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Abstract

Thoroughbred horse racing is a global sport with major hubs in Europe, North America, Aus-

tralasia and Japan. Regional preferences for certain traits have resulted in phenotypic varia-

tion that may result from adaptation to the local racing ecosystem. Here, we test the

hypothesis that genes selected for regional phenotypic variation may be identified by analy-

sis of selection signatures in pan-genomic SNP genotype data. Comparing Australian to

non-Australian Thoroughbred horses (n = 99), the most highly differentiated loci in a com-

posite selection signals (CSS) analysis were on ECA6 (34.75–34.85 Mb), ECA14 (33.2–

33.52 Mb and 35.52–36.94 Mb) and ECA16 (24.28–26.52 Mb) in regions containing candi-

date genes for exercise adaptations including cardiac function (ARHGAP26, HBEGF,

SRA1), synapse development and locomotion (APBB3, ATXN7, CLSTN3), stress response

(NR3C1) and the skeletal muscle response to exercise (ARHGAP26, NDUFA2). In a

genome-wide association study for field-measured speed in two-year-olds (n = 179) SNPs

contained within the single association peak (33.2–35.6 Mb) overlapped with the ECA14

CSS signals and spanned a protocadherin gene cluster. Association tests using higher den-

sity SNP genotypes across the ECA14 locus identified a SNP within the PCDHGC5 gene

associated with elite racing performance (n = 922). These results indicate that there may be

differential selection for racing performance under racing and management conditions that

are specific to certain geographic racing regions. In Australia breeders have principally

selected horses for favourable genetic variants at loci containing genes that modulate

behaviour, locomotion and skeletal muscle physiology that together appear to be contribut-

ing to early two-year-old speed.

Introduction

Thoroughbred horseracing is a global sport, with regional-specific population genetic differ-

ences which may result from variation in the racing ecosystem. Each region is responsible for
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determining the race ‘pattern’ which includes the grading of races (i.e. Group race status) and

the determination of race distances. Racing varies across regions with respect to race distance

distributions [1], racetrack surfaces and the timing of the racing calendar. The training of

horses also varies because of the difference in climatic conditions, such that many horses are

exercised at earlier, cooler hours of the day in many parts of Australia. Because of this, the

genetics of certain sire lines may not be suitable for success in all racing regions.

An increasing number of studies in domestic animal populations focus on highly differenti-

ated loci that have been subject to artificial selection. This approach can identify genes subject to

selection that has occurred during domestication, breed formation or as a result of subsequent

directional breeding for culturally desirable or economically important traits [2–10]. Alleles may

increase in frequency in a population due to genetic drift (neutral variation) or selection, which

if acting on beneficial mutations is referred to as positive selection [11]. These changes contrib-

ute to population adaptation and phenotypic diversity. As beneficial mutations increase in fre-

quency towards fixation, there is a tendency towards reduced variation at neighbouring

genomic regions enabling assessment of selection dynamics using high-density genetic markers.

In the horse, microsatellite markers have previously been used to identify genomic regions

that have contributed to the gross anatomical, metabolic and physiological adaptations of the

extreme athletic phenotype among Thoroughbreds [2]. Applied to genome-wide SNP geno-

types, selection signature tests have been successful in detecting loci that are responsible for

major phenotypic traits among horse populations [12] including the key genes associated with

sprinting performance (MSTN) [13], gaitedness (DMRT3) [14] and height (LCORL) [3, 15].

Other studies have revealed selection signatures for reproduction traits [7] and morphological

phenotypes [9, 16].

The discovery of the same selected genomic region using multiple population genetics-

based approaches [17–29], provide convincing evidence for selection pressure on a locus. Fol-

lowing this idea, several composite selection tests have been developed to increase the power

to detect selection such as Composite of Multiple Signals (CMS) [25], Meta-analysis of Selec-

tion Signals (Meta-SS) [4] and Composite Selection Signals (CSS) [6]. CSS uses fractional

ranks of constituent tests allowing a combination of the evidence of historical selection from a

set of selection tests [4, 6].

Compared with genome wide association studies (GWAS) that are commonly used to iden-

tify genes or genomic regions contributing to a trait of interest, selection signature tests: 1) can

detect selection if the advantageous allele is already fixed, while GWAS fails in such a situation

[30]; 2) may help to identify quantitative trait loci with small effect sizes incapable of being

detected by GWAS; and 3) allow the fitness effects of many phenotypic variants with small

selection coefficients to produce a detectable signal in patterns of DNA polymorphism at the

underlying loci [31].

Here, using the CSS approach we aimed to identify genetic loci contributing to positive local

adaptation to racing conditions in Australia. We tested the hypothesis that regional nuances of

racing have led to phenotypic variation in Thoroughbreds across geographic regions and that

regional phenotypic variation may be identified by analysis of selection signatures in pan-geno-

mic SNP genotype data. The aim of the study was to identify the major genetic loci contributing

to regional phenotypic variation in the Australian Thoroughbred population.

Results and discussion

Signatures of selection in the Australian Thoroughbred

To test the hypothesis that regional-specific phenotypic variation is underpinned by genes on

which positive selection is acting, we compared allele frequency distribution variation among
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two data sets comprising Australian Thoroughbreds (n = 49) and non-Australian Thorough-

breds (n = 50), sampled in Europe, South Africa and USA. Principal component analysis

(PCA) of the genetic relatedness matrix and between group identity by state (IBS) comparisons

were performed to evaluate population structure. While there was overlap between the two

groups on plotting PC1 versus PC2 (PCA), there was also some observable separation (S1 Fig).

