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Abstract: Among the methods of the multi-source navigation filter, as a distributed method,
the federated filter has a small calculation amount with Gaussian state noise, and it is easy to
achieve global optimization. However, when the state noise is time-varying or its initial estimation
is not accurate, there will be a big difference with the true value in the result of the federated filter.
For the systems with time-varying noise, adaptive filter is widely used for its remarkable advantages.
Therefore, this paper proposes a federated Sage–Husa adaptive filter for multi-source navigation
systems with time-varying or mis-estimated state noise. Because both the federated and the adaptive
principles are different in updating the covariance of the state noise, it is required to weight the
two updating methods to obtain a combined method with stability and adaptability. In addition,
according to the characteristics of the system, the weighting coefficient is formed by the exponential
function. This federated adaptive filter is applied to the SINS/CNS/GNSS integrated navigation,
and the simulation results show that this method is effective.

Keywords: multi-source navigation; federated filter; Sage–Husa adaptive filter; time-varying state
noise; biased estimation; weighting function; exponential function

1. Introduction

With the advancement of the navigation and the technology of information fusion,
the multi-source navigation [1] has become the main composition of the integrated navigation with
high precision and reliability. In practical applications, due to the geographical location, equipment
failure and radio interfered, some navigation modes will not work, but other undisturbed navigation
modes will continue to operate, enabling the multi-source navigation to continue navigating for a long
time. Through the detection [2] and correlation [3] of the data, information fusion can improve the
accuracy of state estimation. In addition, in the field of navigation, the information fusion technology
can be used to solve the problem of the low accuracy of a single navigation source in the multi-source
navigation [4]. Therefore, the information fusion technology of multi-source navigation is the key to
navigation operations.

For the problem of multi-source information fusion, Carlson proposed the federated filter, which
can use the information distribution principle to eliminate the correlation of each sub-state estimation.
The distributed principle makes the calculation smaller and more fault-tolerant, and global optimal
or sub-optimal estimates can be obtained through effective fusion, which makes the federated filter
widely used [5].

The federated filter can be composed of one main filter and several local filters, the main filter
and the local filters have the same state equation, and the measurement equations of the local filters
differ according to the measurement information. In the traditional federated Kalman filter algorithm,

Sensors 2019, 19, 3812; doi:10.3390/s19173812 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19173812
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/17/3812?type=check_update&version=2


Sensors 2019, 19, 3812 2 of 22

due to the federal allocation and weighting principle, the estimated value of the system state noise
covariance remains unchanged, that is, the same as the initial estimation. When the estimation of state
noise is accurate and there is no time-varying feature, the result of the federated filter is good enough;
however, when the initial estimation is not accurate or the state noise is time-varying, there will be a
large error in the global filter estimation, which will reduce the navigation accuracy.

For systems with time-varying or mis-estimated state noise, the Sage–Husa adaptive filter [6]
uses the time-varying noise statistical estimator to correct the system state noise and observation
noise, and the simplified Sage–Husa adaptive filter estimates the current state noise to obtain the
adaptive filter value under this estimation by using the forgetting factors [7]; through this process,
the model error can be reduced, the filter divergence can be suppressed, and the navigation accuracy
can be improved.

In this paper, for multi-source navigation with time-varying or mis-estimated state noise,
the federated adaptive Kalman filter is used for the operation, that is, the local filters adopt the
simplified Sage–Husa adaptive algorithm [8], while, in the overall framework, the federated principle
is used for calculations. In view of the fact that both the federated and the adaptive algorithm have
updating principles of the state noise covariance, this paper proposes a weighting method to fuse
these two principes. As a result, the federated adaptive updating process can adjust the state noise
covariance according to the information distribution factor, so that the global filter can maintain
stability on the basis of the adaptive changes. The trend of the weighting value can be determined
by analyzing the variation characteristics of the system, and the exponential function is selected to fit
the system. Compared with the federated Kalman filter and the common federated adaptive Kalman
filter in the simulations, it is found that the improved federated adaptive filter is better in position and
speed determination, which verifies the effectiveness of the proposed method.

The contributions of this paper are as follows: the (1) SINS (strapdown inertial navigation
system)/CNS (celestial navigation system)/GNSS (global navigation satellite system) integrated
navigation mode is established based on the measurement data of various sensors, and federated
principle is used for distributed computing; (2) for the case with time-varying or mis-estimated
state noise, federated Sage–Husa adaptive filter is chosen as the sub-filter’s algorithm, and the state
noise covariance is weighted according to the federated and the adaptive principle to ensure the
adaptability and stability of the global filter; (3) In the simulation part, the comparison of the navigation
accuracy among federated filter, federated adaptive filter and the improved federated adaptive filter
is completed.

The following chapters are structured as follows: Section 2 introduces the principle of federated
Kalman filter, including the structure and operation principle of it, as well as the algorithm of the
filter. Section 3 introduces the Sage–Husa adaptive Kalman filter algorithm. Section 4 introduces the
principle of the improved federated adaptive filter, including the selection process of the federated
distribution factors and the adaptive weighting of the state noise covariance. Section 5 constructs
the SINS/CNS/GNSS integrated navigation model and gives the state equations and measurement
equations of the integrated navigation; Section 6 demonstrates the effectiveness of the improved
federated adaptive filter through the simulations; Section 7 is the conclusions.

2. Introduction of the Federated Kalman Filter

When the navigation process involves three or more navigation methods, it is difficult to combine
the measurement information of each method effectively by using a single filter. For this situation,
the researchers have proposed a number of distributed filter methods. The standard distributed
algorithm [9] was proposed, which is intended to establish the relationship between the distributed
and centralized filter; considering the unknown correlation of local estimations, there is the covariance
crossover algorithm [10] as well as the federated algorithm [11].

