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ABSTRACT: Noise, or uncertainty in biochemical networks, has become an
important aspect of many biological problems. Noise can arise and propagate from
external factors and probabilistic chemical reactions occurring in small cellular
compartments. For species survival, it is important to regulate such uncertainties in
executing vital cell functions. Regulated noise can improve adaptability, whereas
uncontrolled noise can cause diseases. Simulation can provide a detailed analysis of
uncertainties, but parameters such as rate constants and initial conditions are usually
unknown. A general understanding of noise dynamics from the perspective of
network structure is highly desirable. In this study, we extended the previously
developed law of localization for characterizing noise in terms of (co)variances and
developed noise localization theory. With linear noise approximation, we can expand
a biochemical network into an extended set of differential equations representing a
fictitious network for pseudo-components consisting of variances and covariances,
together with chemical species. Through localization analysis, perturbation responses at the steady state of pseudo-components can
be summarized into a sensitivity matrix that only requires knowledge of network topology. Our work allows identification of
buffering structures at the level of species, variances, and covariances and can provide insights into noise flow under non-steady-state
conditions in the form of a pseudo-chemical reaction. We tested noise localization in various systems, and here we discuss its
implications and potential applications. Results show that this theory is potentially applicable in discriminating models, scanning
network topologies with interesting noise behavior, and designing and perturbing networks with the desired response.

I. INTRODUCTION
Heterogeneous gene expression and dynamics have been
observed in cells with identical genetic backgrounds, cultivated
under the same conditions. Such uncertainty, or noise, has been
studied in the context of gene regulation and phenotypic
variation.1−9 In a (bio)chemical system, especially in cells,
component uncertainty can arise at the molecular level from the
probabilistic nature of chemical reactions.1 Noise can also arise
from fluctuation or uncertainty in external factors, leading to the
large cell-to-cell variation observed in the literature.1,10

Regulation of noise is crucial for species survival.11−13

Uncontrolled noise can deteriorate vital functions of cells,
especially those that require precision. Noise has also been one
aspect of studies of diseases, such as cancer.14−16 On the other
hand, regulated noise, such as mechanisms that increase
heterogeneity in systems, may be advantageous in coping with
stress, diversifying antibodies, increasing functional hetero-
geneity, etc..17−20 Understanding of the role of noise and its
regulation has been growing,21−24 resulting in applications in
cancer therapy and drug design.25−27

Theories and computational techniques for modeling intrinsic
noise have been developed, but are constantly being modified
and improved. The chemical master equation (CME)28 is a
stochastic theory that accounts for the production of intrinsic
noise in biochemical systems. It is a set of ordinary differential
equations (ODE) that describes the state space of a system as a

time-dependent probability distribution function.29 For most
systems, the CME cannot be solved analytically. An alternative
approach is to perform numerical sampling using the stochastic
simulation algorithm (SSA).30 SSA is an exact realization of the
CME that is very easy to implement, but simulations can be
time-consuming, especially for systems of reactions of different
time scales. A τ-leaping algorithm that takes large time steps has
been introduced, employing statistically estimated means and
variances in the reactions. It greatly reduces the computational
cost compared to SSA, but it can be less accurate.31 Some
implementations that shift between SSA and τ-leaping have been
developed to prevent most of the loss of accuracy.31,32 In terms
of speed, a less accurate, but faster approach than τ-leaping is the
chemical Langevin equation.33−35 With this approach, the error
can be large for some systems, especially if the step size is not
properly chosen.36,37

The study of biological noise using numerical approaches, like
all dynamic simulations, requires data for initial conditions and
rate constants, which can sometimes be estimated by
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fitting.38−42 However, available data are usually insufficient to
constrain parameters.43−46 In this case, one possible approach is
to randomly draw parameters from a physically meaningful
range and to perform simulations for all combinations of those
parameters. By so doing, conclusions can be deduced based on
the most probable and consistent outcome, assuming that the
generally robust nature of biological systems implies consid-
erable independence in system behavior.47−50 This approach is
time-consuming and does not necessarily generate correct
results. With many possible parameter sets, sensitivity is often
studied with statistical quantities only.51−53 In any case, it is
highly desirable to obtain properties of a system without
knowing the actual parameters.

Linear noise approximation (LNA) has been an important
tool in the study of noise, in the form of (co)variances of species
in the system.54,55 With a power expansion in the CME, LNA
yields a set of ODEs for (co)variances of components. For small
systems, LNA can be solved analytically, providing expressions
that relate (co)variances to rate constants and initial
composition.56 LNA, to some extent, can be used to draw
general conclusions, as it has been a powerful technique for
deducing various factors in noise propagation.57−60 LNA-
derived noise can also be decomposed into noise contributions
from individual reactions in the network.61

Another useful mathematical tool in the study of biological
dynamics is the law of localization.62,63 Perturbations of reaction
rates, such as inhibition, knockdown, or upregulation of genes or
enzymes, could promote changes in steady-state composition
that can be monitored experimentally64 and can be predicted
through localization analysis. Based only on topology, a
sensitivity matrix formulated by inverting the Jacobian of fluxes
with appended null space of the stochiometric matrix, the law of
localization predicts the overall perturbation response of a
network. This theory gives rise to the concept of buffering
structures, which are subnetworks of a network such that
perturbation of reactions inside a buffering structure only affects
species inside, while the rest of the network is unaffected. Such
phenomena can be associated with systems where important
compounds are under tight homeostasis and are robust to
perturbations.65 It was also reported that a large number of
species in a carbon metabolic network do not respond to
multiple enzyme knockouts,64 which can be attributed to
buffering structures. Buffering structures have also been applied
in the study of bifurcations.66,67 For small systems, buffering
structures can be easily identified using simple rules.63 However,
the study of large systems may still rely on numerical
computations, which require parameter values that can be
scanned or sampled. With the law of localization, there is no
need to perturb each parameter and to solve for steady-state
ODE of the system repeatedly. This makes the law of
localization a very efficient method for finding perturbation
responses. The growing availability of multiple high-throughput
(knockdown/knockout) data68 and (cellular) perturbation
screens69 that can be compared with predicted response
patterns from the law of localization may promote better
network reconstruction,70−77 model discrimination,78,79 and
network engineering.80

Since LNA generates a set of ODEs for (co)variances, it would
be interesting to see if such ODEs can be further analyzed using
the law of localization. By so doing, i.e., combining LNAwith the
law of localization, it becomes possible to deduce the noise
response or relative change in (co)variance after perturbation of
a network of reactions. In the present work, we focus on noise

predicted by the law of localization in open systems. We limit
our scope to open systems that allow exchange of material with
the surrounding environment. These typically have at least an
incoming and an outgoing flux with the surroundings. This type
of system is commonly found in nature, but because the full scale
of natural systems is undetermined, we can only study a portion
of such systems, in which at least one component is produced via
inflow, and at least one component is degraded via outflow.
Systems that do not exchange molecules with their environ-
ments are sometimes called closed systems,81 and they have a
different set of constraints; thus, they require a separate set of
considerations, which we plan to investigate in future work.