The IBS results indicated that the relatedness between the two groups was significantly lower

than relatedness within the two groups (P = 3.0 × 10−5), indicating that while there is clearly

genomic sharing among the populations, there is sufficient differentiation to warrant investi-

gation of loci that may be variable between the two groups. To validate the CSS approach

among relatively small sample sizes, we used distance as phenotype and identified the second

highest score in the region on ECA18 flanking MSTN, the ‘speed gene’, for elite Thorough-

breds raced in short distances (n = 50) versus those raced in long distances (n = 50) (S1 Table)

(S2 Fig).

Genome-wide distribution of the smoothed CSS (-log10P) for the comparison of the Austra-

lian versus non-Australian populations identified three genomic regions with clusters of signif-

icant SNPs among the top 0.1% SNPs (Table 1, Fig 1, S2 Table) on ECA6 and ECA14. The top

ranked region by CSS score (ECA14, 35.52–36.94 Mb) spanned ~1.5 Mb, proximal to a cluster

of protocadherin genes, and contained 33 genes (S2 Table) including APBB3 (amyloid beta

precursor protein binding family B member 3 gene), HBEGF (heparin binding EGF like

growth factor gene), NDUFA2 (NADH:ubiquinone oxidoreductase subunit A2 gene) and

SRA1 (steroid receptor RNA activator 1 gene). The top three SNPs (14:36414548, 36308621,

36309843) flanked SRA1 (14:36312352–36318423), which has a key role in a range of biological

processes including myogenesis and steroidogenesis, and has been implicated in obesity [32].

In humans SRA1 is associated with cardiac myopathy and in zebrafish knockdown of SRA1
results in reduced cardiac function specifically relating to impaired cardiac contractility [33].

The second and third ranked SNPs are intronic variants within APBB3 (14:36305566–

36311548), which encodes a protein that binds the beta-amyloid precursor protein (APP), a

major contributor to Alzheimer’s disease (AD). Enrichment for the KEGG pathway hsa05010:

Alzheimer's disease in the skeletal muscle transcriptional response to exercise has been demon-

strated in our laboratory (P = 2.60 × 10−8) [34] and the positive effects of exercise on AD are

well documented [35]. Furthermore, APP is best known for its association with AD and is

thought to play a role in locomotion [36], having been identified as a critical determinant of

the pattern of motor neurons and neuromuscular junctions in zebrafish [36].

The SNPs were ranked by the CSS score to define regions under selection since composite

scores have been shown to have greater power to detect selection signals compared to any of

the individual constituent tests of selection signatures [25, 37–41]. For example, in the devel-

opment of the CSS statistic the three component tests (FST, ΔSAF and XP-EHH) were found

coinciding in the candidate gene regions but with fewer and lower ranked SNPs as compared

Table 1. Selected genomic regions among top 0.1% SNPs identifying core genes targeted by selection for the Australian racing phenotype.

ECA Region (Mb) Top 0.1% SNPs (n) Top CSS value Cluster rank Cluster genes (n) Candidate genes Gene function

14 35.52–36.94 28 5.03 1 33 APBB3 locomotion

HBEGF cardiac function

NDUFA2 skeletal muscle exercise response

SRA1 cardiomyopathy

14 33.2–33.52 9 4.00 2 0 NR3C1 stress response

ARHGAP26 skeletal muscle

6 34.75–34.85 9 3.91 3 1 CLSTN3 browning of adipose tissue; synapse development

https://doi.org/10.1371/journal.pone.0227212.t001
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to the CSS test [38]. Nonetheless, each constituent test can distinguish selection from neutrality

but will be informative on the different characteristics (i.e. direction of selection and length of

time) that have shaped the selection. Here, among the top 1% SNPs the highest ranked 25

SNPs by CSS score were within the ECA14 region. While three of the top CSS SNPs also had

the highest XP-EHH signals, 12 of the top 20 ranking XP-EHH SNPs were in the ECA16

region (24.3–26.5Mb) that contained ATXN7 (ataxin-7 gene) (Table 2), indicating this region

has likely been influenced by recent selection. The extended haplotype homozygosity method

detects genomic regions that have undergone recent selection following a rapid rise in fre-

quency of a beneficial mutation in a relatively few generations, in a time frame in which

recombination has not had time to disrupt the original haplotype.

Fig 1. Manhattan plots of CSS and CSS (smooth) results for the Australian versus non-Australian identification of selection signals for Australian the racing

phenotype. The strongest signal was on ECA14 at a 5Mb (32.17–37.8 Mb) locus containing 51 genes including multiple protocadherin genes. The highest ranked SNP

was closest to the PCDHB15 gene.

https://doi.org/10.1371/journal.pone.0227212.g001

Table 2. Selected genomic regions among top 1% SNPs identifying core genes targeted by selection for the Australian racing phenotype (top 3 regions only).