Federated Kalman filter is a special form of distributed Kalman filter and it was proposed by
Carlson in the United States in 1998. It consists of several local filters and one main filter, and it is a
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decentralized filter method with block estimation and a two-step cascade. It assigns dynamic state and
observation information to each local filter and each local filter operates separately. The results of local
filters are combined according to the information distribution factors to obtain the result of the global
filter. Obviously, the key of the operation lies in the information distribution process.

2.1. Principle and Structure of the Federated Kalman Filter

The federated filter operation process utilizes the measurement information of each subsystem
and the common reference system for parallel independent operations. Suppose that there are N local
filters, the subscript of the main filter is m, and the subscript of the global filter is g, the state and
measurement equations of each local filter and the main filter are as follows:{

Xi,k = Φi,k−1Xi,k−1 + Wi,k−1
Zi,k = Hi,kXi,k + Vi,k

, i = 1, 2, · · · , N, (m) , (1)

where Xi,k is the state vector of the local filter or main filter, Zi,k is the measurement vector, Φi,k−1 is the
state transition matrix of the ith local filter at time k− 1; Hi,k−1 is the measurement matrix; Wi,k−1 and
Vi,k are the state noise matrix and measurement noise matrix of the local filter respectively, and they
are all Gaussian white noise matrices, the variances are Qi,k−1 and Ri,k respectively. It should be noted
that the main filter has no measurement equation, i.e., when i = m,only the state equation works.

Suppose that the local optimal estimation X̂i,k−1 and its corresponding covariance Pi,k−1 are
obtained at time k− 1, and these local optimal estimations are fused in the global filter according to
the optimal fusion estimation algorithm to obtain the global optimal estimation X̂g,k−1 and its variance
Pg,k−1. The state noise covariance matrices of the local filter and the global filter are Qi,k−1 and Qg,k−1

respectively, and Pg,k−1 and Qg,k−1 are amplified by β−1
i times and then fed back to the local filters for

parameter reset, i.e., the parameter value of k time is obtained:
X̂i,k = X̂g,k−1
Pi,k = β−1

i Pg,k−1
Qi,k = β−1

i Qg,k−1

, i = 1, 2, · · · , N, (m) , (2)

where βi is the information distribution factor. In addition, according to the principle of information
conservation, the information distribution factor βi needs to satisfy:{

β1 + β2 + · · ·+ βN + (βm) = 1,
0 ≤ βi ≤ 1.

(3)

At the same time, the federated filter has the following principles of information distribution: Q−1
g,k = Q−1

1,k + Q−1
2,k + · · ·+ Q−1

N,k +
(

Q−1
m,k

)
,

P−1
g,k = P−1

1,k + P−1
2,k + · · ·+ P−1

N,k +
(

P−1
m,k

)
.

(4)

Through the above equations, the federated filter links each local filter with the main filter,
and realizes the fusion process through information distribution, and different federated modes can
be obtained by setting different information distribution factor βi [12]. The improved federated filter
reset method proposed in this paper uses Equations (2) and (4) to complete the information fusion
process through the allocation and addition of global filter and local filter without the participation of
the main filter.

For the integrated navigation of SINS, CNS and GNSS in this paper, two local filters are
set—SINS/CNS local filter 1 and SINS/GNSS local filter 2, each of which is independent in data
processing. As for the setting of the main filter, it is necessary to consider the actuality of the system.
For this system, in the case that the initial state noise estimation is not accurate or the state noise is
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time-varying, the main filter is not accurate without the measurement equation, so the main filter can
be left. The data of each navigation subsystem is input to the corresponding local filter, and the output
is the result of information fusion, and the global filter result can be obtained, then the global state
estimation is realized. The structure of the federated filter is as Figure 1:
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Figure 1. Federated filter structure of SINS/CNS/GNSS integrated navigation.

As can be seen from Figure 1, on the one hand, the information from the global filter is output
to the outside, and, on the other hand, it is fed back to each sub-filter. The existence of the feedback
process makes the information fusion process of the distributed filter more efficient and accurate.

2.2. Algorithm Flow of the Federated Kalman Filter

For the federated filter structure without the main filter (i.e., β1 + β2 + · · ·+ βN = 1 ), parameters
and their changes of the local filter affect the result of the global filter [13]. Taking the discrete model
in Equation (1) as an example, the steps of the federated filter algorithm are mainly as follows:

a. Initialization:
Firstly, global estimation initialization is performed, and the initial value of the state vector X̂g,0,

the initial value of the state covariance Pg,0, and the initial value of the state noise Qg,0 are known.
b. Information distribution (reset):
Secondly, the information distribution process is as follows:

Pi,k = β−1
i Pg,k−1, (5)

Qi,k = β−1
i Qg,k−1, (6)

X̂i,k = X̂g,k−1. (7)

In this process, the value of βi affects the proportion of each local filter, and the principles of
subsystems are not the same as each other. The specific selection principle is described in Section 4.1:

c. Local estimation:
The state prediction:

X̂i,k|k−1 = Φk−1X̂i,k−1, (8)

The variance prediction:

Pi,k|k−1 = Φk−1Pi,k−1ΦT
k−1 + Qi,k−1, (9)

The variance is updated:
Pi,k = (I − Ki,k Hi,k)Pi,k|k−1, (10)
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The state measurement is updated:

X̂i,k = X̂i,k|k−1 + Ki,k

(
Zi,k − Hi,kX̂i,k|k−1

)
,

Ki,k = Pi,k|k−1Hi,k

(
Hi,kPi,k|k−1HT

i,k + Ri,k

)−1
,

(11)

d. Global integration:
The variance fusion:

Pg,k =

 N

∑
i = 1

(Pi,k)

−1
−1

, (12)

The state fusion:

X̂g,k = Pg,k

[
N

∑
i = 1

(Pi,k)
−1X̂i,k

]
. (13)

After each round of the filter calculation process, it will return to the information distribution
(reset) link to start the next round of calculation.