Here, we address the study of noise55 by inferring noise
dynamics based on network structure. We adopted the law of
localization in a chemical reaction network62 and combined it
with LNA54,82 to derive a mathematical approach that can help
to infer the behavior of noise. In doing so, we can deduce a
pseudo-chemical reaction that includes (co)variances. Together
with a set of chemical reactions, our results provide a qualitative
and quantitative picture of noise dynamics, from a simple look-
up to numerical calculations. We tested our approach on
selected systems, and we provide a rationale for its implications
and potential applications.

II. THEORY AND METHODS
We first briefly introduce LNA and network localization in this
section. Noise localization is developed by combining the two,
which we describe at the end of this section.
II.I. Linear Noise Approximation.With a power expansion

of the system size in the CME,82 a linear Fokker−Planck
equation83 can be obtained, as shown in eqs 1−3
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In the equations above, x is a vector of length N describing the
amounts of various chemical species in the system, ξ is a random
variable equivalent to x − ⟨x⟩, w is the propensity vector, which
is a function of x, and the vector of rate constant k, t is the time,V
is the stoichiometric matrix, and Π is a probability distribution of
ξ. Assuming that Π follows a Gaussian distribution, eq 1 can be
simplified to

C
CA AC BB

t
T T= + +

(4)

where C is the covariance matrix of x.
At steady state, eq 4 vanishes to zero.54,84 For simple systems,

an analytical solution to the covariance can be found, but a
numerical approach is still needed for large systems.
II.II. Law of Localization in Chemical Networks. The law

of localization in chemical networks62 takes advantage of the null
space of the stoichiometric matrix, which constrains changes in
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reaction fluxes. A set of M chemical reactions among N species
can be represented as a product of a stoichiometric matrix and
propensities, or fluxes, as shown in eq 5

k x
x
t

V w i N
d
d

( , ), 1, ,i

j

M

i j j
1

,= = ···
= (5)

The flux vector, w(k,x), is a function of the component vector x,
and rate constants vector k, with wj corresponding to the flux of
reaction j. At steady state, eq 5 vanishes to zero. Perturbation of
the jth reaction by a change in the rate constant kj* at steady state
results in perturbation of w, which is mathematically equivalent
to
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In considering the influence of a perturbation on reaction rates
to changes in the steady states, one can consider
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Following ref 62, a null space could exist, which is spanned by
vectors cz orthogonal to the raw vectors of V, with the
combination of reaction fluxes that is not constrained by the
steady-state condition. Therefore, the new steady-state con-
dition with a change in reaction rate can be written as
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where uz denotes coefficients for the null space. Rearrangement
and transposition of terms in eq 8 followed by factorization into
matrix products gives us the following expression
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In these expressions, Z is the dimension of the null space of V; S
is the network sensitivity, composed of δx, which is (∂x/∂k)δk,
and coefficients of the null space of V, the row vector uz,
respectively; A is a matrix of the derivative of w with respect to x,
with null space of V appended; and ej is (∂wj/∂kj*)δkj*. With
these manipulations, the sensitivity S yields information for
network localization.

For example, in the case of knockdown or inhibition, δkj* is
negative, and ej can be assumed to be −1, making S equal to the
inverse of A. The network sensitivity S is a table of responses in

which columns are reactions and the first N rows are chemical
species. Entries in the table are either zero or simple
mathematical expressions. A zero entry indicates that perturbing
a particular reaction does not change the corresponding
chemical species at steady state. For nonzero responses, when
kj* is inhibited, the sign of the sensitivity indicates the
corresponding direction of changes in the species concentration.
Contrarily, when kj* is upregulated, ej is positive in eq 9 and the
fate of species upon reaction perturbation follows the same
principle. The main implication of the law of localization is that
response patterns exhibit localization and hierarchy. This means
that perturbation of an upstream reaction does not necessarily
affect downstream reactions. Buffering structures, in which
perturbations can be confined, can be summarized as a
metabolite and reaction subset pair, which are components
with nonzero responses in a column of S and their associated
reactions.
II.III. Noise Localization. We further analyze noise55 with

law of localization theory62 for open systems, where nontrivial
results of perturbation in the noise can be formulated. To
formulate a network sensitivity matrix that includes noise as
(co)variances for open systems at steady state, the component
vector x and unique nonzero elements of the covariance matrix
C are combined into vector G, shown in eq 12.

G C C C C x x x( , , , , , , , , , , )i j N N i N1,1 1,2 , , 1
T= ··· ··· ··· ···

(12)

The differential equation of G is a column vector representing
unique expressions of the concatenation of eqs 4 and 5 as follows
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Expansion of eqs 4 to 5 and substitution into eq 13 gives the
expression

G
t

g g g

g g g

g g g

g g g

g

g

g

d
d

i j i j i j

N N N N N N

i

N

1
1,1

2
1,1

3
1,1

1
1,2

2
1,2

3
1,2

1
,

2
,

3
,

1
,

2
,

3
,

4
1

4

4

=

+ +

+ +

+ +

+ +

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz (14)

where g’s are defined as
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Noting that w is a function of x and k, we can simplify the
expression to a linear combination of w and w′C, where w′ is the
derivative of w with respect to x.
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Equation 19 can be simplified into a form similar to eq 5 as
follows
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whereQ and z are a pseudo-stoichiometric matrix and a pseudo-
propensity or a pseudo-flux vector, respectively. Entries in the
columns for a row ofQ can be repeated if there is more than one
nonzero element in the summation over index k in eq 19. When i
= j, similar terms will appear for a particular l, k value giving rise
to a factor 2 in some terms. Therefore, the η in eq 21 is 2 when i =
j in eq 19, otherwise η = 1. The pseudo-propensity vector z in eqs
20 and 22 is composed of functions of k, x, and C. Since eq 20
resembles a regular differential equation for chemical reactions,
we can deduce a pseudo-chemical reaction from eq 20 that
includes the covariance as species. This pseudo-chemical
reaction describes the flow of noise in the system from the
source to the reservoir. An algorithm that extracts the pseudo-
chemical reaction and factorizes a system of ODEs into a form
similar to eq 20 is provided in the following link; “https://
github.com/efajiculay/NoiseLocalization.”

