sequestration agents motivated the
present study of α-CAs from bacteria with hydrothermal vent origins. With most studies focusing
on the monomeric forms of the enzymes, this study reflected markedly on the importance of the
protein-protein interactions formed by the multimeric proteins for their function, as well as stability,
at high temperatures.

Various computational techniques were successfully employed in the retrieval and analysis of a
total of 15 CAs, including LOGACA, PmCA and TaCA, which had predetermined structures. The other
structures were calculated using homology modelling and several validation programs deemed the
dimeric structures to be of good quality. Sequence alignments and motif analysis revealed high levels
of conservation amongst the CAs with all but two (Geothermobacter CAs) showing the presence of
signal peptides. Hotspot and other interface residues were identified for the multimeric structures by
various web servers. Importance of these residues in protein function was further fortified by their
presence in the group of residues showing high usage via average BC calculations over MD simulation
trajectories at 300 K. The detection of important intra-subunit hydrogen bond networks was also
achieved. The unique network identified in NtCA, involving a combination of high communication
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residues, hotspot residues as well as Cys205 (NtCA numbering) which forms an intra-subunit disulfide
bond, is proposed to have a significant contribution towards its thermostability.

Residue composition of the interface motifs proved crucial to protein thermostability after
investigating behavior of the interface residues using RMSF, DSSP and average BC analyses of
simulations at 300 K, 363 K, 393 K and 423 K. CmCA, LOGACA, PhCA and PmCA, which contained
hydrophobic residues shielding the interface core from solvent accessibility, demonstrated lower
fluctuations, and consequently higher thermostability properties. This was also accompanied by
consistency in interface hydrogen bonds at high temperatures. All proteins showed high correlation
between chains at one or more temperatures, further fortifying the importance of interface residues.
TaCA portrayed a slightly different behavior compared to the rest of the CAs, with further confirmation
of the two disulfide bonds in the tetramer interface as the main source of its thermostability.
The importance of the catalytic cavity was also considered and monitored using Rg analysis, with most
proteins maintaining compactness of the cavities at high temperatures. It is also worth noting that,
for all CAs, asymmetrical behavior was observed for monomers of the same protein throughout
the analyses.

Ultimately, a consensus of all the methods utilized in this study revealed NtCA, besides those
previously characterized, as the CA with the highest potential for thermostability, showing low protein
residue fluctuations and high synchronized motions, as well as the maintenance of chain and cavity
compactness at high temperatures. Runner-up candidates include GEprmCA, PhCA, SlCA and
VaCA1. Overall, this study showed the importance of simulating these proteins in their multimeric
assemblies and serves as a basis for in vitro analysis of these α-CAs to prove their usefulness in
the biotechnology industry as thermostable CO2 sequestration agents. It also revealed important
features of the CAs responsible for thermostability, and thus serves as a basis for engineering of less
thermostable dimeric CAs.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/21/
8066/s1.
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Abbreviations

BC Betweenness centrality
CA Carbonic anhydrase
CmCA Caminibacter mediatlanticus carbonic anhydrase
DCC Dynamic cross correlation
DRN Dynamic residue network
DSSP Define Secondary Structure of Proteins
GEprmCA Geothermobacter sp. EPR-M carbonic anhydrase
GHr1CA Geothermobacter sp. HR-1 carbonic anhydrase
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HtCA Hydrogenimonas thermophila carbonic anhydrase
LOGACA Logatchev hydrothermal field carbonic anhydrase
MSA Multiple sequence alignment
NtCA Nitratiruptor tergarcus carbonic anhydrase
PhCA Persephonella hydrogeniphila carbonic anhydrase
PmCA Persephonella marina carbonic anhydrase
RMSF Root mean square fluctuation
Rg Radius of gyration
SI Sequence identity
SlCA Sulfurovum lithotrophicum carbonic anhydrase
SNbcCA Sulfurovum sp. NBC37-1 carbonic anhydrase
SrCA Sulfurovum riftiae carbonic anhydrase
VaCA1 Vibrio antiquarius carbonic anhydrase 1
VaCA2 Vibrio antiquarius carbonic anhydrase 2
VdCA Vibrio diabolicus carbonic anhydrase
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