3. Introduction of the Sage–Husa Adaptive Filter

The Sage–Husa algorithm is an adaptive filter algorithm based on the statistical characteristics
of the system [14]. For the case that the statistical properties of the state and measurement noise are
unknown, the maximal posterior estimation principle can be used to obtain the estimated value [15]
to improve the filter accuracy. The estimation algorithm is suitable for general linear time-varying
systems. The recursive calculation process is simple and suitable for many fields.

Consider the mathematical model of the linear discrete systems:{
Xk = Φk−1Xk−1 + Wk−1,
Zk = HkXk + Vk,

(14)

where Φk−1 is the state transition matrix; Hk−1 is the measurement matrix; Wk−1 and Vk are the
state noise matrix and the measurement noise matrix, and the covariance matrices are Qk−1 and Rk,
respectively, and their statistical properties are unknown.

For the systems where the variance Wk of measurement noise is time-varying or unknown,
the general Kalman filter algorithm is difficult to meet the accuracy requirements of the system due to
the lack of updating procedures for the system and measurement noise. From the aspect of optimizing
the filter performance, the contribution rate of the new data to the filter can be correspondingly
improved, so the operator dk is needed, satisfying

dk =
1− b

1− bk+1 , (15)

where b is the forgetting factor, and 0 < b < 1. The corresponding iterative factor’s updating process
is as follows:

q̂k = (1− dk−1) q̂k−1 + dk−1
[
X̂k −ΦkX̂k−1

]
, (16)

Q̂k = (1− dk−1) Q̂k−1 + dk−1

[
KkZ̃kZ̃T

k KT
k + Pk −Φk−1Pk−1ΦT

k−1

]
, (17)

r̂k = (1− dk−1) r̂k−1 + dk−1

[
Zk − HkX̂k|k−1

]
, (18)

R̂k = (1− dk−1) R̂k−1 + dk−1

[
Z̃kZ̃T

k − HkPk|k−1HT
k

]
, (19)

where q̂k and r̂k are the estimates of the mathematical expectation of the system error and measurement
error at time k, respectively. Q̂k and R̂k are the estimates of the variance of the system error and
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measurement error at time k, respectively. Combining the above iterative factors with the Kalman
filter algorithm, a robust adaptive Kalman filter algorithm which can automatically track noise can be
obtained as follows:

The one-step prediction equation:

X̂k|k−1 = Φk−1X̂k−1 + q̂k, (20)

The mean square error of the one-step prediction:

Pk|k−1 = Φk−1Pk−1ΦT
k−1 + Q̂k−1, (21)

The gain of the filter:

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + R̂k

]−1
, (22)

The estimation of the mean square error:

Pk = [I − Kk Hk]Pk|k−1, (23)

The state estimation:
X̂k = X̂k|k−1 + KkZ̃k. (24)

By adjusting the forgetting factor b, the adaptive process of the system can be fulfilled.

4. Improved Federated Adaptive Filter Algorithm

4.1. Selection of the Federated Filter Information Distribution Factors

It is known that the structure and parameter updating process of federated filter is closely related
to the selection of information distribution factor βi [16]. Therefore, it is necessary to select the
appropriate βi according to the characteristics of the system to achieve better filter effect.

In the present literature, the selection methods of βi are mainly divided into two types, one is based
on the fixed ratio [17], which is suitable for the process without dynamic changes or the proportion
of state covariance remains unchanged. For example, when the parameters of each local filter are
the same, the distribution can be set as βi = 1

N . The other method is used for the case in which the
relevant parameters of the subsystem change with time. In this time, the dynamic adaptive method
can be used to select the information distribution factor [18]. The distribution methods are mainly
divided into several types:

(1) According to the trace of the Pi matrix [19,20]:
Let

βi =
trPi

N,m
∑

i = 1
trPi

. (25)

The information distribution factor can be obtained by estimating the state vector covariance
matrix Pi.

(2) According to the F norm of the P matrix [21]:

βi =

∥∥Pi,k−1
∥∥

F
n
∑

i = 1

∥∥Pi,k−1
∥∥

F

(1− βm) . (26)

Since the parameters of the local filters are not the same and it cannot guarantee that the parameter
weight remains unchanged, it is necessary to select an information distribution factor with dynamic
adaptive ability. Considering the computational complexity of these algorithms, this paper chooses
Equation (25) as the solution algorithm of βi.
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4.2. Selection of Federated Adaptive Filter’s Partition Coefficient and Its Feasibility Analysis

4.2.1. Selection of Federated Adaptive Filter’s Partition Coefficient and Its Feasibility Analysis

In the actual situations, the statistical properties of the state noise are often difficult to determine,
and the inaccurate state noise covariance will affect the accuracy of the filter. Therefore, in the
framework of the federated filter, the simplified Sage–Husa adaptive filter [22] can be chosen as the
algorithm of the local filter, thus an improved federated adaptive filter algorithm can be proposed.

The traditional federated Kalman filter does not have the ability to eliminate the influence of
deviation. For the state noise covariance, after that, the initial value Qg,0 is given, the iterative process
at each moment simply re-updates the value of Qg,0 according to the information distribution factor.
When there is a deviation in the initial value, the deviation will always exist in the filter process, which
will affect the filter result. Assume that

Q0 = ∆Q0 + Qg,0, (27)

where Q0 is the true value of the initial state noise, ∆Q0 is the deviation between the true value and
the estimated value. Due to the existence of ∆Q0, the filter effect of the traditional federated Kalman
filter is difficult to guarantee.

When the Sage–Husa adaptive filter is selected by local filter, the influence of the initial deviation
on the filter is gradually weakened due to the update of Q̂i,k, which makes the filter more adaptable.

In fact, the measurement noise of the system is related to the accuracy of the measuring instrument,
the distance and the angle of the target. In this paper, it is assumed that the statistical properties of the
measurement noise are known, and the simplified Sage–Husa adaptive algorithm can be obtained by
using statistical characteristics of state noise [23].