Following this derivation and using the law of localization, we
derive a pseudo-network sensitivity matrix similar to eq 9 that
includes the noise terms as species. This time, the effect of
perturbation on the (co)variance is also explained. Localization

and perturbation hierarchies with both chemical species and
(co)variance terms can be deduced from . We can also adopt
the metabolite subset pair from ref 62 to identify buffering
structures in the pseudo-chemical reaction network and can
infer bifurcation in noise similar to ref 66.

From eqs 9 and 11, the correspondingA and Smatrix for noise
localization is as follows
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. As in the network localization, c′ is the null space of the new
stoichiometric matrix Q, and u is now composed of row vectors
for the coefficient of the null space. The pseudo-sensitivity
matrix can be expressed as

e e( , , )M
1

1= ··· (25)

where e′j is negative (−1) for inhibition and positive (+1) for
activation or upregulation. Noise localization is similar to the law
of localization, and the response (increase, decrease, or
unchanged) can be predicted from the sensitivity matrix, except
for cases in which the sign of the expression can be both negative
and positive.

Equation 25 offers a way to perform noise localization
analysis, which provides information on the perturbation
response of system (co)variances. However, multiple columns
in can be associated with the same rate constant. This problem
can be resolved by a linear combination of columns controlled
by the same parameter. Column labels in are pseudo-
propensities and row labels are pseudo-components. A
particular rate constant kj can be present in more than one
column label. For a pseudo-component in each row, the effective
response for a perturbation of kj is the sum of all columns in that
row where kj appears in the column label multiplied by the
steady-state value of the column label, as shown in the following
equation
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This scaling or weighting is necessary for numeric noise
localization to match the linear noise approximation (LNA)-
independent perturbation responses. The pseudo-propensities z
serve as the probability or weight of the response.
II.III.I. Variance Response. With eqs 23−26 we can analyze

the localization structure of variances and covariances. However,
we find that it is helpful to summarize the variance first since
there are cases in which we can infer the variance via the law of
localization.

Undermass-action kinetics, linear open systems consist of two
types of elementary steps, a zero-order production reaction, and
a first-order degradation or transformation reaction. Knowing
that z is a function of w and w′C, the term ∂z/∂G from eq 23 can
provide the behavior of species and variances. For first-order
reactions,w is composed of linear products of k and x, makingw′
a function of k only. This makes ∂z/∂G for the variance Ci,i and
the species xi equal or ∂w/∂xi = ∂w′C/∂Ci,i = w′i. Upon inversion
of the matrix, which is a sparse matrix, these two derivatives
give the same result, which indicates that the response of the
variance Ci,i, and the species xi is the same. For zero-order
reactions, w is only a function of k, and such terms in w′ equal
zero. This means that ∂z/∂G is zero for variances and species
making them behave in the same way. Therefore, when the form
of w is either zero (independent of x) or first order
(monomolecular) with respect to xi, the following relation holds

z z
C x

i N, 1 to
ii i

= =
(27)

For systems in which eq 27 holds, the response of Ci,i with
respect to reaction perturbation follows that of xi. In this case,
the response of the variance can be deduced directly from the
law of localization following the sign of the sensitivity matrix in
eq 9.

If the form of w is complex with respect to xi, a noise
localization sensitivity matrix is required to describe the fate of
Ci,i since there is no assurance that eq 27 still holds. For example,
w can include Hill-type expressions and other nonlinear
functions arising from multimolecular reactions. In this case,
rate constant perturbation can be inferred from eq 25.

In an open system, concentration perturbation generally does
not affect the variance. However, for nonlinear systems that
exhibit multiple stable fixed points, concentration perturbation
might allow shifting between fixed points giving complicated
perturbation responses. This, however, is not currently
accounted for.

The response of variance can also be used to estimate themost
likely response of the coefficient of variation (CV) defined as

x x100 var( ) /i i . As long as var(xi) is less than ⟨xi⟩2, CV will
decrease as ⟨xi⟩ increases. For Poisson processes, var(xi) = ⟨xi⟩
and deviation from Poisson is very unlikely to result in var(xi) ≥
⟨xi⟩2. In general, the fano factor or var(xi)/⟨xi⟩ is a small number.
This set of statements suggests that if var(xi) and ⟨xi⟩ increase,
then CV(xi) most likely decreased. If var(xi) and ⟨xi⟩ decreases
CV(xi) most likely increased. Under certain conditions, for
nonlinear cases, opposite responses between var(xi) and ⟨xi⟩
might be observed. If var(xi) decreased and ⟨xi⟩ increased,
CV(xi) definitely decreased. If var(xi) increased and ⟨xi⟩
decreased, CV(xi) certainly increased. For instance, where
either var(xi) or ⟨xi⟩ has no response, CV(xi) can still be logically
predicted since CV(xi) is directly proportional to xvar( )i and
inversely proportional to ⟨xi⟩. Finally, if both var(xi) and xi have
no response, CV(xi) surely has no response.

