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Mechanism of Astragalus 
membranaceus in the treatment 
of laryngeal cancer based 
on gene co‑expression network 
and molecular docking
Kai Feng Dong1,5, Meng Qi Huo4,5, Heng Ya Sun2, Tian Ke Li3 & Dan Li1*

Astragalus membranaceus (HUANG QI, HQ) is a kind of traditional Chinese medicine. Researchers have 
widely concerned its antitumor effect. At present, there is still a lack of research on the treatment of 
laryngeal cancer with HQ. In this study, we integrated data from the weighted gene co-expression 
network of laryngeal cancer samples and the components and targets of HQ. A new method for 
dividing PPI network modules is proposed. Important targets of HQ treatment for laryngeal cancer 
were obtained through the screening of critical modules. These nodes performed differential 
expression analysis and survival analysis through external data sets. GSEA enrichment analysis reveals 
pathways for important targets participation. Finally, molecular docking screened active ingredients 
in HQ that could interact with important targets. Combined with the laryngeal cancer gene co 
expression network and HQ PPI network, we obtained the critical module related to laryngeal cancer. 
Among them, MMP1, MMP3, and MMP10 were chosen as important targets. External data sets 
demonstrate that their expression in tumor samples is significantly higher than in normal samples. The 
survival time of patients with high expression group was significantly shortened, which is a negative 
factor for prognosis. GSEA enrichment analysis found that they are mainly involved in tumor-related 
pathways such as ECM receptor interaction and Small cell lung cancer. The docking results show that 
the components that can well bind to important targets of HQ are quercetin, rutin, and Chlorogenic 
acid, which may be the primary mechanism of the anti-cancer effect of HQ. These findings provide 
a preliminary research basis for Chinese medicine treatment of laryngeal cancer and offer ideas to 
related drug design.

Laryngeal cancer is one of the common malignant tumors of the head and neck, most of which are squamous cell 
carcinoma1. It ranks second in the incidence of head and neck cancer (HNSC). The affected population is mainly 
middle-aged and older men over 40 years old, with a slight trend of youth2. The occurrence and development of 
laryngeal cancer are related to many factors, including smoking, drinking, HPV infection, radiation, low intake 
of vegetables and fruits, insufficient trace elements, and disorders of sex hormone metabolism3–5. In the early 
stage of laryngeal cancer, laser treatment has less damage and less postoperative complications6. For most patients 
with laryngeal cancer, open surgery is still the main treatment. Radiotherapy and chemotherapy were used as 
auxiliary means7. Targeted treatment of tumor can increase drug sensitivity, improve curative effect and reduce 
side effects8. However, not all patients can benefit from it9. Clearing tumors, preserving function, controlling 
recurrence, and improving quality of life are the goals of treating laryngeal cancer5.
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Astragalus membranaceus (HUANG QI, HQ) is one of the most commonly used Chinese medicine in clini-
cal practice, which is the dried rhizome of Astragalus membranaceus. It has been reported that HQ can enhance 
immunity and protect cardiovascular system10. In recent years, the antitumor effect of HQ has attracted wide-
spread attention from researchers11. On the one hand, it can enhance cellular and humoral immune functions, 
improve the killing and inhibiting effects on tumor cells, and promote tumor cell apoptosis12. On the other hand, 
it can also reduce the damage to the immune function of radiotherapy and chemotherapy, and play a role in 
the adjuvant treatment of tumors13. However, there are few related studies on HQ in treating laryngeal cancer.