During the operation of federated adaptive filter, the iterative process of federated filter
continuously updates X̂g,k, Pg,k, and Qg,k through Equations (2) and (4), while adaptive filter updates
q̂i,k and Q̂i,k through Equations (16) and (17). Since there may be a deviation in the initial value
of the state noise covariance, it is considered to combine the federated updating principle with the
adaptive principle, and use the combined federated adaptive principle to update the covariance of the
state noise.

For each local filter, it is assumed that there are two updating methods—the federated principle
and the adaptive principle method, which are as follows:

Q̂1
i,k+1 = β−1

i Q̂g,k, (28)

Q̂2
i,k+1 = (1− dk) Q̂k + dk

[
Kk+1Z̃k+1Z̃T

k+1KT
k+1 + Pk+1 −ΦkPkΦT

k

]
, (29)

where Q̂1
i,k+1 and Q̂2

i,k+1 are the state noise covariance estimations of the ith filter at k + 1 moment by
using the federated algorithm and the adaptive algorithm, respectively. It is known that the updating
process of the federated principle is related to the initial value. When the initial value is accurate or it
is Gaussian white noise, it can use the information distribution factor to obtain the optimal solution
globally; in addition, for the system with inaccurate or time-varying value, the adaptive updating
process can adjust the adaptive degree of the filter by selecting the operator dk [24], and it is related to
the forgetting factor b.

In the operation of improved federated adaptive filter, the proportion of adaptive algorithm
distribution increases with the change of state noise. Consider weighting the two update processes to
get the following equation:

Q̂i,k+1 = αQ̂1
i,k+1 + (1− α) Q̂2

i,k+1. (30)

According to the variation characteristics of the state noise, the proportion of α in the equation
should decrease, and the federated adaptive filter should always satisfy 0 < α < 1. In the first
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quadrant, the changes of the linear function do not satisfy the above conditions, and the inverse
proportional function, the transformed exponential function and logarithmic function can satisfy the
conditions. In this paper, the transformed exponential function is selected as the changing function of
the weight, that is,

αk =
σ

ek , (31)

where αk is the weighting ratio of the federated method at k time; σ > 0, σ is chosen to control the rate
of the change of α.

The mean square error (MSE) of state noise satisfies

MSE (Q) = bias (Q) + var (Q) , (32)

where bias (Q) is the deviation of state noise, var (Q) is the variance. There will be a deviation in the
setting of the initial value according to the federated principle, and the result of the adaptive filter
will have a large variance when the number of samples is small. Therefore, the deviation of the state
noise variance is mainly from the federated updating method, and the variance mainly comes from the
adaptive updating method. For the sake of convenience, according to the variation characteristics of
the weight, the initial variance of Q̂1

i,k+1 in the federated algorithm is set to 0, and the initial deviation
of Q̂2

i,k+1 in the adaptive algorithm is set to 0. Thus, the mean square error of the state noise variance
estimation of the federated adaptive filter at k + 1 time should satisfy the following equation:

MSE
(
Q̂i,k+1

)
= α2MSE

(
Q̂1

i,k+1

)
+ (1− α)2MSE

(
Q̂2

i,k+1

)
= α2

(
bias

(
Q̂1

i,k+1

)
+ var

(
Q̂1

i,k+1

))
+ (1− α)2

(
bias

(
Q̂2

i,k+1

)
+ var

(
Q̂2

i,k+1

))
.

(33)

After analysis, it can be seen that bias
(

Q̂1
i,k+1

)
remains unchanged and it exists at the initial

time,var
(

Q̂1
i,k+1

)
= 0; while var

(
Q̂2

i,k+1

)
has a large value in the initial time due to the few samples,

and it gradually decreases with the number of the samples increases, and bias
(

Q̂2
i,k+1

)
= 0. Thus,

Equation (33) can be changed as:

MSE
(
Q̂i,k+1

)
= α2bias

(
Q̂1

i,k+1

)
+ (1− α)2var

(
Q̂2

i,k+1

)
. (34)

4.2.2. Feasibility Analysis of the Federated Adaptive Filter’s Partition Coefficient

According to Equation (34), in the updating process of Q̂i,k+1 by the federated adaptive algorithm,

MSE
(
Q̂i,k+1

)
consists of two parts, and bias

(
Q̂1

i,k+1

)
remains invariant after the initial value is

determined. Therefore, it is necessary to ensure that var
(

Q̂2
i,k+1

)
decreases with time, thus the

feasibility and superiority of the algorithm are guaranteed.
For Equation (34), assume that Ωk = Kk+1Z̃k+1Z̃T

k+1KT
k+1 + Pk+1 −ΦkPkΦT

k ,let var (Ωk) = ∆k,
then

var
(

Q̂2
i,k

)
= ∆2

k−1
∏

i = 2
(1− di)

2 +
k−1
∑

i = 3
d2

i−1∆i
i+1
∏

j = 3

(
1− dj

)2

+ d2
k−1∆k

= ∆2
k−1
∏

i = 2
(1− di)

2 +
k−1
∑

i = 3

[
d2

i−1∆i
i

∏
j = 3

(
1− dj

)2
]
+ d2

k−1∆k

(35)

var
(

Q̂2
i,k+1

)
= (1− dk)

2var
(

Q̂2
i,k

)
+ d2

k∆k+1

= var
(

Q̂2
i,k

)
− 2dkvar

(
Q̂2

i,k

)
+ d2

k

(
var

(
Q̂2

i,k

)
+ ∆k+1

)
.

(36)
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To make var
(

Q̂2
i,k+1

)
< var

(
Q̂2

i,k

)
, then

− 2dkvar
(

Q̂2
i,k

)
+ d2

k

(
var

(
Q̂2

i,k

)
+ ∆k+1

)
< 0. (37)

Simplified:
dk∆k+1 < (2− dk) var

(
Q̂2

i,k

)
. (38)

It can be seen from Equation (15) that the operator dk can be controlled by selecting the forgetting
factor b, so the federated adaptive algorithm is feasible under the conditions of Equation (38).