II.III.II. Covariance Response. Since eq 25 involves the inverse
of a large matrix, it is cost-effective to take advantage of cases in
which the steady-state value of the covariance is zero. In open
systems, the covarianceCi,j≠i is zero at steady state for zero-order
and first-order (monomolecular) reactions in which reactants or
products are no more than one species. This was derived in ref
81 through CME, in which the probability of species becomes a
product of a Poisson distribution at steady state. The mean and
variance of a Poisson random variable are equal and the
covariance between independent Poisson random variables is
zero. However, the derivation in ref 81 does not account for
monomolecular systems that include autocatalysis and splitting
of reactants, i.e., production of more than one product in a
monomolecular reaction. For such systems, if the sum of the
rows in each column in eq 2 is either zero or negative, then all
covariances are zero. Otherwise, there is no assurance that all
covariances are zero. The simple gene regulation model in
Figure 1c demonstrated in Section III.I is one such exception. It
is a linear system with nonzero covariance.

Here we summarize our current understanding of cases with
nonzero covariance:

1. Ci,j≠i is nonzero for systems in which the total number of
molecules is conserved. This is because a mathematical
relationship between any two species can be defined by
exploiting the mass−balance relationship.

2. Ci,j≠i can be nonzero if xi and xj are co-produced or co-
consumed either directly or indirectly. This is usually
observed in multimolecular reactions, disintegration
reactions, breakdown or dissociation reactions, etc.

3. Ci,j≠i can be nonzero if the system is described by a
complicated propensity function containing functions
other than constants and first-order terms.

For nonzero covariance, the ODE should be added to the list
of ODEs in eq 13 to reflect their perturbation behavior in the
pseudo-sensitivity matrix.

Figure 1. Monomolecular open systems analyzed using noise localization. Reactions are labeled with numbers and components with letters. (a) Two-
state reversible reaction in a linear chain. (b) This example is a four-state reaction with a cycle constructed based on ref 62. (c) Simple gene regulation
model.
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III. RESULTS AND DISCUSSION
In the following section, perturbation analysis using noise
localization is applied to selected systems and compared to LNA

with rate constant perturbations or to direct evaluation of the
analytical expression whenever applicable. The result is
tabulated where dynamics of noise upon perturbations are
easily seen. All perturbations applied in this work are inhibitions.
The effect of upregulation can be deduced by flipping the signs
observed from the response obtained. Section III.I focuses on
monomolecular systems in which all mass-action kinetics are
either zero or first-order reactions. Discussions of multi-
molecular systems follow in Section III.II. Section III.III is an
application of noise localization to the glycolysis and TCA cycle
of Escherichia coli. Codes and derivation for each example can be
found at https://github.com/efajiculay/NoiseLocalization.

III.I. Monomolecular Systems. Figure 1 shows some
examples of monomolecular systems. These types of systems are
generally linear, involve zero and first-order reactions, and may
have an analytical solution for the network sensitivity matrix
under noise localization.

The two-state reversible reaction shown in Figure 1a is a
typical monomolecular open system. Perturbation of the initial
composition and reaction rates for this system are summarized
in Table 1. The initial amount of each component does not affect
the magnitude of steady-state composition and noise. The
covariance between A and B is zero in all conditions, as the
reactions have at most one species of reactant or product, as
discussed in the previous section. If we decompose the noise
using the method described in ref 61, reactions 2 and 3
contribute negatively to the covariance, but reactions 1 and 4
cancel those contributions. This is because the total number of

Table 1. Perturbation Effect in a Two-State, Reversible, Open Systema

parameters LNA estimate (rounded)

row no. case A0 B0 k1 k2 k3 k4 A B CAA CAB CBB

1 original 100 10 200 50 55 20 15 10 15 0 10
2 +A0 500 10 200 50 55 20 15 10 15 0 10
3 +B0 100 200 200 50 55 20 15 10 15 0 10
4 +k1 100 10 250 50 55 20 18.75 12.5 18.75 0 12.5
5 +k2 100 10 200 100 55 20 7.5 10 7.5 0 10
6 +k3 100 10 200 50 90 20 22 10 22 0 10
7 +k4 100 10 200 50 55 200 5 1 5 0 1

a+ indicates an increase in value compared to row 1.

Figure 2. Summary of the perturbation response for the monomolecular open systems in Figure 1a,b using symbolic noise localization. Pink denotes a
reduction inmagnitude.White indicates no effect, and blue represents an increase in magnitude.Ci,i corresponds to the variance of species i, and ki’s are
rate constants.

Figure 3. Perturbation response for the simple gene regulationmodel in
Figure 1c using numeric noise localization summarized for 100 samples.
Pink stands for a reduction in magnitude. White indicates no effect, and
blue represents an increase in magnitude. Ci,i corresponds to the
variance of species i.Ci,j corresponds to the covariance between species i
and j. km and rm are the production and degradation rate of the mRNA
m, kp is the rate of translation from mRNA to protein P, and rp is the
degradation rate of P. The rate constants and initial composition were
sampled uniformly, between the ranges of 80−200 and 0−10,
respectively. Responses between ±1.0 × 10−10 are regarded as zero.

Figure 4. Hypothetical examples of bimolecular open systems. (a)
Bimolecular reaction in which both components experience production
and degradation, and binding of the twomolecules leads to removal. (b)
Here, an additional monomolecular reaction is included in the system
depicted in (a). (c) Complicated monomolecular reaction with a
bimolecular reaction at the end, constructed based on ref 62.
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species at steady state is constantly disturbed by the firing of all
reactions, making it a random variable and destroying coupling
between species. The same zero-covariance also holds in the
system depicted in Figure 1b.

Figure 2 includes a summary of the resulting sensitivity matrix
for systems in Figure 1a,b. The perturbation effect on these
components matches the variance since those systems are
monomolecular. The sensitivity matrix is also sparse. For
example, in (a), inhibition of k2 or k3 only affects A and CAA. In
(b), inhibition of k2 affectsA andCAA, k3 affects B andCBB, and k4
affects A, B, D, CAA, CBB, and CDD. Under the chosen inhibition
of the rate constant in each row, buffering structure can be
obtained with the pseudo-components that respond in each
column, as in the law of localization.62 These structures confine
the effects of perturbation, for both components and variances.
In this case, the buffering structure is a consequence of the fact
that at steady state, total inflow is equal to total outflow. With a
perturbed rate constant, the system regains flux balance via
increased or decreased quantities of nearby components, which
is also reflected in the noise.

