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The quantitative analysis of saccades in eye movement
data unveils information associated with intention,
cognition, and health status. Abnormally slow saccades
are indicative of neurological disorders and often imply a
specific pathological disturbance. However, conventional
saccade detection algorithms are not designed to detect
slow saccades, and are correspondingly unreliable when
saccades are unusually slow. In this article, we propose
an algorithm that is effective for the detection of both
normal and slow saccades. The proposed algorithm is
partly based on modeling saccadic waveforms as
piecewise-quadratic signals. The algorithm first
decreases noise in acquired eye-tracking data using
optimization to minimize a prescribed objective
function, then uses velocity thresholding to detect
saccades. Using both simulated saccades and real
saccades generated by healthy subjects and patients, we
evaluate the performance of the proposed algorithm
and 10 other detection algorithms. We show the
proposed algorithm is more accurate in detecting both
normal and slow saccades than other algorithms.

Introduction

An effective and reliable saccade detection algorithm
is essential for eye movement studies. Saccadic eye
movements are fast brief eye movements that rapidly
redirect our line of sight to visual targets (Leigh & Zee,

2015). Advances in the study of brain anatomy and the
pathology and of eye movements have reinforced the
substantial utility of saccades and saccade detection in
research (Ramat et al., 2007). Video-based eye-tracking
systems aid the study of eye movements, due to their
ease of use, accessibility, noninvasiveness, and relative
low cost. The analyses of saccades have been applied
to study autism (Shic et al., 2008), cognition (Federici
& Mele, 2012), concussion (Rizzo et al., 2016b),
multiple sclerosis (Hainline et al., 2017), and many
other behavioral, cognitive, and neurological problems.
Accurate identification of saccades in time-series data
produced by eye-tracking systems is a critical step in
eye movement studies. Although manual labelling of
saccades in data by experts has been considered reliable,
it is tedious and can take days to label data that took
only minutes to record (Monty, 1975). Furthermore,
classifications between experts may differ significantly
(Hooge et al., 2018). An effective and reliable saccade
detection algorithm is needed.

The accurate detection of saccadic abnormalities
offers important clues in the diagnosis of numerous
disorders and may provide opportunities for timely
diagnosis and treatment (Ramat et al., 2008;
Termsarasab et al., 2015). Slow saccades are an
indication of neurological disorders and often imply
a specific pathological disturbance (Marx et al.,
2012). Normal saccades follow a known relationship
between saccade peak velocity and amplitude. In this
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Figure 1. Saccade main sequence (peak velocity vs. saccade amplitude) for two individuals. (a) An individual with normal saccades.
(b) An individual with slow saccades. The gray lines show the normative range for the main sequence as observed in the laboratory of
the authors.

relationship, called a “main sequence” (Bahill et al.,
1975), the peak saccadic velocity increases linearly as
a function of saccadic amplitude for small-amplitude
saccades, then gradually saturates at larger amplitudes.
This “main sequence” curve varies among, individuals
but is highly reproducible for an individual (Gangemi
et al., 1991). Main sequence curves that fall outside the
“normal range” are critical to neurological diagnosis
and often may be the most specific examination
finding guiding diagnostic evaluation. Abnormally slow
saccades, in the absence of a definite extraocular muscle
or cranial nerve disorder, are suggestive of diseases
involving brainstem saccadic burst neurons (Baloh et al.,
1975; Barton et al., 2003; Horn & Büttner-Ennever,
1998; Kaneko, 1996). Lesions in the frontal eye field
(Dias & Segraves, 1999) and dorsolateral prefrontal
cortex (Koval et al., 2013) can demonstrate a slowing in
peak saccadic velocity; however, this is not commonly
seen clinically. Examples of conditions that typically
cause saccadic slowing include progressive supranuclear
palsy (PSP) (Chen et al., 2010; Garbutt et al., 2003),
spinocerebellar ataxia type 2 (Wadia & Swami, 1971),
and Huntington’s disease (Lasker et al., 1988). Note
that not only do such disorders cause slow saccades, but
in some instances, such as PSP, the diagnosis depends
on the identification of slow saccades. Additional
factors, such as saccade adaptation and visual salience,
may also affect saccade peak velocities (Schütz et al.,
2011); even subtle decreases in the peak velocity of
otherwise normal saccades have been observed in
states of mental fatigue (Di Stasi et al., 2012). Thus,
the accurate detection of slow saccades is a critical
component in our understanding of normal and
pathological saccadic behavior.

Figure 1 shows the saccade main sequence data
(peak velocity versus amplitude) of two individuals,

one of whom exhibits slow saccades. The exponential
formula

Vp = η(1 − e−A/c), (1)

was proposed by Baloh to model main sequence
data (Baloh et al., 1975). This formula models the
relationship between the peak velocity (designated
Vp) and the saccade amplitude (designated A). In the
(formula 1), the parameter η represents the maximum
attainable peak angular velocity of any saccade made
by the individual, and the parameter c determines the
proportionality constant between Vp and A for small
saccades. We find the parameters of the exponential
curve for each individual in Figure 1 using the function
fitnlm in MATLAB for nonlinear regression.

Existing saccade detection algorithms work well for
the detection of normal saccades (for which they are
mainly developed). However, they often fail to detect
slow saccades. This is because the lower velocity of
slow saccades makes velocity thresholding (VT) less
reliable. The influence of noise is more problematic for
the detection of slow saccades than for normal saccades
of the same amplitude, especially since temporal
differentiation (to determine velocity from position)
amplifies noise. Thus, improved noise reduction
(denoising) is needed. The proposed method comprises
mainly a new denoising step.