In recent years, researchers have studied the pathogenesis of laryngeal cancer at the molecular level to find 
more effective treatments14. Network pharmacology is a new discipline based on systems biology theory, selecting 
specific signal nodes for multi-target drug design15. It emphasizes multi-channel regulation of signal pathways, 
improves the therapeutic effect of drugs, and reduces toxic and side effects16. This method can improve the suc-
cess rate of clinical trials of new drugs and save drug development costs17. The protein–protein interaction (PPI) 
network is a common technique to analyze the mechanism of traditional Chinese medicine and disease from 
the molecular level18. The functional modules in the protein-interaction network are composed of interacting 
proteins, which together participate in specific biological processes19. Therefore, analyzing the functional mod-
ules in the network is of great significance for studying the mechanism of HQ treatment of laryngeal cancer. 
In previous studies, people often use the MCODE algorithm, FAG-EC algorithm, etc. to divide modules in PPI 
networks. Most of these algorithms divide modules based on the heterogeneity of scale-free networks20,21. They 
can obtain modules with tighter connectivity on the network topology. However, we prefer to get modules that 
are more closely connected to biological functions22. In this study, we designed a method for obtaining mod-
ules that integrate disease gene expression data and clinical information. Based on the gene expression data of 
109 laryngeal cancer samples, we constructed a weighted gene co-expression network of laryngeal cancer. The 
modules are divided according to the correlation between genes, and then they are mapped in the PPI network 
of related targets of HQ. In this way, modules with a high correlation in biological functions can be received, 
and redundant PPI data in the protein interaction network can be removed. This method makes the selection 
process of critical nodes more concise and accurate23.

In this study, we propose a new method for obtaining PPI network modules. Based on the gene expression 
information in the GSE27020 dataset, a weighted gene co-expression network was constructed. The co-expressed 
gene modules were mapped into the PPI network of HQ, and critical genes and corresponding targets were 
obtained by screening. These genes were confirmed to be differentially expressed in the tumor group and the 
normal group, and the survival time of patients with high expression group was significantly shortened. Based 
on the docking, the active ingredients in HQ were obtained. These findings may provide a new perspective for 
the treatment of laryngeal cancer with HQ.

Results
Acquisition of laryngeal cancer samples.  The GSE27020 data set contains a total of 109 laryngeal can-
cer samples. After removing the genes with too many missing values from samples, an expression matrix con-
taining 13,512 genes was generated. The 3,378 genes with the top 25% of the variance (that is, the genes that 
change significantly in each sample) are selected for subsequent operations. Clinical phenotypic data included 
survival time, recurrence, age, and tumor stage. As shown in Fig. S1A. According to the distance of sample clus-
tering, the outliers GSM665579, GSM665597, and GSM665566 were eliminated. Finally, we selected 106 samples 
to construct a weighted gene co-expression network.

Identification of critical modules.  We use the WGCNA package in R software to build a weighted co-
expression network24. When R2 > 0.9, the network meets the scale-free condition. The calculation result is shown 
in Fig. 1A, where SFT.R.sq is R2. When the power value is set to 5, the connectivity between genes in the network 
satisfies the scale-free network distribution. We use a dynamic cutting algorithm to obtain ten modules, of which 
the gray module is a set of genes that cannot be aggregated into other modules (Fig. 1B). Then, the correlation 
between each module and the phenotype (survival time, recurrence, age, and grade) was calculated (Fig. 1C). 
A heat map showed a significant positive correlation between the green module and recurrence (cor = 0.32, 
P < 0.001) (Fig. 1D). The number of genes in each module is shown in Fig. 1E. The GS and MM scatter plots 
of the green module also illustrate the significant correlation between the green module and laryngeal cancer. 
Therefore, the green module was selected as the critical module.

Enrichment analysis of the critical module.  We used GO enrichment analysis and KEGG pathway 
analysis to find the biological function of genes in the green module (Fig. 2)25,26. In the biological process clas-
sification, genes in the module are significantly enriched in extracellular matrix organization, hemidesmosome 
assembly, cell adhesion, cellular response to zinc ion, negative regulation of growth, extracellular matrix disas-
sembly, cell–matrix adhesion, cell adhesion mediated by integrin, cellular response to cadmium ion, leukocyte 
migration. In the cellular component classification, the genes in modules are significantly enriched in focal 
adhesion, cell surface, extracellular space, basement membrane, integrin complex, perinuclear region of cyto-
plasm, extracellular matrix, extracellular region, proteinaceous extracellular matrix, extracellular exosome. 
In the molecular function classification, the genes in modules are significantly enriched in integrin binding, 
L-ascorbic acid binding, protein binding, procollagen-lysine 5-dioxygenase activity, laminin binding, cadherin 
binding involved in cell–cell adhesion, zinc ion binding, protease binding, ion channel binding, glycoprotein 
binding. In the KEGG pathway classification, the genes in modules are significantly enriched in focal adhe-
sion, ECM-receptor interaction, PI3K-Akt signaling pathway, regulation of actin cytoskeleton, mineral absorp-
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tion, small cell lung cancer, arrhythmogenic right ventricular cardiomyopathy (ARVC), proteoglycans in cancer, 
hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy. The detailed results are shown in Table S1.