The simple gene regulation model shown in Figure 1c is
special because it is a lumped reaction. The actual mechanism
would involve many elementary steps, some of which are
multimolecular reactions. In reaction 3, wherem appears to form
P and m, it is not m that forms P, but m serves as a pattern or

template in the synthesis of P. The sum of the columns of eq 2
for this system includes positive terms, which imply that some
covariances may not be zero.

Figure 3 is a summary of the distribution of responses for
Figure 1c, using numeric noise localization. Responses of the
variance match those of corresponding species and covariances
have a nonzero response with the same direction of changes in
each row as P. We note thatCmp is not zero since production of P
is correlated with m in this model. In this system, the exact
direction of the response can be predicted with a high level of
confidence.
III.II. Multimolecular Systems.Multimolecular systems are

generally nonlinear, making noise response inference compli-
cated, and often analytically intractable. One simplification is to
omit the zero-covariance term in eq 13, as discussed in the
previous section. However, for multimolecular systems, it is
difficult to judge whether a covariance term is zero. A solution to
this is to sample random parameters and perform numeric noise
localization. In this case, a range −v to +v needs to be defined, in
which v is a small threshold within a number to be considered
zero. Responses from eq 25 need to be rescaled with the columns
or pseudo-propensities that serve as weights of the responses.
This is to reduce the effect of nonzero responses associated with
very low fluxes. Responses associated with very low steady-state
pseudo-component values in each row can be considered as

Figure 5. Perturbation responses for multimolecular open systems in Figure 4a using numeric noise localization, summarized for 100 samples. The rate
constants and initial composition were uniformly sampled between the ranges of 80−200 and 0−10, respectively. Pink stands for a reduction in
magnitude. White indicates no effect, and blue represents an increase in magnitude. Ci,i corresponds to the variance of species i. Ci,j corresponds to the
covariance between species i and j. ki’s are rate constants. (a) Responses between ±1.0 × 10−3/2 are regarded as zero. (b) Responses between ±1.0 ×
10−10 are regarded as zero.

Figure 6. Perturbation dynamics for the multimolecular open systems in Figure 4b using numeric noise localization summarized for 100 samples. The
rate constants and initial composition were uniformly sampled between the ranges of 80−200 and 0−10, respectively and responses between ±1.0 ×
10−10 are regarded as zero. Pink stands for a reduction in magnitude. White indicates no effect, and blue represents an increase in magnitude. Ci,i
corresponds to the variance of species i. Ci,j corresponds to the covariance between species i and j. ki’s are rate constants.
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zero, or that row can be omitted. This is because even if they do
respond to perturbation, the effect is negligible and indis-
tinguishable from no effect. The detail of the rescaling is
reflected in eq 26 and mentioned in step 10 of the steps in noise
localization in the Supporting Information.

The existence of multiple fixed points is also likely to cause
problems by introducing more uncertainty into predicted noise
dynamics upon perturbation. Each fixed point may have
different noise dynamic behavior and some random initial
conditions or small perturbations may switch between any
stable, fixed points.

This subsection focuses on the use of noise localization in
analysis of multimolecular open systems (Figure 4). The first
two systems differ only slightly in topology and the last system is

an example from the law of localization.62 Those systems are
chosen to compare different complexities of bimolecular open
systems. The system in Figure 4a focuses on a simple
bimolecular reaction. Figure 4b captures the effect of an
upstream bimolecular reaction on a downstream monomolec-
ular system. Finally, Figure 4c shows the effect of a bimolecular
reaction on upstream monomolecular reactions.

The system shown in Figure 4a is small enough to calculate
steady-state analytical expressions for pseudo-components. In
eqs 28−30, the steady-state expression for L, R, and CLR is
provided. The noise expression for CLL and CRR is highly
dependent on L and R, respectively, but is not shown.

L
k k k k k k

k k

k k k k k k k k k k

k k

2

( ) 4

2

3 5 1 5 2 4

2 4

1 5 2 4 3 5
2

2 3 4 5

2 4

=

±
+ +

(28)

R
k k k L

k
1 3 4

2
=

+
(29)

C
k LRk k LRk k Lk k Rk k

Lk k Rk k k k Lk Rk k k
( )

2( )( )LR
5 1 5 3 5 1 4 2 3

4 5 2 5 2 4 5 5 2 4
=

+ + +
+ + + + +

(30)

From the expressions above, it is clear that pseudo-components
are highly dependent on parameters and are expected to respond
to perturbation of any parameters. Equation 28 suggests two
possible solutions that are expected from the quadratic term
introduced into the propensity by the bimolecular elementary
step. In this system, one of the solutions gives a positive L, which
is the physically meaningful solution.

The most probable perturbation response of the system,
depicted in Figure 4a, is summarized in Figure 5 at two zero
thresholds, ±1.0 × 10−3/2 and ±1.0 × 10−10. The appearance of a
white response in (a) is due to the loose cutoff, which suggests
that the choice of response cutoff range is crucial. There is no
white response in (b), which is correct, based on eqs 28−30.
Therefore, we believe that the cutoff chosen in (b) is strict
enough for numeric tests.

Figure 6 summarizes the distribution of response patterns for
the system depicted in Figure 4b. Response patterns of the
variances CRR, CLL, CAA, and CBB, are matched to those of
species, R, L, A, and B, except under perturbation from k6, in
which the responses of CBB and B are different. Species B has
zero response, which can be confirmed by the steady-state
solution that is independent of k6. However, interestingly, upon
inhibition of k6, the noise strength on B, CBB, increases. In other
words, with inhibition of k6, the mean concentration of B
remains the same, but the dispersion is increased. We have
confirmed the positive response using numeric and semi-
analytical LNA, and this is a rather nonintuitive outcome from a
system that contains a bimolecular reaction. Noise localization
can be used in the search or screening of such behaviors, which
can be utilized in the design of networks with robust steady-state
composition and desired noise behavior.