We propose an algorithm to detect both normal
and slow saccades with high accuracy and robustness.
The algorithm consists of two steps: (1) nonlinear
smoothing of the time-series recording generated by
an eye-tracking device, and (2) simple VT to detect
saccades. The algorithm is based on an implicit
piecewise polynomial model for a time-series containing
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saccadic eye movements. Conceptually, the waveform
of a saccade can be approximately modeled as a
piecewise quadratic signal, so its third-order temporal
derivative is sparse (exhibits few non-zero values).
At the same time, the first-order temporal derivative
is also sparse because the velocity is zero when
the eye is not moving. Therefore, we prescribe a
generalization of total variation (TV) regularization
(Rudin et al., 1992) to capture these properties,
leading to the processed time-series data exhibiting
approximately constant-valued segments interspersed
with approximately piecewise-quadratic segments. The
algorithm then uses simple VT to detect saccadic eye
movements in the nonlinearly processed time-series.

In this article, we demonstrate the proposed
algorithm is more accurate in detecting both normal
and slow saccades than other algorithms. We use
both simulated saccades and real saccades produced
by healthy subjects and patients to evaluate the
performance of saccade detection using the proposed
algorithm and 10 other saccade detection algorithms.
Simulated saccades are generated at various sampling
rates using a parametric model for saccadic eye
movements (Dai et al., 2016). Eye-tracking time-series
from healthy subjects are publicly available and
saccades were manually labelled by two eye movement
experts (Larsson et al., 2013; Nyström & Holmqvist,
2010). The eye movements of five patients with
neurological diseases causing saccade slowing were
recorded in our laboratory (Rizzo et al., 2016a). A
MATLAB implementation of the proposed algorithm
is made available online by the authors. All algorithmic
parameters are determined within the method (i.e.,
without input from the user).

Current algorithms for saccade
detection

Many saccade detection algorithms have been
developed to facilitate the quantitative analysis of
eye movements. We review some popular algorithms
designed to distinguish saccades and fixations. This
review is intended to cover the major classes of saccade
detection algorithms; not every algorithm, because
they are too numerous given the growing interest in
eye movements (Titz et al., 2018). We do not consider
smooth pursuit eye movements, which must be initiated
by a moving target (Leigh & Zee, 2015), and are
therefore absent in eye-tracking time-series when the
subject is reading text, scanning an image, or engaging
in functional saccade tests. Moreover, we consider the
detection of saccades in data from eye trackers that
are world fixed, rather than wearable eye trackers, a
distinction which should be noted (Hessels et al., 2018).

Dispersion thresholding (DT) algorithms classify
points in an eye-tracking time-series as a fixation

when the eye lingers in a small area, and as a saccade
otherwise. Algorithms of this type are integrated
into many commercial eye-tracking software systems.
Various methods for calculating dispersion and setting
parameters have been proposed (Blignaut, 2009).
However, this type of method is sensitive to noise and
drift in the data; and they do not accurately estimate
the start-time and the end-time of saccades.

VT algorithms are the most commonly used for
saccade detection (Komogortsev et al., 2010; Salvucci
& Goldberg, 2000). This type of algorithm classifies
points as a saccade if their velocity is greater than a
threshold, and as a fixation otherwise. Since saccadic
eye movements are the fastest eye movement, it is
natural to apply VT to distinguish saccades and
fixations. In the basic approach, one manually sets a
fixed velocity threshold for saccade detection (Bahill
et al., 1981). However, a low threshold value leads
to many false detections owing to noise, whereas a
high threshold value leads to many saccades being
missed. Thus, instead of a fixed velocity threshold
value, methods with adaptive thresholding have been
proposed (Mould et al., 2012). Engbert set the value
of the velocity threshold to be proportional to the
standard deviation of the velocity data (Engbert &
Kliegl, 2003; Engbert & Mergenthaler, 2006). We
consider this as an adaptive global velocity threshold.
Although the method was originally proposed for
microsaccade detection, it was found to be useful for
the detection of larger saccades as well. Extending
Engbert’s work, Nystrom developed an algorithm which
finds an adaptive diaeresis global velocity threshold
for saccade occurrence and adaptive local velocity
thresholds for the end of each saccade (Holmqvist
& Nyström, 2010). Furthermore, a modified version
of Nystrom’s algorithm was recently developed by
(Friedman et al., 2018).

Acceleration-based–algorithms have also been
proposed for saccade detection. This type of algorithm
is based on the observation that the velocity at the
start and end of a saccade changes much faster than
it does for other types of eye movements (Behrens
& Weiss, 1992; Behrens et al., 2010). However, this
type of algorithm tends to be highly sensitive to noise,
because it requires two instances of numerical temporal
differentiation of the time-series, and each instance
increases the noise level. The analysis software of
EyeLink (SR Research Ltd, Kanata, Ontario, Canada)
applies velocity and acceleration thresholding together
to detect saccades.

Machine-learning–based algorithms have been
proposed more recently, which detect saccades based
on features extracted from the data. König calculates
distance, velocity, acceleration, and angular velocity of
each sample, and uses k-means clustering to distinguish
saccades and fixations (Buffalo & König, 2014).
Otero-Millan applies k-means clustering to facilitate the
detection of microsaccades (Otero-Millan et al., 2014).
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Zemblys uses a Rayleigh test (Larsson et al., 2015), i2mc
(Hessels et al., 2017) and eight other features extracted
from the data, and trains a random forest model to
classify saccades and other eye movements (Zemblys
et al., 2018). Machine-learning based algorithms have
shown superior performance of saccade detection
compared to hand-crafted algorithms (Zemblys et al.,
2018). However, machine-learning models can suffer
from overfitting problems and need labelled data for
training.