The Sage–Husa adaptive filter has a small sample size at the initial time, and the estimated state
noise variance has a large variance. At this time, if the value of the forgetting factor b is increased,
the adaptive convergence will slow down. Therefore, the integrated method can guarantee the
convergence speed as well as the estimation accuracy. The dynamic information distribution of
federated adaptive filter is completed by using the exponential function as the weighting algorithm.

In summary, it is assumed that Q̂k is the state noise variance estimation at k time of the federated
adaptive algorithm, the algorithm flow of the federated adaptive filter is as follows:

Through the operation flow shown in Figure 2, a federated adaptive algorithm can be obtained,
which is adaptive and stable to meet the requirements of the multi-source system navigation with
unknown state noise characteristics.

Local filter 1

Local filter 2

Local filter 1

Local filter 2

Federated
 algorithm

The k moment The k+1 moment

1, 1
ˆ

kQ

2, 1
ˆ

kQ

Adaptive 
algorithm

Information 
distribution

Adaptive 
algorithm

Federated
 algorithm

2
1,

ˆ
kQ

2
2,

ˆ
kQ

1
1,

ˆ
kQ

1
2,

ˆ
kQ

,
ˆ

g kQ ˆ
kQ

2
1, 1

ˆ
kQ

2
2, 1

ˆ
kQ

Figure 2. The algorithm flow of the federated adaptive filter.

5. SINS/CNS/GNSS Integrated Navigation Model

1. ENU geography coordinate system(t): The origin of the coordinate system is the center of the
carrier, the xt axis points eastward along the direction of the reference ellipsoid ring, the yt axis
points north along the direction of the reference ellipsoid meridian, and the zt axis is determined
by the right-hand rule.

2. Aircraft body coordinate system(b): Taking the satellite as an example, the body coordinate
system is a coordinate system fixed on the satellite body. The coordinate origin is the satellite
centroid, and the xb axis, yb axis and zb axis are usually defined on the satellite’s inertia main axis.

3. Navigation coordinate system(n): The navigation coordinate system is the coordinate system
selected according to the needs of solving the navigation parameters.

This paper selects SINS, CNS and GNSS as the three basic navigation methods. By using
the high-precision attitude information provided by CNS and the position as well as the velocity
information provided by GNSS, the local filters use the Sage–Husa adaptive filter to estimate the
position, velocity and attitude errors of SINS accurately, and correct the inertial device error of the
SINS. Finally, the system will achieve continuous high-precision navigation of the aircraft.

As shown in Figure 1, in this paper, there is no main filter; two local filters are used to implement
the federated filter. They are SINS/CNS local filter 1 and SINS/GNSS local filter 2, respectively.
The ENU coordinate system is used as the reference coordinate system, the flight height is assumed as
h, and the earth is assumed as a spheroid.
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5.1. The State Equation of the Integrated Navigation System

The state equation of the SINS/CNS/GNSS integrated navigation system consists of the error
equations of SINS and the inertial devices, in the form of

Xk = Φk−1Xk−1 + Gk−1Wk−1. (39)

Take the state parameter of the system as 15 dimensions, and record it as:

X =

[
φE φN φU δvE δvN δvU δL δλ

δh εx εy εz ∇x ∇y ∇z

]T

, (40)

where
[

φE φN φU

]
denotes the three mathematical platform angles error;

[
δvE δvN δvU

]
denotes the velocity error on three axes;

[
δL δλ δh

]
denotes the latitude, longitude and height

error;
[

εx εy εz

]
and

[
∇x ∇y ∇z

]
are the gyro random constant drift and the accelerometer

random constant drift.
The state noise consists of the random error of the gyroscope and the accelerometer. The expression is

W =
[

wεx wεy wεz w∇x w∇y w∇z

]T
. (41)

State noise transformation matrix is:

G =

 Cn
b 03×3

03×3 Cn
b

09×3 09×3

 , (42)

where Cn
b denotes the rotation matrix of the aircraft body coordinate system to the navigation

coordinate system.

5.2. The Measurement Equation of the Integrated Navigation System

It is known that the federated adaptive filter of the integrated navigation system contains two
local filters, and the ENU geography coordinate system is selected as the navigation coordinate system.

The SINS/CNS subsystem uses the transformed mathematical platform angles error as the
measurement vector of the Sage–Husa adaptive filter. The measurement equation is

Z1,k = H1,kXk + V1,k, (43)

where Z1,k denotes the measurement vector, Z1 =
[

φE φN φU

]T
; H1,k denotes the measurement

matrix, H1 =
[

I3×3 03×12

]T
. V1 =

 δ∆x

δ∆y

δ∆z

, V1 denotes the difference between the star sensor

and the gyroscope drift error.
The SINS/GNSS subsystem uses the difference between the position and velocity of SINS and

GNSS as the measurement information of adaptive filter. The measurement equation is

Z2,k = H2,kXk + V2,k =

[
Hv

2,k
H p

2,k

]
Xk +

[
V v

2,k
V p

2,k

]
, (44)
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where Hv
2 =

[
03×3 diag

(
1 1 1

)
03×9

]
,H p

2 =
[

03×6 diag
(

RM RN cos L 1
)

03×6

]
.

V v
2 =

 vE
vN
vU

, V v
2 denotes the speed difference between the SINS and GNSS in the three directions;

V p
2 =

 pE
pN
pU

, V p
2 denotes the position difference between the SINS and GNSS in the three directions.

6. Simulation and Analysis

Assume that the trajectory of the aircraft is shown in Figure 3:

-1 
1

-0.5

0.5 1

0

#107

3D Trajectory on the Earth

0.5

0.5

#107 0
#107

1

0
-0.5 -0.5

-1 -1

Figure 3. The trajectory of the aircraft on the earth.