ECA Region (Mb) Top 1% SNPs (n) Top CSS value Cluster rank Cluster genes (n) Candidate genes Gene function

14 32.17–37.48 115 5.03 1 64 APBB3 locomotion

HBEGF cardiac function

NDUFA2 Skeletal muscle exercise response

SRA1 cardiomyopathy

NR3C1 stress response

ARHGAP26 skeletal muscle

6 34.4–35.28 17 3.91 2 22 CLSTN3 browning of adipose tissue; synapse development

16 24.28–26.52 52 3.64 3 9 ATXN7 coordination of locomotion

https://doi.org/10.1371/journal.pone.0227212.t002
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The ΔSAF metric identifies highly differentiated SNPs and indicates the difference in

selected allele frequency between cohorts and is particularly useful in the absence of knowledge

of the ancestral allele. ΔSAF is based on the allele frequency differences between the popula-

tions and, based on the observed allele frequency distributions, the directional change in the

selected allele frequency is detected [38]. The ΔSAF tends to indicate the SNP closest to a func-

tional variant since it identifies extremes in allele frequency differences. Here the top ranked

ΔSAF SNPs were in the ECA6 region closest to PEX5 (peroxisomal biogenesis factor 5 gene),

which functions in lipid metabolism in skeletal muscle [42] and CD163L1 (CD163 molecule

like 1 gene) which has been linked to creatine kinase and lactate dehydrogenase levels [43] that

are commonly used as markers of muscle tissue damage [44]. On ECA14 the top ΔSAF SNPs

were located within ANKHD1 (ankyrin repeat and KH domain containing 1 gene) and

APBB3. Since the ECA14 region defined by the CSS score is large (1.5Mb) the position of the

top ΔSAF SNPs may point to the location of genes most likely to be driving selection at the

locus. On ECA17 the top ΔSAF SNPs were closest to SUCLA2 (succinate-coA ligase ADP-

forming beta subunit gene), a critical component of mitochondrial pyruvate metabolism and

the citric acid (TCA) cycle, and HTR2A (5-hydroxytryptamine receptor 2A gene), a serotonin

system gene that is closely related to HTR7 and HTR1A, genes that have been previously linked

to precocity and tractability traits in young Thoroughbreds [45, 46]. The top ΔSAF ECA8

SNPs were closest to CEP192 (centrosomal protein 192 gene) which is regulated by oxygen

availability to control cell cycle progression in hypoxic conditions [47].

The FST test statistic captures the increase in highly differentiated loci among populations.

Extreme positive values of FST for a particular locus are indicative of high levels of reproductive

isolation of the two populations and divergent selection in both or strong positive selection in

one of the populations and/or random drift. We did not identify ‘extreme’ (FST >0.5) FST val-

ues, the highest was on ECA14 (14:36214206, FST = 0.10), but this was not unexpected since

the populations are not reproductively isolated. The introduction of ‘shuttle’ stallions in the

1990s that breed during both hemisphere breeding seasons, has ensured that there is continu-

ous gene flow between the populations, but this does not preclude selection acting on pheno-

typic traits that are beneficial to one or another population.

Here, to identify loci under selection in the Australian Thoroughbred we focused princi-

pally on the composite CSS signal score. Given that positive selection at a specific genomic

locus tends to reduce (‘sweep’) variation across a larger region, it can be difficult to identify the

gene targeted by selection. Notwithstanding this, supporting evidence from complementary

studies, including our previous transcriptomics analyses of the skeletal muscle response to

exercise and training, may assist the identification of candidate genes driving selection at the

loci identified in the current study. For example, NDUFA2 (14:36253868–36255844), located

50 kb from the top ranked SNP, has previously been identified as an influential gene in the

equine skeletal muscle transcriptome response to exercise and training as determined by net-

work analysis of RNA-seq [34]. NDUFA2, which encodes a subunit of NADH:ubiquinone oxi-

doreductase (complex 1), had the greatest influence in the response to training network,

ranking third (also GABARAPL1 and NDUFA6) among all expressed genes in resting skeletal

muscle. The node with the highest degree value in both the exercise and training states was

NDUFA6, with other bottleneck genes across both the untrained and trained network states

that included several genes that also encode subunits of NADH:ubiquinone oxidoreductase

(complex 1) (NDUFA4, NDUFA6, NDUFB3, NDUFV3). NADH:ubiquinone oxidoreductase

(complex 1) is the first large protein complex of the electron transport chain that catalyses the

transfer of electrons from NADH to coenzyme Q10 (CoQ10). We have previously shown that

horses with the MSTN g.66493737 SNP C/C genotype produce significantly more endogenous

skeletal muscle CoQ10 than T/T horses [48], which may reflect variation in the requirement
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for certain substrates, or may indicate a genetically-programmed deficiency in the production

of CoQ10 with functional consequences on exercise responses. The identification of NDUFA2
in this study implicates this gene as a key target for selection and suggests that skeletal muscle

CoQ10 production is a trait of importance for the Australian Thoroughbred phenotype. It has

been hypothesised that increased skeletal muscle CoQ10 should result in more efficient skeletal

muscle energy transduction [49].

Examination of expression QTL (eQTL) at the ECA14 region in skeletal muscle identified

ARHGAP26 (Rho GTPase activating protein 26 gene, GRAF-1, 14: 33978983–34396100) to be

a strong candidate on which selection is acting (S4 Table). Thirty-four significant (P< 0.05)

cis- and trans-eQTL were identified in the ECA14 region in resting, post-exercise and post-

training equine skeletal muscle samples [45] (S4 Table), of which 12 were associated with

expression of ARHGAP26; the strongest association was for TBIEC2-266584 in the untrained

resting cohort (nt34490992, P = 6.27 × 10−12). GRAF-1 regulates muscle growth and matura-

tion [50] by facilitating myoblast fusion [51] and functions in the repair of mechanically dam-

aged skeletal and cardiac muscle cells [52].