Species A and B form a buffering structure downstream of the
bimolecular reaction (Figure 6), in which perturbation of k6 and
k7 yields results expected from the law of localization. Some of
the covariances appear to be a mixing of responses of the species
involved. For instance, CRA under k4 perturbation has a nonzero
distribution that appears separately in eitherR andA alone.Most

Figure 7. Most probable perturbation response for multimolecular
open systems in Figure 4c using numeric noise localization summarized
for 100 samples. Pseudo-components with no response in any
perturbation are removed. The rate constants and initial composition
were uniformly sampled between the ranges of 80−200 and 0−10,
respectively, and responses between ±1.0 × 10−10 are regarded as zero.
Pink stands for a reduction in magnitude. White indicates no effect, and
blue represents increases in magnitude. Ci,i corresponds to the variance
of species i. Ci,j corresponds to the covariance between species i and j.
ki’s are rate constants.
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covariances have nonzero responses, which indicates that the
presence of a bimolecular step couples most components. The
bimolecular reaction k5 also affects all components and their
(co)variances, including upstream and downstream compo-
nents.

The system shown in Figure 4c is composed of an upstream
monomolecular structure with nested topologies, a high degree
of branching, and a downstream bimolecular reaction. This
system is expected to show complex behavior. Figure 7 shows
the most probable outcome for the perturbation of reactions in
Figure 4c using numeric noise localization. We have verified that
the patterns shown are in good agreement with independent
LNA simulations. The result is consistent with the law of
localization for species A, B, C, D, E, F, G, H, I, and J.
Perturbation of k3 and k4 is confined to A and B, which are
monomolecular buffering structures and did not affect any
pseudo-components except their substrate, CAA and A for k3 and
CBB and B for k4. Perturbation of k14 and k15 also shows
significant buffering since their substrates are also mono-
molecular buffering species. The perturbation response of CA,j
(omitted in the figure) and CB,j (omitted in the figure) where j is
any of the species, matches what is expected from Poisson
behavior in which covariances are zero and variances match the
species response. Other noise terms show greater deviation from
Poisson behavior, but follow Poisson behavior in at least one of
the perturbations.

In Figure 7, there are several interesting cases of patterns of
pseudo-components. For example, if we compare species C and
the corresponding variance CCC, C does not respond to
inhibition of k6, k7, k9, k11, and k12, but CCC has a nonzero
response. Similar cases are also observed for other pairs of

pseudo-components such asD andCDD, F andCFF, etc. Since the
bimolecular reaction is downstream of C, D, and F, these
differences in perturbation behavior suggest that a downstream
multimolecular reaction can alter the noise response of upstream
components.
III.III. Glycolysis and TCA Cycle. In this subsection, noise

localization is used in modeling the perturbation response to the
glycolysis and TCA cycle of E. coli.62,63,85 The network consists
of 28 species and 46 reactions giving 406 unique (co)variances
with a total of 434 pseudo-components. Figure 8 shows a
graphical representation of the network in the left panel and
associated reactions in the right panel. This system involves
monomolecular, bimolecular, reversible reactions and nested
topologies. The full name of the species in the network is
provided in Section S3 in the Supporting Information.

Figure 9 summarizes the response pattern for the glycolysis
and TCA cycle of E. coli using (a) Noise localization and (b)
LNA with parameter perturbations. Response patterns are in
good agreement with an overall match of 98.4%, based on tile
colors. The discrepancy is mainly because noise localization is
under the assumption of infinitesimal perturbation, whereas
with parameter perturbation, LNA uses actual perturbation of
each parameter. As the perturbation in LNA approaches zero,
the result will be closer to what we can get from noise
localization. This is a limitation of noise localization in a realistic
scenario in which the actual perturbation is unknown and can be
large. However, noise response predicted using noise local-
ization is still quite good under large perturbation, as can be seen
in Figure 10. As the strength of inhibition increases from right to
left along the x-axis (reverse direction), the % match between
the responses of noise localization and LNA with parameter

Figure 8. Glycolysis and TCA cycle of E. coli. This network is constructed based on refs 62, 63, and 85 and the associated reactions are written in
BioSANS56 software topology format. Exact names of each species in the network are provided in Section S3 in the Supporting Information. ki’s are rate
constants with the subscript a or b corresponding to forward and backward reactions for reversible steps.
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Figure 9. Most probable perturbation response of the glycolysis and TCA cycle of E. coli summarized for 100 samples. The rate constants and initial
composition were uniformly sampled between the ranges of 80−200 and 0−10, respectively. Pink stands for a reduction in magnitude. White indicates
no effect, and blue represents an increase in magnitude. Responses between ±1.0 × 10−10 are regarded as zero. Ci,i corresponds to the variance of
species i. Ci,j corresponds to the covariance between species i and j. ki’s are rate constants. (a) Result of noise localization. (b) Result using LNA with
individual parameters perturbed.
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perturbation drops, but still above 90%. Moreover, noise
localization is faster compared to LNA with parameter
perturbation, especially for very large systems. In this system,
noise localization is twice as fast as LNA with parameter
perturbation when bothmethods are usingmultiprocessing. The
difference in speed is expected to grow exponentially with
system size and as the number of cores for parallel runs becomes
exhausted.

Figure 11 shows the most probable perturbation response of
the metabolites in Figure 8 under the perturbation of rate
constants in each column. This response pattern matches what
can be predicted using the law of localization. The
corresponding variance response is shown in Figure 12. Even
if the metabolite response is sparse, the covariance response is
not. For nonlinear systems such as the glycolysis and TCA cycle
of E. coli, the variance does not always respond the same way as
the species. This result indicates that inclusion of the
(co)variance response provides more discrimination power
when evaluating network topologies.

Numeric noise localization provides a way to obtain the most
probable response to reaction perturbation without the need to
perturb each parameter. It is an efficient way to analyze a
network, especially compared to numeric propagations such as

SSA and SSA-derived algorithms for perturbation behavior. It is
also better than performing LNA with N parameter
perturbation, which entails performing N + 1 separate LNAs
per sampled parameter.

Being able to quickly obtain the response patterns of both
species concentrations and their associated noise is beneficial for
inferring the reaction network of a system, a highly desirable, but
difficult task. Ideally, a good model should have predicted
dynamics, together with a perturbation profile that is highly
consistent with experimental results. With our approach, a fast
test over many different possible network structures becomes
much more feasible. Noise/uncertainty can also be derived from
single-cell assays, reporter-based methods, flow cytometry
experiments, etc. If these were obtained by perturbing one or
several components that affect the flux or rates, our approach
offers more insight from the data by testing a great number of
possible networks. With modern databases such as Library of
Integrated Network-Based Cellular Signatures (LINCS69),
KnockTF,68 Human Metabolome Database,86 etc., reverse
engineering or inference of the true network and pathways will
eventually become feasible, and we expect that inference from
noise behavior, such as our present work, offers additional clues
and constraints in the process.