Assume that the basic simulation conditions are: The random drift of SINS gyro is 0.5◦/h.
The random offset of accelerometer is 50 µg; Initial misalignment angle is

[
10′′ 60′′ 10′′

]
.

Initial state noise covariance estimation is unbiased, which is Q = diag[w2
g, w2

g, w2
g, w2

a , w2
a , w2

a ],
and wg = 0.5π/180/3600, wa = 50 · 10−6g, where g is the acceleration of gravity; the initial position
of the aircraft is 116◦ of east longitude, 39◦ of north latitude; the shooting angle is 90◦; the thrust
acceleration is 40 m/s2 at the first 60 s; in the launch inertial system, the initial pitching angle is 90◦

and remains the same during the first 10 s, then it changes from 90◦ to 30◦ in the form of quadratic
function during the next 50 s, and then it remains the same during the rest of the time; in addition,
the heading angle and rolling angle are both 0◦ throughout the whole process; the simulation time is
1110 s, the sampling interval is 0.01 s, and 50 Monte Carlo simulations are performed.

(1) Gaussian state noise and the estimation are unbiased:
The condition setting with Gaussian state noise and unbiased estimation is the same as the basic

simulation conditions above. Taking the average of the errors, the improved federated Sage–Husa
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adaptive filter, federated Sage–Husa adaptive filter and the federated filter are used in integrated
navigation, and the simulation error curves are shown in the Figures 4–6:
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Figure 4. Comparison of the navigation error with Gaussian state noise and unbiased estimation in
E direction.
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Figure 5. Comparison of the navigation error with Gaussian state noise and unbiased estimation in
N direction.
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Figure 6. Comparison of the navigation error with Gaussian state noise and unbiased estimation in
U direction.

It can be seen from the Figures 4–6 that there are almost no differences in the navigation errors of
the three methods in the three directions. The following table is a quantitative analysis.

It can be seen from the Tables 1 and 2 that the navigation errors of the three methods in three
directions are almost the same, and the subtle differences are too small to be noticed, that is, when the
state noise is Gaussian and the estimation is unbiased, the three methods are roughly the same.

Table 1. Position error (m).

Improved Federated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 17.3584 17.4424 17.2760

N 35.9106 36.1043 35.7211

U 100.0971 100.6206 99.5849

Table 2. Velocity error (m/s).

Improved Sederated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 0.4472 0.4481 0.4463

N 0.9144 0.9166 0.9122

U 2.5977 2.6043 2.5912

(2) Gaussian state noise and the estimation are biased:
The settings of the parameters are same as those in Tabel (1), and the initial estimation of state

error covariance is Q = Q
/

10 .
It can be seen from the above Figures 7–9 and the Tables 3 and 4 that, when the estimation of the

state noise is deviated, even if the state noise is Gaussian, the filter effects of the three methods are
different. In the comparison of position and velocity errors, the improved federated adaptive filtering



Sensors 2019, 19, 3812 14 of 22

is the best, followed by the federated adaptive filter, the federated filter is not effective because it
depends on the initial value of the state noise.
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Figure 7. Comparison of the navigation error with Gaussian state noise and biased estimation in
E direction.
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Figure 8. Comparison of the navigation error with Gaussian state noise and biased estimation in
N direction.
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Figure 9. Comparison of the navigation error with Gaussian state noise and biased estimation in
U direction.

Table 3. Position error (m).

Improved federated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 16.3954 18.1059 24.3230

N 35.9874 38.1979 52.8275

U 98.6435 107.0620 147.8313

Table 4. Velocity error (m/s).

Improved Federated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 0.4073 0.4316 0.5174

N 0.9145 0.9399 1.0951

U 2.4948 2.6905 3.1695

(3) Non-Gaussian state noise and the estimation are biased:
In the test (2), the setting of the parameters is added as follows: The SINS gyro random constant

drift is 0.2◦/h, the accelerometer’s random offset is 50 µg, and the initial misalignment angle is[
10′′ 60′′ 10′′

]
. The simulation error curve is shown in the Figures 10–12:
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Figure 10. Comparison of the navigation error with non-Gaussian state noise and biased estimation in
E direction.
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Figure 11. Comparison of the navigation error with non-Gaussian state noise and biased estimation in
N direction.
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Figure 12. Comparison of the navigation error with non-Gaussian state noise and biased estimation in
U direction.

The above simulation is performed under the condition that the state noise is non-Gaussian
and the estimation is biased, the tables are obtained in the case of using the federated Kalman filter,
the federated adaptive filter and the improved federated adaptive filter to compare speed with position
error in three directions. It can be seen from Figures 10–12 that, in the initial time, the three methods
have large fluctuations owing to too few samples. As the number of samples increases, the three
methods get stable gradually. In addition, when the number of samples increases to a certain extent,
the advantages of improved federated adaptive filter gradually appear, which is the best among the
three methods, while the federated adaptive method is the second, and the federated Kalman filter is
the worst. The error statistics in three directions are shown in Tables 5 and 6.

Table 5. Position error (m).

Improved Federated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 17.8912 21.8945 28.2643

N 31.3211 35.8689 49.4581

U 99.0952 104.7118 151.0506

Table 6. Velocity error (m/s).

Improved Federated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 0.4204 0.4456 0.5107

N 0.8720 0.9126 1.1015

U 2.5280 2.6031 3.1570
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It can be seen from the comparison of the position and velocity errors that in the integrated
navigation process, the effect of the improved federated adaptive filter is better than the other two
methods in the three directions.

(4) Time-varying state noise and the estimation are biased:
Let the constant offset of the gyroscope in test (3) be set to 0, and it increases to 0.2◦/h with time.