In human skeletal muscle, exercise upregulates HBEGF (14: 36492030–36499880), which

encodes the HB-EGF protein that acts as an insulin sensitizer and facilitates peripheral glucose

disposal [53]. Overexpression of HB-EGF in a mouse model resulted in selective use of carbo-

hydrate rather than fat as an energy substrate. The constitutive expression of HB-EGF in rat

skeletal muscle suggests it has important housekeeping roles [54]. In Thoroughbred skeletal

muscle, HBEGF was not differentially expressed following a single bout of intense exercise in

untrained skeletal muscle, but rather appeared to be responsive to repetitive bouts of exercise

training [34]. In Thoroughbred skeletal muscle HBEGF was among the most highly differen-

tially expressed genes (98th percentile) in the transcriptional response to training (1.8 fold

decrease in gene expression, P = 7.51 × 10−6) [34]. In cattle, a testosterone analog stimulates

the proliferation of muscle satellite cells via a response involving HB-EGF and EGFR [55]. It is

unclear, in this context, why HBEGF would be downregulated in equine skeletal muscle fol-

lowing a period of training; however, in the mouse no differences in HB-EGF mRNA or pro-

tein expression were observed in skeletal muscle of rats following functional overload of

muscle relative to control muscles although basal levels were maintained [54]. In the heart,

HB-EGF protein is required for normal cardiac function, inducing cardiomyocyte hypertro-

phy through an EGFR-ERK5-MEF2A-COX-2 pathway [56, 57] and has been implicated in the

pathogenesis of cardiomyopathy [56, 58].

An emerging theme in our equine exercise transcriptomics and genomics research suggests

a link between the exercise response and behavioural plasticity. For example, in the skeletal

muscle transcriptome response to exercise training, neurological processes were the most sig-

nificantly over-represented gene ontology (GO) terms, with the top three ranked GO terms

being Neurological system process (P = 4.85 × 10−27), Cognition (P = 1.92 × 10−22) and Sensory
perception (P = 4.21 × 10−21) [34]. Furthermore, in GWA studies we have demonstrated that

genes (HTR7, NTM and PCRP) involved in behavioural plasticity are the most strongly associ-

ated with economically important traits in racing Thoroughbreds: precocity (early adaptation

to racing) [45] and the likelihood of never racing [59]. For horses entering exercise training,

behavioural plasticity enables the adaptation to an unnatural environment by reducing stress,

with considerable variation in the abilities of horses raised in the same environment to adapt

to stress. In rodents, ‘coping styles’ are under a high degree of genetic control [60]. However, it

is becoming increasingly apparent that epigenetic regulatory mechanisms are key features of

the modification of behavioural phenotypes and that there is likely a dynamic interplay

between the fixed genome and the environment. In the brain, glucocorticoids are essential for

adaptation to environmental stressors and are regulated by epigenetic modifications of
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glucocorticoid receptors that improve stress responses [61]. In response to exercise, glucocorti-

coids maintain energy homeostasis regulating the replenishment of glucose. The glucocorti-

coid receptor, which mediates the physiological and pharmacological actions of cortisol and

other glucocorticoids, is the product of a single gene, NR3C1, which is also associated with

obesity and metabolic syndrome. In the present study, NR3C1 (14: 33819335–33923603) was

within the flanking region of the second-ranked cluster on ECA14. The early post-natal envi-

ronment is highly dependent on maternal input, with maternal care effects shown to have

long-lasting influences on methylation status and the resulting behavioural phenotype [62].

Epigenetic modification of genes in the brain, including NR3C1, have been shown to be

strongly associated with the response to early life stress [63].

As well as the prominent selected regions on ECA14, other genomic regions under selection

peaks contained candidate genes that may contribute to the Australian racing phenotype.

Flanking the selected region on ECA6 was CLSTN3 (6: 34597086–34621970), which encodes

calsyntenin-3, a synaptogenic adhesion molecule involved in neural development [64]. Calsyn-

tenin-3 may play a role in control of locomotion since it has been shown to mediate neuro-adi-

pose synaptic junction formation [65] and is required for GABAergic and glutamatergic

synapse development [66]. The control of locomotion appears to be a key feature of selection

for the Australian Thoroughbred phenotype. When we relaxed the criteria for inclusion of

selected regions and defined selected regions among the top 1% of SNPs the third-ranked

region (Table 2, S3 Table) on ECA16 (24.28–26.52 Mb) that also had the highest XP-EHH sig-

nal, centred on ATXN7 (ataxin-7 gene, 16:25280990–25327556). This region has previously

been identified as a region of interest (ROI 16: 24.16 Mb) in an investigation of selection signa-

tures in racing Quarter horses [67]. A CAG repeat expansion in ATXN7 causes spinocerebellar

ataxia type 7 in humans, which has a significant tendency to be caused by paternal transmis-

sion of expanded alleles [68]. Spinocerebellar ataxia is a neurodegenerative inherited disease

characterised, among other clinical signs, by poor coordination of muscle movement. In mice,

ATXN7 overexpression in the brain plays a role in the pathophysiology of attention deficit

hyperactivity disorder (ADHD) [69, 70], a neurodevelopmental disorder characterized by

varying levels of hyperactivity, inattention and impulsivity. In the Thoroughbred, the ataxin-7

protein may function in the coordination of gait; however, ATXN7 is not significantly differen-

tially expressed in skeletal muscle in the exercise or training response. Nonetheless, ataxin-7

function in the brain, in association with hyperactivity phenotypes, is intriguing to speculate

considering that treatment with the ADHD drug amphetamine (AMPH) in an animal model

for ADHD (SHR/NCrl) reduced hyperactivity but increased locomotor activity in control rats.