Other types of saccade detection algorithms have
also been proposed, but are not as commonly used as
dispersion or velocity-based methods (Daye & Optican,
2014; Santini et al., 2016). A hidden Markov model
(HMM) method uses a finite state machine with two
states (one for the velocity distribution of saccades,
one for fixations) that attempts to determine the most
likely classification of each point (Komogortsev et al.,
2010). A minimum spanning tree (MST) method
constructs an MST and uses Prime’s algorithm to find
edges whose length are longer than a prescribed value
to be identified as saccades, and identifies fixations as
clusters of points separated by saccades. A Kalman
filter (KF) method uses a two-state KF to classify eye
movements (Sauter et al., 1991). The idea behind this
algorithm is that nonsaccadic eye movements can be
modeled fairly accurately by a simple model, and that
saccadic movements follow a sufficiently different model
so they can be distinguished by a hypothesis test. A
linear regression-based method segments a time-series
into blocks and classifies each block using a HMM
(Pekkanen & Lappi, 2017).

Parametric saccade model

We previously proposed a parametric model for
saccadic eye movement, which can be used to simulate
saccades and for the evaluation of saccade detection
algorithms (Dai et al., 2016). The model has three
parameters: η, c, and A. The formula for the saccade
model is

s(t) = c f (ηt/c) − c f (ηt/c − A/c) (2)

where f is the function defined as

f (t) =
{
t + 0.25e−2t, t ≥ 0

0.25e2t, t ≤ 0.
(3)

The function f is a “soft ramp” function. The
parameters η and c control the shape of the “main
sequence” (formula 1). In the (formula 2), the
parameters η and c serve to scale the function f .

We use this model to simulate an eye-movement
time-series comprising saccades and fixations so that we

can quantitatively compare the performance of various
saccade detection algorithms. Although the simulated
data do not simulate all aspects of real eye-tracking
data (e.g., there are no post-saccadic oscillations), by
adding noise to the simulated data, we can measure the
sensitivity of the methods to noise. Noise is a significant
issue because VT requires temporal differentiation
of the position data to determine the velocity, but
temporal differentiation amplifies noise which hinders
reliable detection.

We also use eye-tracking time-series with saccades
labeled by eye movement experts. But, as recognized,
even experts can differ in their labeling of a given noisy
eye-movement time-series (Andersson et al., 2017;
Hooge et al., 2018). Evaluations of the performance and
accuracy of algorithms, based on expert annotations,
should be interpreted with caution.

Proposed algorithm for saccade
detection

The proposed algorithm consists of two steps: (1)
nonlinear filtering of eye-movement time-series to
reduce noise, and (2) VT to detect saccades.

We propose a nonlinear filtering method based on
sparse time-series properties. Namely, in the absence
of noise, the first-order and higher-order temporal
derivatives of eye-movement time-series can be modeled
as sparse (i.e., consisting mostly of zero values). We
model the recorded time-series y = (y1, y2, . . . , yN ) as

y = x + w (4)

where x = (x1, x2, . . . , xN ) is a time-series comprising
saccades and fixations, and w = (w1, w2, . . . , wN ) is
additive white Gaussian noise. It has been shown that
eye trackers generally produce white noise (Coey et al.,
2012; Wang et al., 2016).

We make two observations and assumptions about
eye-movement time-series: 1) Saccadic eye movements
are rapid and have short duration (<80 milliseconds).
The eye remains fairly stable during fixations. Therefore,
the first-order derivative of the time-series is sparse,
that is, the angular velocity of the eye is mostly zero.
2) The waveform of a saccadic eye movement can
be modeled as approximately piecewise quadratic;
hence, its third-order temporal derivative is sparse.
Figure 2 shows an example of a time-series that is
mostly constant, with intervals where it is piecewise
quadratic. We name this an intermittent piecewise
quadratic signal. The example time-series shown in
Figure 2 shows a simulated eye-movement time-series
comprising five saccades and six fixations.

From a noisy eye-movement time-series y, we
estimate the time-series x by minimizing the objective
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Figure 2. Example of an intermittent piecewise quadratic signal x and its derivatives. (a) The signal comprises constant-valued
segments separated by piecewise quadratic segments. (b) The first-order derivative comprises zero-valued segments separated by
piecewise linear segments. (c) The second-order derivative is piecewise constant. (d) The third-order derivative is sparse, only a few
values are non-zero.

function

J(x) = 1
2
‖y − x‖22 + α‖D1x‖1 + β‖D3x‖1 (5)

where D1 is the first-order difference operator and D3 is
the third-order difference operator,

D1 =

⎡
⎢⎢⎣

−1 1
−1 1

. . . . . .
−1 1

⎤
⎥⎥⎦ ,

D3 =

⎡
⎢⎢⎣

−1 3 −3 1
−1 3 −3 1

. . . . . . . . . . . .
−1 3 −3 1

⎤
⎥⎥⎦

(6)

The quadratic term and the L1 norm terms are defined
via

‖x‖22 = x21 + x22 + · · · + x2n,

‖x‖1 = |x1| + |x2| + · · · + |xn|
(7)

respectively, and α and β are regularization parameters.
The first term ‖y − x‖22 in (5) causes the estimated

time-series x to be similar to the noisy time-series
y. The second and third terms, ‖D1x‖1 and ‖D3x‖1,
induce sparsity of the first-order and third-order
derivatives of the estimated time-series x. The
quadratic error corresponds with the assumption that
the observed time-series y is an observation of the
unknown time-series x that has been corrupted by
additive zero-mean white Gaussian noise; while the L1
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Figure 3. Denoising a simulated saccadic eye movement using total variation (sparse first-order derivative), high-order TV (sparse
third-order derivative), and the proposed algorithm (sparse first-order and third order-derivatives). The root mean square error
(RMSE) value is indicated in each graph. The calculated velocity time-series are shown on the right. In each graph, the gray line
depicts the noise-free (ideal) time-series. Black lines depict the noisy signal (a, b) and denoised signals (c–h).

norm terms are to induce sparsity (Chen et al., 1998;
Hyvärinen et al., 2001).