The random offset of the accelerometer is set to 0 at the beginning, and it evenly increases to 50 µg
with time. The comparison of the three methods in three directions is as Figures 13–15:
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Figure 13. Comparison of the navigation error with time-varying state noise and biased estimation in
E direction.
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Figure 14. Comparison of the navigation error with time-varying state noise and biased estimation in
N direction.
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Figure 15. Comparison of the navigation error with time-varying state noise and biased estimation in
U direction.

It can be seen from the above Figures 13–15 and the Tables 7 and 8 that, when the state noise is
time-varying, the filter effect of the three methods is similar to the case of the non-Gaussian state noise.
Improved federated adaptive filter has the best effect of the position and velocity error, followed by
federated adaptive filter, while the federated Kalman filter is the worst.

Table 7. Position error (m).

Improved Federated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 18.2575 19.7800 26.8285

N 34.3613 36.0846 50.2126

U 99.6093 103.6305 150.2649

Table 8. Velocity error (m/s).

Improved Federated
Sage–Husa Adaptive Filter

Federated Sage–Husa
Adaptive Filter

Federated
Filter

E 0.4225 0.4541 0.5248

N 0.8606 0.9161 1.0905

U 2.5309 2.6213 3.1736

Comparing the improved federated adaptive filter and federated filter in different situations,
comparison of position error under the conditions of test (1) and test (4) can be taken as an example,
and the precision changes of the two filters in E-N-U directions are shown in Table 9.

Table 9. The precision changes of the two filters in E-N-U directions.

Improved Federated Sage–Husa Adaptive Filter Federated Filter

E −5.1796% −55.2934%

N 4.5089% −40.5685%

U 0.4897% −50.8912%
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“+” means the precision is improved, while “−” means the accuracy is reduced. It can be seen
from Table 9 that the precision of the improved federated adaptive filter has few changes for different
conditions of state noise, while the federated filter’s precision decreases significantly, which shows
that the improved federated adaptive filter has little dependence on the initial noise estimation, but the
federated filter depends more.

Therefore, to sum up the above four cases, it can be seen that the improved federated adaptive
filter algorithm can perform operations based on the state noise with unknown characteristics, and its
filter accuracy is higher than the other two methods. However, since the filter algorithm designed
in this paper improves the estimation of the statistical characteristics of the unknown state noise,
the difference of the velocity error between the three methods is not as obvious as the position error,
and it is related to the system characteristics. In summary, for different systems, the weighting mode
and weighting function should be selected according to the characteristics of the system to obtain the
optimal result of the federated adaptive filter.

7. Conclusions

In this paper, a filter algorithm based on the federated filter and simplified Sage–Husa adaptive
filter is proposed for systems with time-varying state noise and biased estimation. The algorithm
uses federated filter as the framework of the multi-source integrated navigation, and the local filters
choose the improved Sage–Husa adaptive filter as the algorithm. In the updating process of the
parameters, the federated and the adaptive principle are combined, and the exponential function
is used to characterize the weighting value changes of the two updating principles, so as to obtain
an improved federated adaptive algorithm with dynamic adaptive ability. Through the theoretical
analysis and simulations of the improved federated adaptive algorithm, it can be seen that, when
the number of samples is sufficient, the filter will tend to be stable and convergent. Compared with
the federated Kalman filter and the common federated adaptive filter, the accuracy of this improved
method is the highest. It shows that the improved federated Sage–Husa adaptive filter is effective in
improving the federated algorithm, and it can weaken the influence of the initial estimation error of
the state noise to some extent and improve the navigation accuracy.

Author Contributions: S.X. proposed the main idea and finished the draft manuscript; J.W. conceived of the
experiments and drew the figures and tables; Z.H. conducted the simulations; H.Z. and D.W. analyzed the data.

Funding: This research is supported by the National Natural Science Foundation of China (Grant No. 61773021)
and the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant No. 2019JJ20018),
the Natural Science Foundation of Hunan Province 2019JJ50745), and the Civil Aerospace Advance Research
Project (Grant No. D020213).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SINS strapdown inertial navigation system
CNS celestial navigation system
GNSS global navigation satellite system
MSE mean square error
var variance

References

1. Jiang, W.; Li, Y.; Rizos, C. A Multisensor Navigation System Based on an Adaptive Fault-Tolerant GOF
Algorithm. IEEE Trans. Intell. Transp. Syst. 2017, 18, 103–113.



Sensors 2019, 19, 3812 21 of 22

2. Chandra, B.S.; Sastry, C.S.; Soumya, J. Robust Heartbeat Detection from Multimodal Data via CNN-based
Generalizable Information Fusion. IEEE Trans. Biomed. Eng. 2019, 66, 710–717. [CrossRef] [PubMed]

3. Yang, C.Y.; Chen, B.S.; Liao, F.K. Mobile Location Estimation Using Fuzzy-Based IMM and Data Fusion.
IEEE Trans. Mob. Comput. 2010, 9, 1424–1436. [CrossRef]

4. Jang, W.; Park, H.; Seo, K.; Kim, Y. Analysis of Positioning Accuracy Using Multi Differential GNSS in Coast
and Port Area of South Korea. J. Coast. Res. 2016, 75, 1337–1341. [CrossRef]

5. Jing, M.; Sun, S. Distributed fusion filter for multi-sensor systems with random sensor delays, multiple
packet dropouts and uncertain observations. In Proceedings of the 15th International Conference on
Information Fusion, Singapore, 9–12 July 2012; pp. 1036–1043.

6. Sun, J.; Xu, X.; Liu, Y.; Zhang, T.; Li, Y. FOG Random Drift Signal Denoising Based on the Improved AR
Model and Modified Sage–Husa Adaptive Kalman Filter. Sensors 2016, 16, 1073. [CrossRef] [PubMed]

7. Li, G.; Zhao, D.; Xie, R.; Han, H.; Zong, C.; Amp, A. Vehicle State Estimation Based on Improved Sage–Husa
Adaptive Extended Kalman Filtering. Automot. Eng. 2015, 37, 1426–1432.