ATXN7 was one of only two differentially expressed genes (ATXN7 and PER2) between the

ADHD animal model and controls that were downregulated in response to AMPH treatment

in SHR/NCrl. Therefore, we speculate that in the Thoroughbred, ATXN7 may be involved in

the control of locomotor activity.

Considering the variation in climatic conditions between Australia and other regions and

the consequential effect on training regimes, it is interesting to note that based on Kyoto Ency-

clopedia of Genes and Genomes (KEGG) [71] and Gene Ontology (GO) annotations [72, 73]

seven genes with functions in circadian rhythm—colony stimulating factor 2 (CSF2), epider-

mal growth factor receptor (EGFR), coagulation factor VII (F7), G protein subunit beta 3

(GNB3), histone deacetylase 3 (HDAC3), sirtuin 1 (SIRT1) and S-phase kinase associated pro-

tein 1 (SKP1)—were identified among the regions defined by the top 0.1% SNPs. This suggests

there may be local adaptation to training at earlier hours of the day to avoid heat and the effect

of unnatural lighting systems that are often used. An improved ability to cope with heat stress

in Australia may be reflected by the presence of cell death inducing DFFA like effector A

(CIDEA) [74–76] which is involved in metabolic rate, thermogenesis and lipolysis and sodium
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channel epithelial 1 alpha subunit (SCNN1A) [77–79] which is a component of sweat glands

and has a function in the regulation of fluid balance, in the selected regions on ECA8 and

ECA6 (S3 Table).

GWAS for field-measured speed in young Thoroughbred horses

The requirement for achieving high speeds on the racetrack early in the two-year-old racing

season in Australia is reflected in the racing calendar where the greatest value is placed on

early two year old sprint races (� 1,200 m), with the principal races being the A$2 million

Magic Millions 2YO Classic, A$3.5 million G1 Golden Slipper Stakes and A$1 million G1 Blue

Diamond Stakes. Since there is a marked emphasis on selection for early two-year-old speed in

Australia, next to further refine the results we compared the CSS results to a GWAS for field-

measured speed in two-year-old horses in the early stages of exercise training. Previous studies

have demonstrated improved power to detect complex trait loci by combining GWAS and

selection signature mapping based on the same SNPs [40]. Here, early two-year-old speed was

defined from a principal component analysis (PCA) of first sprint-training session (work day

[WD], FWD) speeds obtained using GPS tracking equipment in a cohort of n = 179 (91 males,

88 females) horses-in-training in Ireland, a genetically, geographically and environmentally

distinct cohort of horses to the samples used for the CSS analysis.

PC1 (FWD) and PC2 (FWD) explained 64.7% and 18.3% (total = 83%) of the variance in

the six measured speed indices (Vpeak, Acc, aveSpr, Dist6a, Dist6b and Dist6; see methods)

respectively (S3 Fig). Using 49,720 SNPs in a GWAS for PC1 (FWD), we observed a single

peak on ECA14 centred around the top-ranked SNP BIEC2-255432 (g.35669710A>C; Punadj =

3.22 × 10−6) (S5 Table, S4 Fig). Eight of the top 10 SNPs in the GWAS were located between

33.2–35.7 Mb, while the entire GWAS peak (13 SNPs) spanned a 4 Mb region (33.2–37.2 Mb),

which overlapped with the top CSS peak. The top GWAS SNP ranked 44th in the CSS analysis

(ranked 9th for FST test) and was ~700 kb from the top three CSS SNPs (S6 Table). Similar

results were observed when relatedness between individuals was taken into account in the

model. A single peak was identified with BIEC2-255432 (g.35669710A>C; Punadj = 1.13 × 10−5)

as the top-ranked SNP (S5 Fig).

As well as genes contained within the CSS peaks, the GWAS peak encompassed a large pro-

tocadherin gene cluster. Most protocadherin genes are clustered together at a small number of

genomic loci [80]. The protocadherin gamma genes are expressed principally in neural tissue

and may provide guidance for axon binding [33, 80]. Differential expression of these genes in

individual neurons ensures cellular diversity in neural circuit formation [81]; for instance, pro-

tocadherin-alpha and protocadherin-beta are known to function cooperatively for neuronal

survival [82]. It has been suggested that their expression at the muscle side of the neuronal syn-

apse may facilitate axon guidance towards muscle to facilitate reinnervation at the neuromus-

cular junction [83]. It has been shown that the γ2 subunit of the GABA-A receptor directly

interacts with the product of PCDHGC5 in the rat brain [84] and it has been suggested that