Identification of important targets.  A total of 77 components of HQ and 953 corresponding targets 
were obtained from the TCMSP database. The target’s PPIs were introduced into Cytoscape to obtain the PPI 
network of HQ. The network contains 471 nodes and 2,983 edges, as shown in Fig. S2. We take HQ-PPI net-
work as the background. Gene interactions in the weighted gene co expression network of laryngeal cancer was 
mapped to the HQ-PPI network. Common nodes and interactions between gene modules and PPI network are 
preserved. Finally, we got laryngeal cancer-HQ-PPI network. The network consists of 64 nodes and 249 edges, 
which are composed of 9 modules (with the gray modules removed), as shown in Fig. 3A. Therefore, the cor-

Figure 1.   Drawing weighted gene co expression network of laryngeal cancer based on WGCNA package of R 
3.5.1 software (https​://www.r-proje​ct.org/) (A) Analysis of the scale-free fit index for various soft-thresholding 
powers (β), 5 was the most fit power value. (B) The cluster dendrogram of genes in GSE27020. Each branch in 
the figure represents one gene, and every color below represents one co-expression module. (C) Heat map of 
the relationship between the characteristic genes of modules and the incidence of laryngeal cancer based on R 
3.5.1 software. Correlation coefficient along with P value in parenthesis underneath. Color-coded according to 
correlation coefficient (legend at right). (D) Scatter plot of gene significance and module membership in the 
green module. (E) The number of genes in each module.

https://www.r-project.org/
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responding green module after the mapping is considered to be a critical module for HQ treatment of laryngeal 
cancer. Nodes in the green module are considered candidate important targets. By calculating the topology 
parameters of the network nodes, the degree value of each node is obtained. As shown in Fig. 3B, compared 
with the nodes of other modules, the nodes of the green module have a higher degree value and are in the core 
position of the network.

Figure 2.   GO and KEGG enrichment analysis of green module based on DAVID 6.8 database (https​://david​
.ncifc​rf.gov/). X-axis refers to the ID of the enriched terms, and Y-axis refers to the number of the enriched 
genes. Brown bars show the results of the biological process classification. Blue bars show the results of the 
cellular component classification. Yellow bars show the results of the molecular function classification. Green 
bars show the results of the KEGG pathway classification.

Figure 3.   Constructing network based on Cytoscape 3.7.0. (https​://cytos​cape.org/) (A) Module diagram of 
laryngeal cancer weighted gene co-expression network mapped to HQ PPI network. The different colors in the 
figure represent the corresponding modules. The black line represents the PPI relationship between the nodes. 
(B) A larger node indicates a greater degree of the node.

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://cytoscape.org/
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Differential expression analysis, survival analysis, and GSEA analysis of important tar‑
gets.  Based on the sample information of TCGA and GTEx projects in the GEPIA database, it was found 
that some candidate important targets had differential expression between normal and laryngeal cancer. The 
Wilcoxon rank test was performed on the normal group and the laryngeal cancer group (Fig.  4A). Among 
them, the expressions of MMP1, MMP3, and MMP10 in tumor tissues were higher than those in normal tis-
sues (p < 0.05). After that, we used the Kaplan Meier-plotter website for survival analysis. The results are shown 

Figure 4.   (A) Differential expression analysis of important targets based on TCGA database and GTEx 
database. (B) Survival analysis of important targets. Notes: three important targets in green module with 
significant results of survival analysis (P < 0.1 was regarded as significant). They were MMP1, MMP3, MMP10 
respectively. (C) Enrichment analysis of important targets in high expression group based on GSEA 3.0 software 
(https​://softw​are.broad​insti​tute.org/gsea/downl​oads.jsp).