This formulation assumes the underlying time-series
x comprises mostly constant-valued segments, with
some segments that are piecewise quadratic (Figure 2).

The minimization of the objective (function 5)
reduces to TV denoising (Rudin et al., 1992) when
β = 0. Although TV denoising is appropriate for
the denoising of piecewise constant time-series, it
leads to artifacts when used for the denoising of
other types of time-series. Generalizations of TV
using high-order difference operators have been
proposed for more general time-series (Bredies et al.,
2010; Chan et al., 2000; Sanders et al., 2017; Stefan
et al., 2010). For example, the effectiveness of sparse
higher-order derivatives has been demonstrated for
the processing of chromatograms (Ning et al., 2014).
The objective (function 5) is a particular generalization

of TV denoising that we propose for the denoising of
eye-movement time-series.

Figure 3 illustrates the superior performance of
the proposed form of denoising compared with other
types of TV denoising. We use the parametric saccade
(model 2) to simulate a saccadic time-series. We add
white Gaussian noise (σ = 0.4) to simulate a noisy
time-series (Figure 3(a)). We conduct denoising using
TV, high-order TV, and by minimizing the proposed
objective (function 5). We set the parameters of
each algorithm to minimize the root mean square
error (RMSE) between the denoised and noise-free
time-series, so that each algorithm performs at its best.
TV denoising exhibits stair-case artifacts (Figure 3(c)).
High-order TV denoising produces a smooth result but
does not preserve the constant-valued intersaccadic
behavior of the time-series (Figure 3(e)). The proposed
algorithm achieves the lowest (best) RMSE value. It
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also yields a velocity value of zero away from a saccade,
which is important for the subsequent detection of
saccades by simple VT.

To develop an algorithm to minimize the objective
(function 5), we use the iterative majorization-
minimization approach. This approach minimizes
a sequence of functions G(k)(x) each of which is a
majorizer of J(x). The majorizer functions G(k)(x) are
selected so as to be easier to minimize than objective
function J(x). Each function G(k)(x) should be chosen
to satisfy

G(k)(x) ≥ J(x), ∀x (8)

G(k)(x(k) ) = J(x(k) ) (9)

where x(k) denotes x at iteration k.
For the majorizer of the L1 norm, we use the

differentiable quadratic function

1
2
xT�(k)x+ 1

2
‖x(k)‖1 ≥ ‖x‖1, �(k) = diag(1/|x(k)|) (10)

where xT designates the transpose of the vector x. Also,
by diag(1/v), where v is a vector, we mean the diagonal
matrix whose diagonal elements are the reciprocals
of the elements of the vector v. To avoid numerical
problems when elements of x(k) are equal to zero, we
actually use �(k) = diag(1/(|x(k)| + ε)) with ε = 10−10

(Ding & Selesnick, 2016).
The majorizer of the objective (function 5) is then

given by

G(k)(x)= 1
2
‖y − x‖22 + 1

2
αxTDT

1 �
(k)
1 D1x

+ 1
2
βxTDT

3 �
(k)
3 D3x +C (11)

where

�
(k)
1 := diag(1/(|D1x(k)| + ε)) (12)

�
(k)
3 := diag(1/(|D3x(k)| + ε)) (13)

and where C does not depend on x. The minimizer
x(k+1)

x(k+1) := argmin
x

G(k)(x) (14)

is given by the matrix equation

x(k+1) = (I + αDT
1 �

(k)
1 D1 + βDT

3 �
(k)
3 D3)−1y (15)

for k = 0, 1, 2, . . . ,K − 1 where K is the number of
iterations, and I is the identity matrix. The sequence
of minimizers x(k) converges to the minimizer of (5)

because the objective function is convex (Figueiredo
et al., 2007). The resulting time-series, x will be
approximately intermittent piecewise quadratic, and
constitutes the output of a nonlinear filter with y as the
input time-series.

The second step of the algorithm is to apply VT
to the velocity (first-order temporal derivative) of
the estimated time-series x to detect saccadic eye
movements. The velocity is calculated using a central
difference filter; the coefficients are [0.5, 0, −0.5]. The
velocity is zero during fixations and piecewise linear
during saccades (Figure 4). We count a saccade as being
detected when the velocity exceeds 30 degrees/second.

Parameter setting

The proposed method requires that the parameters
α and β be prescribed. We note that increasing
the parameter α increases the sparsity of the
estimated velocity time-series, whereas the value of
parameter β increases the sparsity of the derivative
of the acceleration (which also affects the shape
of the estimated velocity profiles). We provide a
software-based interactive graphical user interface
(GUI) to illustrate the influence of α and β with
various noise levels and saccade shapes. (See
https://youtu.be/mwqk0uQc3is.)

To find empirical formulas to set parameters α
and β, we simulated saccades (at a sampling rate of
500 samples/second) of various amplitudes using the
parametric saccade model and we considered the
addition of white Gaussian noise of various standard
deviations σ . For each saccade amplitude and σ value,
we created 100 noise realizations. Using a fine grid
for α and β, we found the values of α and β giving
the least MSE for the noise reduction algorithm.
Although the values so-obtained do not follow a simple
formula exactly, based on these results, we suggest
setting

α = 8σ (16)

provided β can also be suitably set. We find that this
choice for setting α is effective even when β varies over
a small range.