PCDHGC5 plays a role in GABAergic synapse formation or GABA-A receptor clustering. In

humans SNPs close to PCDHB15 and PCDHGA1 have been associated with carotid artery

intima media thickness progression, which is diagnostic for the presence of atherosclerosis

[85]. PCDH12-/- mice have altered structural and functional modifications to the arteries and

age-dependent vascular phenotype variation has been observed for the carotid artery. In

humans the corresponding gene cluster containing PDHA12, PCDHAC2, PCDHB5, PCDHB6,

PCDHB12, PCDHGA6, PCDHGB7, PCDHGA11 and PCDH12 has been implicated in idio-

pathic pulmonary arterial hypertension [86]. In the Thoroughbred, we have previously

observed differential expression of four (PCDH12, PCDH17, PCDH19 and PCDHB15) of the
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80 protocadherin genes in the skeletal muscle response to exercise [34], two of which

(PCDH12 [protocadherin 12, 1.3-fold, P = 3.60 × 10−5] and PCDHB15 [protocadherin beta 15,

1.4-fold, P< 0.05]) were located within the GWAS peak.

Interestingly, in an investigation focusing on the NRC31 gene region for variation in mater-

nal care style in the rat, the highest differential methylation response was observed for the

orthologous chromosomal region containing the protocadherin gene cluster [87]. It has been

suggested that epigenetic responses to maternal care are coordinated not at a single gene locus

but rather across broad genomic regions [87]. It is therefore intriguing to speculate that epige-

netic modification of genes across the large selected region on ECA14 is modulated by the

early care environment of the Thoroughbred, which may influence the stress response and

impact on early adaptation to the racing and training environment. In Australia, where the

emphasis is on early two-year-old racing, the ability of a young horse to adapt to the rigours

and stresses of the environment may be of greater importance than in other racing regions.

The previous observations of epigenetic modifications in the ECA14 region suggests that the

behavioural phenotype of young horses may be contributing to selection.

Association of ECA14 SNPs with elite racing performance in Australian

Thoroughbreds

To establish whether selection acting at the ECA14 locus in Australian Thoroughbreds con-

tributes to variation in racecourse performance we performed association tests for a set of

109 higher density SNPs in the ECA14 region (35000778–35999735) ascertained from the

Affymetrix Axiom 670k genotyping array. Allele frequencies among elite Australian horses

(n = 109, CPI> 2, i.e. earned more than double the average) were compared to low performing

Australian horses (n = 232, CPI< 0.56, i.e. earned less than half the average), and similarly

elite European horses (n = 242) were compared to low performing European horses (n = 339).

Following correction for multiple testing two SNPs associated with the elite performance phe-

notype in Australian horses were identified (14: 35578513, P = 0.0024; 14: 35758560, P =

0.0103) (S7 Table, S8 Table). The SNP-35578513 was located within the PCDHGC5 (protocad-

herin gamma subfamily C, 5) gene. The frequency of the favourable G-allele at SNP-35578513

was 0.73 in elite and 0.54 in non-elite Australian horses and was also observed at a higher fre-

quency in elite (0.78) compared to non-elite (0.72) European horses. The G-allele frequency in

Australia was lower (0.59, n = 341) compared to Europe (0.77, n = 581) indicating that the

unfavourable allele may be inadvertently proliferating in Australia due to its presence in prom-

inent sire lines.

Conclusion

We have successfully applied the CSS approach to identify genomic regions subject to selection

in Australian Thoroughbreds and identified underlying candidate genes that have been cap-

tured by breeders as a consequence of artificial selection over generations to maximise success

in the Australian racing ecosystem. By combining our results with a GWAS for a measured

exercise phenotype and cross-referencing with previously reported transcriptomics data, we

have identified a genomic region on ECA14 that is a highly plausible candidate for the effects

of local adaptation in the Thoroughbred. Our results point to selection for genes involved in

the control of synapse formation at the neuromuscular junction that may be important for

locomotion and genes that may contribute to behavioural plasticity. However, while individual

gene-specific variants appear to be segregating with performance, it is likely that a suite of

functionally related genes contribute to the population-wide variation in the racing phenotype
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that is adapted to the specific racing requirements in Australia. Our results illustrate the geno-

mic plasticity among populations that are under human-mediated selection.

Here, we have observed that the genomic locus subject to the strongest selection in the Aus-

tralian population was also associated with early two-year old speed in an entirely independent

cohort of horses. Furthermore, the association of the g.35578513 SNP with elite racing perfor-

mance in a large cohort of horses points specifically to a contribution to the racing phenotype

from allelic variation at this locus. While further functional experiments are warranted to

understand the underlying physiological endophenotypes contributing to the Australian rac-

ing phenotype, these results have the potential to be used for marker-assisted selection to

screen for horses best suited for the Australian racing ecosystem.

Methods

Samples

Blood samples were obtained from n = 99 Thoroughbred horses that were born in Australian

(n = 49) and in other regions including Europe, North America and South Africa (n = 50) for

isolation of DNA for the purposes of genetic testing for the MSTN g.66493737 SNP. Consent

was given for use of the samples in research. Samples were anonymised.

Composite Selection Signals (CSS) cohorts

The Australian (n = 49) versus non-Australian (n = 50) comparator cohorts comprised elite

horses and had MSTN g.66493737 T/C genotypes proportionate to the distribution among the

local regional population [1]. Elite was defined as having a Comparative Performance Index

(CPI) >5 (which equates to earnings ~€200,000 - €300,000). Both groups had similar mean

racing performance metrics based on the CPI (Table 3).