IV. CONCLUSIONS
In this work, we show how qualitative and quantitative noise
dynamics can be inferred by exploiting LNA and the law of
localization together. The noise localization scheme we
developed relies on the sensitivity matrix, which summarizes
perturbation without the need to perturb parameters. It provides
a way to capture the response in noise, under a perturbation of
reaction rates, which can be very efficient compared to
traditional approaches that require both parameter sampling
and numerical perturbation.

Using the method presented here, variances and covariances
in both monomolecular and multimolecular systems can be
studied. Monomolecular open systems generally provide
concrete answers regarding the fate of pseudo-components in
response to perturbation. On the other hand, multimolecular

Figure 10. Effect of perturbation strength on the accuracy of predicted
responses. k_original and k_perturb are the rate constants before and
after perturbations, respectively; % match is the ratio of the number of
responses that noise localization correctly predicts compared to
responses predicted using LNA with parameter perturbations.

Figure 11.Most probable perturbation response patterns for metabolites in the glycolysis andTCA cycle of E. coli. This result is a portion of that shown
in Figure 9a. The columns are the rate constants with kf and kb for forward and backward reactions, respectively, in the same order as in Figure 8, and the
rows are the metabolites.
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open systems generally show greater uncertainty in the fate of
pseudo-components (especially the covariance), subject to
perturbation. Nevertheless, our noise localization theory can be
useful to discriminate different models compared to exper-
imental data, to help researchers decide how to perturb a given
system based on network structure, to render a desired change of
state in noise or chemical composition, and to scan interesting
noise behavior from a given topological network.
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Vasiliauskas, J.; Pilarczyk, M.; Shamsaei, B.; Fazel, M.; Ren, Y.; Niu,
W.; Clark, N. A.; White, S.; Mahi, N.; Zhang, L.; Kouril, M.; Reichard, J.
F.; Sivaganesan, S.; Medvedovic, M.; Meller, J.; Koch, R. J.; Birtwistle,
M. R.; Iyengar, R.; Sobie, E. A.; Azeloglu, E. U.; Kaye, J.; Osterloh, J.;
Haston, K.; Kalra, J.; Finkbiener, S.; Li, J.; Milani, P.; Adam, M.;
Escalante-Chong, R.; Sachs, K.; Lenail, A.; Ramamoorthy, D.; Fraenkel,
E.; Daigle, G.; Hussain, U.; Coye, A.; Rothstein, J.; Sareen, D.; Ornelas,
L.; Banuelos, M.; Mandefro, B.; Ho, R.; Svendsen, C. N.; Lim, R. G.;
Stocksdale, J.; Casale, M. S.; Thompson, T. G.; Wu, J.; Thompson, L.
M.; Dardov, V.; Venkatraman, V.; Matlock, A.; Van Eyk, J. E.; Jaffe, J.
D.; Papanastasiou, M.; Subramanian, A.; Golub, T. R.; Erickson, S. D.;
Fallahi-Sichani, M.; Hafner, M.; Gray, N. S.; Lin, J.-R.; Mills, C. E.;
Muhlich, J. L.; Niepel, M.; Shamu, C. E.; Williams, E. H.; Wrobel, D.;
Sorger, P. K.; Heiser, L. M.; Gray, J. W.; Korkola, J. E.; Mills, G. B.;
LaBarge, M.; Feiler, H. S.; Dane,M. A.; Bucher, E.; Nederlof, M.; Sudar,
D.; Gross, S.; Kilburn, D. F.; Smith, R.; Devlin, K.; Margolis, R.; Derr,
L.; Lee, A.; Pillai, A. The Library of Integrated Network-Based Cellular
Signatures NIH Program: System-Level Cataloging of Human Cells
Response to Perturbations. Cell Syst. 2018, 6, 13−24.
(70) Cho, Y. J.; Ramakrishnan, N.; Cao, Y. In Reconstructing Chemical
Reaction Networks: Data Mining Meets System Identification, Proceeding
of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining�KDD 08 2008; pp 1−9.

(71) Choon, W. Y.; Mohamad, M. S.Reconstructing Metabolic
Networks − A Review. Advances in Bioinformatics: Reviews and
Applications; UTM Press, 2011; Vol. 16.
(72) Zheng, X.; Huang, Y.; Zou, X. ScPADGRN: A Preconditioned

ADMM Approach for Reconstructing Dynamic Gene Regulatory
Network Using Single-Cell RNA Sequencing Data. PLoS Comput. Biol.
2020, No. e1007471.
(73) Liu, Z.-P. Towards Precise Reconstruction of Gene Regulatory

Networks by Data Integration. Quant. Biol. 2018, 6, 113−128.
(74) Zheng, G.; Huang, T.The Reconstruction and Analysis of Gene

Regulatory Networks. In Computational Systems Biology: Methods and
Protocols; Huang, T., Ed.; Methods in Molecular Biology; Humana
Press: New York, NY, 2018; pp 137−154.
(75) Ward, C.; Yeung, E.; Brown, T.; Durtschi, B.; Weyerman, S.;

Howes, R.; Goncalves, J.; Warnick, S.A Comparison of Network
Reconstruction Methods for Chemical Reaction Networks, The Proceed-
ings of the Third International Conference on Foundations of Systems
Biology in Engineering (FOSBE 2009), 2009.
(76) Baumler, D. J.; Peplinski, R. G.; Reed, J. L.; Glasner, J. D.; Perna,

N. T. The Evolution of Metabolic Networks of E. coli. BMC Syst. Biol.
2011, 5, No. 182.
(77) Payne, D. D.; Renz, A.; Dunphy, L. J.; Lewis, T.; Dräger, A.;

Papin, J. A. An Updated Genome-Scale Metabolic Network
Reconstruction of Pseudomonas Aeruginosa PA14 to Characterize
Mucin-Driven Shifts in Bacterial Metabolism. npj Syst. Biol. Appl. 2021,
7, No. 37.
(78) Donckels, B. M. R.Optimal Experimental Design, Model