To consider the question of how to set the parameter
β, the trade-off is as follows. A too-low value of the
parameter β leads to insufficient noise reduction and
a high rate of false detections due to the estimated
velocity time-series being too noisy. In contrast, a
too-high value of β leads to an over-smoothing of
the saccade waveform, which means a low and wide
estimate of saccade velocity profiles; this can cause
saccades not to be detected or their duration to be

https://youtu.be/mwqk0uQc3is
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Figure 4. Parameters α and β are set according to the estimated noise level, average saccade amplitude, and average saccade
duration in the data. The proposed algorithm can recover data well with automatic parameter setting. Black lines depict the noisy
signals (a, b, c) and denoised signals (d–i). Gray lines are noise-free signals (d–i).

over estimated. Therefore, for a time-series with many
small saccades, we should use a smaller value of β so
as to reliably detect them. For a time-series with large
slow saccades, we can use a greater value of β. Thus,
we choose to set β to increase with increasing average
saccade amplitude and duration. After empirical study,
we suggest setting

β = 4
√
Ae5Dσ (17)

where σ is the estimated noise, and A and D are
estimates of the average saccade amplitude and
duration in the time-series. The relation of parameter
β to the square root of A and the exponential of D
was found through experimentation, and found to
be reliable when processing eye-tracking data consist
of many different saccades. Note that, for normal
eye-movement data, the parameters α and β are

within predictable bounds because the amplitudes and
durations of normal saccades themselves are within
predictable bounds (i.e., amplitudes are usually less
than 30 degrees and durations usually less than 100
milliseconds).

The estimate of σ , A, and D do not need to be
precise because small changes in these parameters do
not change the results significantly. We estimate them
as follows: We first apply a low-pass differentiator with
a cut-off frequency of 10 Hz to obtain the velocity
of data. We then classify candidate saccades as those
for which the velocity exceeds 10 degrees/second and
for which the duration is at least 12 milliseconds. We
combine two saccades into one when the interval
between them is less than 20 samples in this noise
estimation process. We estimate the noise level σ as
the standard deviation of the centered fixation data.
We set the average saccade amplitude A to be the
sum of saccade amplitudes divided by the number
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of saccades; we set the average saccade duration D
similarly.

We demonstrate the performance of the proposed
parameter setting in Figure 4. The time-series consist
of four simulated small normal saccades (Figure 4(a)),
four large normal saccades (Figure 4(b)), and four
large pathological slow saccades (Figure 4(c)). White
Gaussian noise is added to the simulated time-series.
The result in Figure 4 shows that method sets the
parameters according to the input data and provides
reliable denoising. No parameter needs to be tuned by
users.

The parameters α and β should also be adjusted
according to the time-series sampling rate, f . We
simulate saccadic time-series at 250 samples/second,
500 samples/second, and 1000 samples/second using
the parametric saccade model. Based on experimental
results, we set

α = 0.016 f σ, β = 0.008 f
√
Ae5Dσ (18)

for f ≤ 500 samples/second, and

α = (0.0032 f + 6.4)σ, β = (0.0016 f + 3.2)
√
Ae5Dσ

(19)

for f > 500 samples/second.
We define saccade onset as the point when the

velocity exceeds 30 degrees/second. We define the
end of a saccade as the point when the velocity falls
below 10 degrees/second. We use a lower velocity
threshold value for the end of a saccade because the
saccade velocity profiles (especially large saccades) are
usually asymmetric, with higher acceleration and lower
deceleration. We use fixed VT for the proposed method
because it is simpler than adaptive VT. Adaptive
thresholding has negligible benefit here because of
the high noise suppression of the proposed method.
(Adaptive thresholding is most useful when a signal is
somewhat noisy.)

We use several postprocessing rules to trim out
some false positives (e.g., candidate saccades that are
not plausible), as is done in other existing methods.
Any detected saccade is discarded if it is fewer than
10 samples away from a blink. The minimal duration
of a saccade is set to be 12 milliseconds. This is a
conservative constraint to avoid irregular artifacts in
the recorded time-series. However, it can be changed
for the study of microsaccades. We use a minimum
inter-saccadic interval of 40 milliseconds so as to ignore
post-saccadic oscillations; they are not our focus.
Finally, any detected saccade with a peak velocity of
more than 800 degrees/second is discarded because such
high speeds are not physiologically plausible.

Compared with the other algorithms to be
considered, the proposed method generates fewer false
positives. Therefore, these post-processing steps do not

make a significant difference for the proposed method,
and the assumptions above (e.g., a saccade must be of
at least 12 milliseconds in duration) are not critical for
the proposed method. We use the same post-processing
steps for other existing saccade detection algorithms for
the purpose of comparing the performance of multiple
algorithms. Note that both the proposed and existing
algorithms will still generally have some false positives
that are not removed by these post-processing steps.

Experimental evaluation

We compare the proposed algorithm with ten
other saccade detection algorithms using simulated
data, eye-tracking data provided by (Holmqvist &
Nyström, 2010; Larsson et al., 2013), and eye-tracking
data of pathological slow eye movements recored in
our laboratory (Rizzo et al., 2016a). The methods
being compared include velocity-based algorithms
proposed by Engbert and Kliegl (2003), Holmqvist
and Nyström (2010), Friedman et al. (2018), and
VT; machine learning-based algorithms proposed by
Buffalo and König (2014), and Zemblys et al. (2018);
DT, HMM, MST, and KF. For algorithms VT and
DT, we use our own software implementation. For the
other algorithms, we use the software provided by the
authors (Engbert & Kliegl, 2003; Friedman et al., 2018;
Holmqvist & Nyström, 2010; Komogortsev et al., 2010;
König & Buffalo, 2014; Zemblys et al., 2018). We use F1
score, precision, recall, true-positive rate, false-positives,
and false-negative rate to measure the accuracy of all
saccade detection algorithms. They are defined as

F1 score = 2
Precision · Recall
Precision + Recall

(20)

Precision = True positive
True positive + False positive

(21)

Recall = True positive
True positive + False negative

(22)

True positive rate = True positive
Number of saccades in data

(23)

False negative rate = False negative
Number of saccades in data

. (24)

We implement an event-by-event comparison using
the software provided by Warby et al. (2014). A true
positive is defined if there is an overlap in time between
a labeled saccade and a detected saccade. This is a more
reliable comparison because the precise onset and offset
(end of saccades) are difficult to manually indicate with
high precision using a mouse-driven graphical user
interface.