Genotyping & QC

Genomic DNA was extracted from whole blood using the Maxwell 16 automated DNA purifi-

cation system (Promega, Madison, WI). Horses were genotyped using two high-density SNP

genotyping arrays: Illumina Equine SNP70 BeadChip (Illumina, San Diego, CA) and Axiom

Equine Genotyping Array (Axiom MNEC670) (Affymetrix, Santa Clara, CA). Concordant

SNPs derived from the SNP70 and SNP670 arrays were used for the analysis. Individuals and

SNPs were subject to a genotyping threshold of 95%. SNPs that failed quality-control were

imputed using BEAGLE [version: 3.3.2] [88]. A genetic sex check and minor allele frequency

threshold of> 0.01 were also included as quality-control. Previously ten horses were geno-

typed on both the SNP70 and SNP670 array and post imputation concordance was found to

be> 99% [89]. After quality-control, 46,478 SNPs were derived for CSS analyses and for asso-

ciation testing with physiological phenotypes. For a set of n = 922 horses genotyped on the

Axiom MNEC670 array, 109 SNPs in the region EqCab2 14:35000000–14:36000000 were

extracted to test for associations with racetrack performance.

Table 3. Performance metrics and MSTN g.66493737 SNP genotypes among the comparator cohorts. All horses

were elite performers. Within each cohort there was a similar MSTN genotype distribution to that observed previously

within the regional population. CPI–Comparative Performance Index.

Cohort Comparative Performance Index (CPI) MSTN genotype (n)

mean min max CC CT TT

Aus 26.92 5.01 215.15 23 15 11

non-Aus 19.9 5.04 173.37 15 32 3

https://doi.org/10.1371/journal.pone.0227212.t003
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Composite selection signal (CSS) method

Population stratification among the comparison cohorts was examined by performing Princi-

pal Component Analysis (PCA) using smartPCA from the EIGENSOFT package (version 4.2)

[90]. Group differences were calculated by using the command (—ibs-test) in PLINK[91],

with respect to a binary phenotype (Aus TB v NonAus TB) based upon pairwise identity-by-

state (IBS) distance between all individuals. To validate the CSS approach, a dataset was gener-

ated using best race distance as phenotype for European elite horses to identify the MSTN
region when comparing short�8f (i.e. 5-8f, 1600m) to long distance >8f (i.e. 9+ f, 1800m)

horses. A SNP (ECA18: 66493737) tagging the MSTN gene located on ECA18 is strongly asso-

ciated with optimum race distance in TB [92]. Best Race Distance (BRD) was defined as the

distance of the highest value race won by the horse or if a non-winner the highest value race in

which a horse was placed. Unplaced horses were not included. The phenotype BRD-Elite

includes only Elite winners and is a more accurate phenotype with higher heritability [1]. The

CSS comparison for the European elite horses included n = 50 elite performers in short dis-

tance races versus n = 50 elite performers in long distance and an equal number of males and

females was included in each comparator group.

The CSS approach was developed to investigate genomic signatures of selection and has

been successful at localizing genes for monogenic and polygenic traits under selection in live-

stock [6, 8, 93]. The CSS uses fractional ranks of constituent tests and does not incorporate the

statistics with P values, allowing a combination of the evidence of historical selection from dif-

ferent selection tests. For the present study, the CSS combined the fixation index (FST), the

change in selected allele frequency (ΔSAF) and the cross-population extended haplotype

homozygosity (XP-EHH) tests into one composite statistic for each SNP. FST statistics were

computed as the differentiation index between the population(s) of interest (i.e. selected) and

the contrasting/reference population(s) (i.e. non-selected). XP-EHH and ΔSAF statistics were

computed for the selected population(s) against the reference population. The CSS were com-

puted as follows:

1. For each constituent method, test statistics were ranked (1, . . ., n) genome-wide on n SNPs.

2. Ranks were converted to fractional ranks (r´) (between 0 and 1) by 1/ (n + 1) through

n / (n + 1).

3. Fractional ranks were converted to z-values as z = F-1(r´) where F-1(�) is the inverse nor-

mal cumulative distribution function (CDF).

4. Mean z scores were calculated by averaging z-values across all constituent tests at each SNP

position and P-values were directly obtained from the distribution of means from a normal

N (0, m–1) distribution where m is the number of constituent test statistics.

5. Logarithmic (–log10 of P-values) of the mean z-values were declared as CSS and were plot-

ted against the genomic positions to identify the significant selection signals.

6. To reduce spurious signals, the individual test statistics were averaged (smoothed) over

SNPs across chromosomes within 1 Mb sliding windows.

According to the approach proposed by [6], significant genomic regions were defined as

those that harbour at least one significant SNP (top 0.1%) surrounded by at least five SNPs

among the top 1%. Here, we relaxed the stringency to define significance as regions harbour-

ing at least five SNPs among the top 1% since the numbers of regions would otherwise be

small (i.e. ~48 SNPs). Also, since linkage disequilibrium extends up to 0.4 Mb [94] in the Thor-

oughbred, we considered 1 Mb sliding windows reasonable in this population. Therefore,

Selection in Australian Thoroughbreds

PLOS ONE | https://doi.org/10.1371/journal.pone.0227212 February 12, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0227212


SNPs among the top 1% smoothed CSS values within the sliding windows were considered

significant.