Discrimination. In Encyclopedia of Systems Biology; Dubitzky, W.;
Wolkenhauer, O.; Cho, K.-H.; Yokota, H., Eds.; Springer: New York,
NY, 2013; pp 1593−1596.
(79) Gunawardena, J. Models in Biology: ‘Accurate Descriptions of

Our Pathetic Thinking’. BMC Biol. 2014, 12, No. 29.
(80) Gupta, U.; Le, T.; Hu, W.-S.; Bhan, A.; Daoutidis, P. Automated

Network Generation and Analysis of Biochemical Reaction Pathways
Using RING. Metab. Eng. 2018, 49, 84−93.
(81) Jahnke, T.; Huisinga, W. Solving the Chemical Master Equation

for Monomolecular Reaction Systems Analytically. J. Math. Biol. 2006,
54, 1−26.
(82) Kampen, N. G. V.Stochastic Processes in Physics and Chemistry, 3rd

ed.; North Holland: Amsterdam, 2007.
(83) Risken, H.Fokker-Planck Equation. In The Fokker-Planck
Equation: Methods of Solution and Applications; Risken, H., Ed.;
Springer Series in Synergetics; Springer: Berlin, Heidelberg, 1996; pp
63−95.
(84) Parks, P. C. A. M. Lyapunov’s Stability Theory�100 Years On.
IMA J. Math. Control Inf. 1992, 9, 275−303.
(85) Ishii, N.; Nakahigashi, K.; Baba, T.; Robert, M.; Soga, T.; Kanai,

A.; Hirasawa, T.; Naba, M.; Hirai, K.; Hoque, A.; Ho, P. Y.; Kakazu, Y.;
Sugawara, K.; Igarashi, S.; Harada, S.; Masuda, T.; Sugiyama, N.;
Togashi, T.; Hasegawa, M.; Takai, Y.; Yugi, K.; Arakawa, K.; Iwata, N.;
Toya, Y.; Nakayama, Y.; Nishioka, T.; Shimizu, K.; Mori, H.; Tomita,
M. Multiple High-Throughput Analyses Monitor the Response of E.
coli to Perturbations. Science 2007, 316, 593−597.
(86) Wishart, D. S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A. C.; Young,

N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; Fung, C.; Nikolai, L.;
Lewis, M.; Coutouly, M.-A.; Forsythe, I.; Tang, P.; Shrivastava, S.;
Jeroncic, K.; Stothard, P.; Amegbey, G.; Block, D.; Hau; David, D.;
Wagner, J.; Miniaci, J.; Clements, M.; Gebremedhin, M.; Guo, N.;
Zhang, Y.; Duggan, G. E.; MacInnis, G. D.; Weljie, A. M.; Dowlatabadi,
R.; Bamforth, F.; Clive, D.; Greiner, R.; Li, L.; Marrie, T.; Sykes, B. D.;
Vogel, H. J.; Querengesser, L. HMDB: The Human Metabolome
Database. Nucleic Acids Res. 2007, 35, D521−D526.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06113
ACS Omega 2023, 8, 3043−3056

3056

https://doi.org/10.1371/journal.pone.0256409
https://doi.org/10.1371/journal.pone.0256409
https://doi.org/10.1038/nature02257
https://doi.org/10.1088/1478-3967/1/4/002
https://doi.org/10.1088/1478-3967/1/4/002
https://doi.org/10.1007/s11538-018-0428-0
https://doi.org/10.1007/s11538-018-0428-0
https://doi.org/10.1038/s41477-022-01136-8
https://doi.org/10.1016/j.bpj.2013.02.027
https://doi.org/10.1016/j.bpj.2013.02.027
https://doi.org/10.1016/j.bpj.2013.02.027
https://doi.org/10.1103/PhysRevLett.117.048101
https://doi.org/10.1103/PhysRevLett.117.048101
https://doi.org/10.1016/j.jtbi.2014.10.025
https://doi.org/10.1016/j.jtbi.2014.10.025
https://doi.org/10.1016/j.jtbi.2014.10.025
https://doi.org/10.1126/science.1132067
https://doi.org/10.1126/science.1132067
https://doi.org/10.1016/j.bpj.2009.06.030
https://doi.org/10.1016/j.bpj.2009.06.030
https://doi.org/10.1016/j.bpj.2009.06.030
https://doi.org/10.1103/PhysRevE.98.012417
https://doi.org/10.1103/PhysRevE.98.012417
https://doi.org/10.1103/PhysRevE.103.062212
https://doi.org/10.1103/PhysRevE.103.062212
https://doi.org/10.1103/PhysRevE.103.062212
https://doi.org/10.1093/nar/gkz881
https://doi.org/10.1093/nar/gkz881
https://doi.org/10.1093/nar/gkz881
https://doi.org/10.1016/j.cels.2017.11.001
https://doi.org/10.1016/j.cels.2017.11.001
https://doi.org/10.1016/j.cels.2017.11.001
https://doi.org/10.1371/journal.pcbi.1007471
https://doi.org/10.1371/journal.pcbi.1007471
https://doi.org/10.1371/journal.pcbi.1007471
https://doi.org/10.1007/s40484-018-0139-4
https://doi.org/10.1007/s40484-018-0139-4
https://doi.org/10.1186/1752-0509-5-182
https://doi.org/10.1038/s41540-021-00198-2
https://doi.org/10.1038/s41540-021-00198-2
https://doi.org/10.1038/s41540-021-00198-2
https://doi.org/10.1186/1741-7007-12-29
https://doi.org/10.1186/1741-7007-12-29
https://doi.org/10.1016/j.ymben.2018.07.009
https://doi.org/10.1016/j.ymben.2018.07.009
https://doi.org/10.1016/j.ymben.2018.07.009
https://doi.org/10.1007/s00285-006-0034-x
https://doi.org/10.1007/s00285-006-0034-x
https://doi.org/10.1093/imamci/9.4.275
https://doi.org/10.1126/science.1132067
https://doi.org/10.1126/science.1132067
https://doi.org/10.1093/nar/gkl923
https://doi.org/10.1093/nar/gkl923
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