We first show, using simulated time-series, that the
proposed algorithm detects saccades more accurately
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Proposed Zemblys Nystrom König Engbert VT DT HMM Friedman MST KF

σ = 0.1 1.00 1.00 1.00 0.96 1.00 0.18 0.78 0.23 0.98 0.63 0.49
σ = 0.2 1.00 1.00 1.00 0.96 1.00 0.40 0.51 0.18 0.85 0.50 0.04
σ = 0.3 1.00 1.00 0.96 0.96 0.96 0.47 0.27 0.28 0.45 0.49 0.04
σ = 0.4 1.00 0.98 0.97 0.96 0.96 0.58 0.27 0.04 0.21 0.22 0.04
σ = 0.5 1.00 1.00 0.95 0.96 0.95 0.61 0.26 0.04 0.07 0.15 0.04
σ = 0.6 1.00 1.00 0.95 0.95 0.93 0.59 0.27 0.04 0.02 0.11 0.04
σ = 0.7 1.00 1.00 0.95 0.94 0.88 0.62 0.26 0.76 0.03 0.07 0.04
σ = 0.8 1.00 1.00 0.92 0.93 0.84 0.55 0.27 0.76 0.00 0.06 0.04
σ = 0.9 1.00 0.98 0.91 0.95 0.78 0.54 0.25 0.76 0.00 0.04 0.04
mean 1.000 0.996 0.956 0.950 0.921 0.504 0.348 0.342 0.289 0.252 0.089

Table 1. Evaluation of saccade detection algorithms using simulated time-series (500 samples/second). F1 scores show the proposed
algorithms detects the saccades perfectly under various noise levels. Zemblys’ algorithm also detect saccades correctly under various
noise levels. Other algorithms tend to perform worse at higher noise levels.
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Figure 5. Evaluation of saccade detection algorithms proposed here and by Nystrom and Engbert. The saccades are simulated.
Algorithms by Nystrom and Engbert miss more true saccades and detect more false saccades at higher noise levels.

even when the time-series is very noisy. We simulate
eye-movement time-series (at 500 samples/second)
consisting of fixations and 50 saccades of various
amplitudes. We add white Gaussian noise with various
standard deviation σ to simulate different noise
levels.

Table 1 shows that the algorithms by Nystrom,
Engbert, Zemblys, Friedman, and König can detect
saccades well when the noise in the time-series is low.
However, these algorithms tend to perform worse at
higher noise levels. As shown in Figure 5, velocity-based

algorithms (Nystrom’s and Engbert’s) miss more true
saccades and detect many false saccades at high noise
levels. The proposed and Zembly’s algorithm are shown
to be capable of detecting saccades correctly when the
data are quite noisy.

We also evaluate saccade detection algorithms
when the time-series are at various sampling rates.
The same eye movement time-series as above were
simulated, but with the sampling rates of 250 and 1,000
samples/second. The results are listed in Table 2 and
Table 3. The proposed algorithm accurately detects
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Proposed Zemblys König Nystrom Engbert Friedman VT MST DT HMM KF

σ = 0.1 1.00 1.00 0.96 1.00 1.00 0.89 0.19 0.82 0.84 0.16 0.27
σ = 0.2 1.00 1.00 0.96 0.98 0.96 0.78 0.24 0.64 0.28 0.41 0.52
σ = 0.3 1.00 1.00 0.96 0.96 0.95 0.76 0.35 0.50 0.28 0.39 0.08
σ = 0.4 1.00 1.00 0.95 0.94 0.88 0.66 0.45 0.39 0.25 0.26 0.04
σ = 0.5 1.00 1.00 0.95 0.92 0.82 0.51 0.45 0.22 0.28 0.11 0.04
σ = 0.6 0.98 1.00 0.95 0.88 0.78 0.40 0.55 0.18 0.26 0.11 0.04
σ = 0.7 0.99 0.98 0.89 0.82 0.60 0.29 0.57 0.13 0.24 0.08 0.04
σ = 0.8 0.98 0.97 0.87 0.80 0.53 0.29 0.54 0.10 0.27 0.04 0.04
σ = 0.9 0.99 0.98 0.83 0.57 0.40 0.29 0.48 0.08 0.27 0.04 0.04
mean 0.993 0.992 0.923 0.874 0.768 0.540 0.423 0.342 0.329 0.178 0.122

Table 2. Evaluation of saccade detection algorithms using simulated time-series (250 samples/second). F1 scores show the proposed
algorithm outperforms other existing algorithms. Zemblys’ algorithm also detect saccades correctly under various noise levels. Other
algorithms tend to perform worse at higher noise levels.