Identification of selected genomic regions and candidate gene mining

To localise genomic regions and genes under selection, we defined significant selected regions

as those that consisted of at least five SNP among the top 0.1% (i.e. 48 SNPs). Consecutive clus-

ters spaced < 1 Mb apart were merged into a single cluster. Genes underlying the selection

peaks as well as flanking regions (± 0.5 Mb) were mapping to an annotated protein coding

gene list from EquCab2.0 downloaded from Ensembl (accessed: 2018-10-23). These genes

were then examined for evidence of functional significance. Considering the LD in the Thor-

oughbred and the observed extended haplotypes in regions known to be influenced by strong

selection [3] we also identified genes among the top 1% of SNPs (i.e. 480 SNPs). The variants

identified in the main region of interest on ECA14 were mapped to EquCab 3 positions to con-

firm correct annotation of the protocadherin gene cluster.

Exercise physiology phenotyping

Exercise tests: WD were performed on a woodchip, 1,500 m, uphill, all-weather gallop track,

with the final 800 m straight on a 2.7% incline [95]. Prior to each WD, horses were walked on

an automated horse walker for 30–60 min, followed by 5–10 min of walking in hand. Warm-

up under saddle consisted of a 300 m walk followed by a 700 m trot and slow canter down the

incline of the track. A short period of walk followed. The sprint portion of the WD consisted

of the horses galloping at high-intensity for 800−1,000 m.

Experimental measurements: Velocity (V) and distance were measured using a STAT-

Sports Viper GPS monitoring system (STATSports Technologies Ltd. Newry, Northern Ire-

land). Speed indices originally described by [95] were derived from the GPS measurements

taken during the sprint portion of the WD, defined as when the horse first exceeded 5 m/s

until reaching peak velocity (Vpeak). Correlations among speed indices were determined using

Pearson’s correlation. PCA was performed using peak velocity (Vpeak), acceleration time

(Acc), average sprint velocity (aveSpr), distance covered in the 6 s proceeding Vpeak (Dist6a),

distance covered in the 6 s preceding Vpeak (Dist6b) and distance covered in the 6 s preceding

and proceeding Vpeak (Dist6) as input variables (Table 4), using ‘princomp’ within the R envi-

ronment [version: 3.4.1] [96].

PC1 was used as the phenotype. All horses were< 3yo and had not completed > 4 WDs

prior to measurement. The value of PC1 from the earliest recording (i.e. first WD, FWD) was

used (PC1(FWD)).

GWAS: Tests of genome-wide association were performed for the quantitative phenotype

PC1 (FWD) (n = 179) in PLINK with sex as a covariate [91]. Results were visualised in R using

Table 4. Definitions of speed indices derived from GPS measurements used for the development of principal

components.

Speed Index Definition

Vpeak Peak velocity (m/s)

Acc Time taken (s) from when the horse first exceeded 5m/s in the sprint period until Vpeak was reached

aveSpr Average velocity (m/s) during the sprint period

Dist6a Distance (m) covered in the six seconds post- Vpeak

Dist6b Distance (m) covered in the six seconds preceding Vpeak

Dist6 Distance (m) covered in the six seconds before and after reaching Vpeak

https://doi.org/10.1371/journal.pone.0227212.t004

Selection in Australian Thoroughbreds

PLOS ONE | https://doi.org/10.1371/journal.pone.0227212 February 12, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0227212.t004
https://doi.org/10.1371/journal.pone.0227212


the package qqman [97]. Mixed model analyses (polygenic and mmscore [98] were also carried

out to account for the relatedness of individuals. The threshold for genome-wide significance

was determined using the Bonferroni correction based on the effective number of independent

loci (Me) using the Genetic Error Calculator [version 0.2] [99], with the threshold for genome-

wide significance set at 0:05

Me
and the suggestive threshold for association 1

Me
. The effective num-

ber of loci was Me = 20,661, which gave a suggestive significance threshold (P = 4.8 x 10−5) and

a genome-wide level for significance of association (P = 2.4 x 10−6).

Racing performance analysis

To provide denser coverage across the ECA14 region, n = 922 Thoroughbred horses were gen-

otyped on the Affymetrix 670 genotyping array. The following phenotypes were used: 1) High

performing Australian (n = 109, CPI > 2, i.e. earned more than double the average) compared

to low performing Australian horses (n = 232, CPI < 0.56, i.e. earned less than half the aver-

age); 2) High performing European (n = 242, CPI> 2, i.e. they earned more than double the

average) compared to low performing European horses (n = 339, CPI< 0.56, i.e. they earned

less than half the average). Within all cohorts only MSTN C/C and C/T horses were included.

Tests of genetic association with the elite (high performing) phenotype were performed for

both Australian and European sets of horses in PLINK for n = 109 SNPs within a 1 Mb region

(35–36 Mb) on ECA14. The following QC thresholds were applied to each of the association

tests: minor allele frequency > 0.05 and individual call rate> 95%.

Ethics statement

University College Dublin Animal Research Ethics Committee approval (AREC-P-12-55-Hill)

and a licence from the Department of Health (B100/3525) for samples and data collected for

the horses-in-training cohort was obtained and informed owner consent for use of samples in

research was obtained for all horses.
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