https://software.broadinstitute.org/gsea/downloads.jsp
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in Fig. 4B, in which MMP1, MMP3, and MMP10 were significantly correlated with patient prognosis (P < 0.1). 
As their expression levels increase, the overall survival time decreases significantly. The above results suggest 
that MMP1, MMP3, and MMP10 are poor prognostic factors, and their high expression is significantly associ-
ated with shortened patient survival. Therefore, they are considered to be important targets closely related to 
laryngeal cancer, which may be the primary mechanism of HQ treatment of laryngeal cancer. To understand 
the pathways involved in these important targets (MMP1, MMP3, MMP10), a GSEA analysis was performed 
using the data set GSE27020. There were ten pathways enriched in the high expression group(Fig. 4C), which 
are the snare interactions in vesicular transport, focal adhesion, ECM receptor interaction, glycosaminogly-
can biosynthesis heparan sulfate, cytokine cytokine receptor interaction, N glycan biosynthesis, small cell lung 
cancer, arrhythmogenic right ventricular cardiomyopathy (ARVC), Nod-like receptor signaling pathway, drug 
metabolism other enzymes.

Molecular docking.  A total of 77 HQ components were obtained through the TCMSP database, and the 
component information is shown in Table S2. The crystal structure with the PDB code of 3AYK was selected as 
the docking model of MMP1, and the central axis was adjusted to 3.816, -4.348, -0.55 for MMP1. The crystal 
structure with the PDB code of 4G9L was selected as the docking model of MMP3, and the central axis was 
adjusted to 21.36, 68.883, 106.078 for MMP3. The crystal structure with the PDB code of 1Q3A was selected 
as the docking model of MMP3, and the central axis was adjusted to 25.304, − 10.345, 24.278 for MMP10. All 
components are sequentially docked with MMP1, MMP3, and MMP10 to obtain the corresponding binding free 
energy. The calculation results of compounds and targets in the top ten (including all the 10th in parallel) are 
shown in Table 1 and Fig. 5. The docking results of other compounds are shown in Table S3.

As shown in the figure, among the top 10 ingredients, the best combination with MMP10 is isomucronulatol-
7,2′-di-O-glucosiole, Jaranol, rhamnocitrin-3-O-glucoside, Hirsutrin, the best combination with MMP3 is 
(3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol,7,2′-dihydroxy-3′,4′-dimethoxyisoflavone-7-O-β-d-
glucoside,AstragalosideIV, and the best combination with MMP1 is (2S)-2-[[4-[(2-Amino-4-oxo-1H-pteridin-
6-yl)methylamino]benzoyl]amino]pentanedioic acid, (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-
5-propan-2-yloctan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol, 
Lariciresinol, Isorhamnetin, (2S)-4-methoxy-7-methyl-2-[1-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-
6-methylol-tetrahydropyran-2-yl]oxy-ethyl]-2,3-dihydrofuro[3,2-g]chromen-5-one. Some ingredients have 
stronger binding effects with three targets, such as quercetin, rutin, Chlorogenic acid.

Discussion
In this study, we obtained ten modules based on 109 laryngeal cancer expression data in the GSE27020 dataset. 
The green module is the critical module we found. The results of enrichment of GO and KEGG also showed the 
mechanism of laryngeal cancer. Among them, cell adhesion mediated by integrin, leukocyte migration, ECM-
receptor interaction, PI3K-Akt signaling pathway etc. have been proved to be closely related to the occurrence 
of cancer. Integrin mediates the interaction between cell and cell, cell and extracellular matrix, and participates 
in the information transmission inside and outside cell27. It plays an important role in the proliferation, dif-
ferentiation, adhesion, migration and apoptosis of cancer cells. Some studies have shown that integrin is the 
key to cancer cell proliferation. When cancer cells float, integrin will change its function from adhesion to 
communication28. The dysfunction of ECM-receptor interaction may lead to the abnormal activation of signal 
transduction pathways, including Ras/ Raf/MAPK, Raf/JNK, Rho/RAC/Pak and PI3K/Akt/mTOR. So as to create 
a tumor microenvironment that can promote tumor survival, angiogenesis and invasion29. PI3K-Akt signaling 
pathway is the most common dysregulated pathway in many tumor cells. When it is activated abnormally, many 
tumor suppressor genes, including PIK3CA, PIK3R1, PTEN, Akt, TSC1, TSC2, LKB1, mTOR, will be affected30. 
The results of the enrichment analysis may be the main mechanism of laryngeal cancer.