Proposed Zemblys Nystrom König Engbert HMM DT Friedman VT KF MST

σ = 0.1 1.00 1.00 1.00 0.96 1.00 0.36 0.77 0.99 0.31 0.08 0.00
σ = 0.2 1.00 1.00 1.00 0.96 1.00 0.11 0.81 0.88 0.46 0.04 0.00
σ = 0.3 1.00 1.00 1.00 0.96 0.98 0.11 0.51 0.00 0.47 0.04 0.01
σ = 0.4 1.00 1.00 0.97 0.96 0.78 0.47 0.22 0.06 0.31 0.04 0.00
σ = 0.5 1.00 1.00 0.97 0.96 0.48 0.47 0.14 0.00 0.00 0.04 0.01
σ = 0.6 1.00 1.00 0.96 0.96 0.04 0.47 0.07 0.00 0.00 0.04 0.00
σ = 0.7 1.00 0.99 0.96 0.96 0.00 0.47 0.00 0.00 0.00 0.04 0.00
σ = 0.8 1.00 1.00 0.95 0.96 0.00 0.47 0.00 0.00 0.00 0.04 0.01
σ = 0.9 1.00 1.00 0.95 0.95 0.00 0.47 0.00 0.00 0.00 0.04 0.00
mean 1.000 0.999 0.972 0.957 0.476 0.378 0.281 0.214 0.173 0.043 0.004

Table 3. Evaluation of saccade detection algorithms using simulated time-series (1000 samples/second). F1 scores show the proposed
algorithm detects saccades perfectly under various noise levels. Zemblys’ algorithm also detects saccades correctly under various
noise levels. Other algorithms tend to perform worse at higher noise levels.

id (#sacc.) Proposed Nystrom Zemblys Engbert KF König VT Friedman DT HMM MST

1 (26) 1.00 0.98 0.98 0.93 0.98 1.00 0.94 1.00 0.83 0.96 0.04
2 (6) 0.91 0.80 0.80 0.75 0.80 0.80 0.71 0.80 0.67 0.73 0.00
3 (28) 0.90 0.88 0.84 0.83 0.52 0.82 0.65 0.88 0.65 0.37 0.18
4 (34) 0.93 0.87 0.93 0.75 0.84 0.89 0.77 0.91 0.77 0.73 0.07
5 (32) 0.93 0.95 0.95 0.86 0.89 0.93 0.94 0.81 0.87 0.85 0.03
6 (30) 0.98 1.00 0.98 0.94 0.97 0.97 0.98 0.97 0.87 0.89 0.22
7 (32) 0.97 0.97 0.94 0.95 0.94 0.95 0.95 0.95 0.87 0.90 0.00
8 (30) 0.95 1.00 0.92 0.90 0.85 0.91 0.93 0.89 0.86 0.83 0.11
9 (26) 0.89 0.89 0.92 0.92 0.96 0.82 0.75 0.30 0.85 1.00 0.17
10 (30) 0.98 0.97 0.88 0.76 0.86 0.67 0.87 0.83 0.82 0.76 0.26
11 (22) 0.95 0.95 0.64 0.82 0.71 0.50 0.89 0.90 0.90 0.64 0.02
12 (22) 0.91 0.95 0.72 0.91 0.55 0.59 0.42 0.84 0.71 0.46 0.09
13 (32) 0.98 0.98 0.94 0.89 0.96 0.92 0.94 0.94 0.79 0.90 0.02
14 (27) 0.94 0.90 0.86 0.90 0.92 0.88 0.65 0.30 0.68 0.92 0.46
mean 0.946 0.936 0.878 0.864 0.838 0.832 0.814 0.809 0.795 0.780 0.119

Table 4. Evaluation of saccade detection algorithms on eye-tracking time-series with saccades annotated by experts. F1 scores show
the proposed algorithm outperforms other algorithms. The algorithm by Nystrom detect saccades similarly well.

saccades in time-series at various sampling rates. The
proposed and Zemblys’ algorithms outperform other
existing saccade detection algorithms.

We next use eye-tracking time-series to evaluate
the performance of saccade detection algorithms. In
the publicly available dataset we use, eye movements
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have been manually annotated by two eye movement
experts (Larsson et al., 2013). It is observed from the
dataset that the two experts do not always agree with
each other in the labeling of saccades, even when the
data are of good quality. Here, we use the annotation
by Nystrom to compare algorithms. The number of
saccades in each record is indicated in the first column
of Table 4. The results reported in Table 4 show that
the proposed algorithm outperforms other algorithms.
Nystrom’s algorithm also performs well on this dataset.
Overall, most algorithms perform well in detecting
normal saccades when the data are of good quality.
However, existing algorithms cannot reliably detect
pathologically slow saccades correctly, which hinders
the incorporation of saccade detection algorithms in
clinical practice.

Note that the proposed method, and some other
methods, perform better on the simulated data than
on the real data. Some reasons for this may include
measurement artifacts in the real data that make it more
challenging, more complicated saccade waveforms, and
the lack of absolute ground truth (owing to reliance
on annotation for evaluation). Even if the parameters
of the method are manually set, we do not expect the
method to give a perfect F1 score for all datasets.

Slow saccades

We show the proposed algorithm is also effective
in detecting pathologically slow saccades. Slowing of
saccades is indicative of lesions in specific areas of the
brain and a powerful diagnostic tool in clinical use.
However, existing saccade detection algorithms are not
able to detect slow saccades properly. From five patients,
we collected saccadic time-series with pathological slow
saccades using the EyeLink 1000 Plus (SR Research
Ltd). Four of the patients had supranuclear gaze palsy
with symmetric bilateral saccade slowing; of these, three
were diagnosed with PSP and one had spinocerebellar
ataxia (genetically undiagnosed). The fifth patient had
multiple sclerosis with an internuclear ophthalmoplegia
(INO) causing slowed adducting saccades in only one
eye.