8. Cai, X.; Qiu, A.P.; Qian, W.X.; Shi, Q. Research on MEMS Gyro Random Drift Restraining Based on Simplified
Sage–Husa Adaptive Filter Algorithm. Adv. Mater. Res. 2012, 403–408, 127–131. [CrossRef]

9. Olfati-Saber, R. Distributed Kalman Filter with Embedded Consensus Filters. In Proceedings of the European
Control Conference Cdc-ecc 05 IEEE Conference on Decision & Control, Seville, Spain, 15 December 2005.

10. Li, Y.; Feng, J.; Hu, J. Covariance and crossover matrix guided differential evolution for global numerical
optimization. Springerplus 2016, 5, 1176. [CrossRef] [PubMed]

11. Zhou, B.; Cheng, X. Federated filtering algorithm based on fuzzy adaptive UKF for marine SINS/GPS/DVL
integrated system. In Proceedings of the Chinese Control & Decision Conference, Xuzhou, China, 26–28 May
2010.

12. Cheng, J.; Zhi, X.; Lin, A.; Liu, J. Study on unequal-interval federated filter algorithm based on
dynamic information distribution. In Proceedings of the Control & Decision Conference, Qingdao, China,
23–25 May 2015.

13. Tupysev, V.A.; Litvinenko, Y.A. The Effect of the Local Filter Adjustment on the Accuracy of Federated
Filters. Ifac Papersonline 2015, 48, 339–344. [CrossRef]

14. Zheng, Z.; Liu, S.; Zhang, B. An improved Sage–Husa adaptive filtering algorithm. In Proceedings of the
Control Conference, Hefei, China, 25–27 July 2012.

15. Mara, T.A.; Fajraoui, N.; Younes, A.; Delay, F. Inversion and uncertainty of highly parameterized models in a
Bayesian framework by sampling the maximal conditional posterior distribution of parameters. Adv. Water Resour.
2015, 76, 1–10.

16. Hui, S.; Zhi, X.; Xu, J.; Bing, H.; Song, H. Robust filtering algorithm based on time-varying noise. Aircr. Eng.
Aerosp. Technol. Int. J. 2016, 88, 189–196.

17. Noack, B.; Julier, S.J.; Reinhardt, M.; Hanebeck, U.D. Nonlinear Federated Filtering. In Proceedings of the
International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013.

18. Zhang, P.; Qi, W.; Deng, Z. Hierarchical fusion robust Kalman filter for clustering sensor network
time-varying systems with uncertain noise variances. Int. J. Adapt. Control Signal Process. 2015, 29, 99–122.
[CrossRef]

19. Kortun, A.; Sellathurai, M.; Ratnarajah, T.; Zhong, C. Distribution of the Ratio of the Largest Eigenvalue to
the Trace of Complex Wishart Matrices. IEEE Trans. Signal Process. 2012, 60, 5527–5532. [CrossRef]

20. Nadler, B. On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix.
J. Multivar. Anal. 2011, 102, 363–371. [CrossRef]

21. Wang, Y.; Ling, G.; Venetsanopoulos, A.N. Kernel cross-modal factor analysis for multimodal information
fusion. In Proceedings of the IEEE International Conference on Acoustics, Prague, Czech Republic,
22–27 May 2011.

22. Narasimhappa, M.; Rangababu, P.; Sabat, S.L.; Nayak, J. A modified Sage–Husa adaptive Kalman
filter for denoising Fiber Optic Gyroscope signal. In Proceedings of the India Conference, Kochi, India,
7–9 December 2012.

http://dx.doi.org/10.1109/TBME.2018.2854899
http://www.ncbi.nlm.nih.gov/pubmed/30004868
http://dx.doi.org/10.1109/TMC.2010.105
http://dx.doi.org/10.2112/SI75-268.1
http://dx.doi.org/10.3390/s16071073
http://www.ncbi.nlm.nih.gov/pubmed/27420062
http://dx.doi.org/10.4028/www.scientific.net/AMR.403-408.127
http://dx.doi.org/10.1186/s40064-016-2838-5
http://www.ncbi.nlm.nih.gov/pubmed/27512635
http://dx.doi.org/10.1016/j.ifacol.2015.09.208
http://dx.doi.org/10.1002/acs.2463
http://dx.doi.org/10.1109/TSP.2012.2205922
http://dx.doi.org/10.1016/j.jmva.2010.10.005


Sensors 2019, 19, 3812 22 of 22

23. Berntorp, K.; Di Cairano, S. Tire-Stiffness and Vehicle-State Estimation Based on Noise-Adaptive Particle
Filtering. IEEE Trans. Control Syst. Technol. 2019, 27, 1100–1114. [CrossRef]

24. Su, W.X. Application of Sage–Husa adaptive filtering algorithm for high precision SINS initial alignment.
In Proceedings of the International Computer Conference on Wavelet Active Media Technology &
Information Processing, Chengdu, China, 19–21 December 2014.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCST.2018.2790397
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Introduction of the Federated Kalman Filter
	Principle and Structure of the Federated Kalman Filter
	Algorithm Flow of the Federated Kalman Filter

	Introduction of the Sage–Husa Adaptive Filter
	Improved Federated Adaptive Filter Algorithm
	Selection of the Federated Filter Information Distribution Factors
	Selection of Federated Adaptive Filter’s Partition Coefficient and Its Feasibility Analysis
	Selection of Federated Adaptive Filter’s Partition Coefficient and Its Feasibility Analysis
	Feasibility Analysis of the Federated Adaptive Filter’s Partition Coefficient


	SINS/CNS/GNSS Integrated Navigation Model
	The State Equation of the Integrated Navigation System
	The Measurement Equation of the Integrated Navigation System

	Simulation and Analysis
	Conclusions
	References