Figure 6 shows part of the eye-tracking time-series
of one of the patients with PSP, which causes slow
saccades. We compare the proposed algorithm with
a state-of-the-art hand-crafted algorithm (Nystrom’s)
and machine-learning algorithm (Zemblys’). Detected
saccades are highlighted in Figure 6 by vertical bars
shaded gray. Nystrom’s algorithm detects only one
saccade and misses many slow saccades. Zemblys’
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Figure 6. Example of saccade detection for a PSP patient who exhibits slow saccades, using the proposed algorithm and algorithms of
Nystrom and Zemblys. Detected saccades are indicated by vertical bars shaded gray. Both the horizontal (black) and vertical (gray)
components of the eye-tracking data are shown.
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Figure 7. Example of saccade detection for an INO patient who exhibits slow adducting saccades and normal abducting saccades,
using the proposed algorithm and algorithms of Nystrom and Zemblys. Detected saccades are indicated by vertical bars shaded gray.
Both the horizontal (black) and vertical (gray) components are shown.

algorithm detects most saccades, but the end of each
slow saccade is not correctly determined. To classify a
saccade as slow, the peak velocity and the amplitude
of the saccade must be be considered together. A
slow saccade may be falsely classified as normal if the
end of the saccade is not properly determined (i.e.,
the peak velocity might be correctly estimated, but
the estimated saccade amplitude will be significantly
underestimated). The result shows the proposed
algorithm can detect slow saccades more accurately
than these two algorithms.

Figure 7 shows part of the eye-tracking time-series
for the left eye of a patient with INO, who made
a saccade to the right (adduction) and another
saccade to the left (abduction). Patients with INO
have injury in the medial longitudinal fasciculus.
Consequently, the patient has slow adducting saccades
and normal abducting saccades. This is an illustrative
example because it shows that both Nystrom’s
and Zemblys’ algorithms can detect the normal
abducting saccades properly. However, as shown in
the previous example, they do not correctly detect the
end of slow saccades. As a consequence, large slow
saccades may be falsely classified as small normal
saccades.

Eye-tracking time-series for the three additional
subjects are shown in Figures 8–10 where similar results
can be observed. The saccade main sequence data
shown in Figure 1(b) is from the individual whose
time-series data is shown in Figure 9. (To obtain
the peak velocity and amplitude values shown in
Figure 1(b), we used the proposed saccade detection
algorithm as the first step.)

These five examples demonstrate that the proposed
algorithm generally outperforms other algorithms for
the detection of slow saccades. It is not surprising
because parameters in Nystrom’s algorithm are tuned
for eye movements made by healthy subjects. The
labeled training data used in Zemblys’ algorithm are
also from eye movements made by healthy subjects.
It is possible that changing parameters in Nystrom’s
algorithm or using labelled patients’ data in training
Zembly’s algorithm would detect slow saccades more
accurately. However, Nystrom’s algorithm has more
than 10 parameters, and we usually do not have prior
knowledge that a saccade is normal or slow, which
complicates parameter setting and training in Zembly’s
algorithm. The proposed algorithm performs well on
both physiologically normal and pathologically slow
saccades without user input.
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Figure 8. Example of saccade detection for a PSP patient who exhibits slow saccades using the proposed algorithm and algorithms of
Nystrom and Zemblys. Detected saccades are indicated by vertical bars shaded gray. Both the horizontal (black) and vertical (gray)
components are shown.
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Figure 9. Example of saccade detection for a PSP patient who exhibits slow saccades using the proposed algorithm and algorithms of
Nystrom and Zemblys. Detected saccades are indicated by vertical bars shaded gray. Both the horizontal (black) and vertical (gray)
components are shown.



Journal of Vision (2021) 21(6):8, 1–18 Dai et al. 15

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

P
os

iti
on

 (
de

g)

Proposed

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

P
os

iti
on

 (
de

g)

Nystrom

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

20

40

P
os

iti
on

 (
de

g)

Zemblys

Figure 10. Example of saccade detection for a PSP patient who exhibits slow saccades using the proposed algorithm and algorithms of
Nystrom and Zemblys. Detected saccades are indicated by vertical bars shaded gray. Both the horizontal (black) and vertical (gray)
components are shown.

Conclusion

In this article, we present an algorithm designed
for the detection of both normal and slow saccades
in realistically noisy time-series. Although there are
algorithms that can detect normal saccades fairly
well, most fail to accurately detect slow saccades. The
proposed algorithm consists of two steps: nonlinear
denoising and basic VT. For denoising of eye movement
time-series, we define the objective (function 5) based
on sparsity of the first-order and third-order temporal
derivatives, and we develop an iterative optimization
algorithm for its minimization. The velocity of the
denoised time-series is mostly zero, except during
saccades; thus, saccades can be easily detected via VT.

The denoising step is the most important part of the
method. The use of the L1 norm and the combination
of the first-order and third-order temporal derivatives
in the formulation performs a type of nonlinear
smoothing that reduces noise while preserving abrupt
changes (“quasi-steps”) in a time-series, where the steps
exhibit polynomial transition behavior.

We use both simulated saccades and real saccades
generated by healthy subjects and patients to evaluate
the performance of the proposed algorithm and
ten other algorithms for saccade detection. For the
detection of normal saccades, we demonstrate the
proposed algorithm is as accurate, if not more accurate,
than many other algorithms. We also show the proposed
algorithm is capable of detecting slow saccades
correctly; a process that is usually problematic and very
valuable in clinical practice.

Note that in this work we consider the problem of
saccade detection (including onsets and end-points)
rather than the estimation of general saccade
parameters such as direction, peak velocity, angle,
and so on. We have studied the relative performance
of various algorithms for saccade detection, but not
for the estimation of general saccade parameters.
For the estimation of such, it may be useful to
reprocess the original data after saccades have been
detected.

The proposed method is not intended for subjects
with nystagmus or for eye-tracking data with smooth
pursuit eye movements. Modifying the method to
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account for the presence of nystagmus and/or smooth
pursuit eye movements remains as future work.

Keywords: saccade detection, slow saccades, saccade
quantitative analysis
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