The green module was mapped on the HQ PPI network, and finally, the potential critical targets MMP1, 
MMP3, and MMP10 for the treatment of laryngeal cancer were obtained. Gene expression data from the external 

Table 1.   Top ten compounds with free binding energy for each target.

MMP1 Affinity (kcal/mol) MMP3 Affinity (kcal/mol) MMP10 Affinity (kcal/mol)

MOL000415 − 9.6 MOL000098 − 9.6 MOL000437 − 8.9

MOL001955 − 9 MOL000438 − 9.6 MOL000415 − 8.8

MOL000098 − 8.8 MOL000436 − 9.4 MOL000418 − 8.8

MOL000417 − 8.8 MOL000409 − 9.4 MOL000098 − 8.7

MOL000442 − 8.8 MOL000415 − 9.3 MOL000442 − 8.4

MOL000433 − 8.8 MOL000417 − 9.3 MOL001955 − 8.3

MOL000373 − 8.8 MOL000418 − 9 MOL000422 − 8.3

MOL000436 − 8.7 MOL001955 − 9 MOL000251 − 8.3

MOL000354 − 8.7 MOL000422 − 9 MOL000423 − 8.3

MOL000416 − 8.7 MOL000251 − 9 MOL000239 − 8.3

MOL000033 − 8.7 MOL000376 − 9 MOL000439 − 8.3
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data set showed that the expression of these three genes in the tumor group was significantly higher than in 
the normal group. Survival analysis showed that high expressions of MMP1, MMP3, and MMP10 would lead 
to a reduction in patient survival. They are detrimental to prognosis. GSEA analysis showed that the MMP1, 
MMP3, and MMP10 high-expression groups participated in tumor-related ECM receptor interaction, small cell 
lung cancer, and other pathways. MMP1, MMP3, and MMP10 belong to the matrix metalloproteinases (MMPs) 
family31. The MMPs family contains multiple types of proteases. They can break down most of the extracellular 
matrix components and some proteins, producing growth factors essential for tumorigenesis and progression. 
Therefore, the MMP family has become a biomarker for some tumors32. MMP1 expression increases in malig-
nant tumor cells, which is helpful for tumor cell invasion and metastasis33. Studies have shown that the genetic 
characteristics of MMP1 may become an independent prognostic factor for laryngeal cancer. And the expression 
of MMP1 in most of the laryngeal cancer tissues with lymphatic metastasis was higher than that of the laryngeal 
cancer tissues without lymphatic metastasis. MMP1 also increased with the increase of infiltration34. MMP3 
is one of the most active members in MMPs, and it is expressed in tumor cells such as gastrointestinal tumors 
and liver tumors35. Gobin Emily’s research found that MMP3 and MMP10 were significantly up-regulated in at 
least ten cancer types36. Alaseem Ali’s research shows that the MMPs family plays a vital role in the invasion and 
metastasis of malignant tumors and the formation of new blood vessels. Inhibiting the expression and activity of 
MMPs can provide new ideas for the comprehensive treatment of tumors37. In addition, The secretion of MMP1 
can stimulate the secretion of other MMPs (e.g., MMP3, MMP10), which may be the reason why they together 
become a critical gene of laryngeal cancer38.

The docking results show that quercetin, rutin, and Chlorogenic acid can be combined with MMP1, MMP3, 
and MMP10. Previous studies have shown that quercetin induces apoptosis in human Hep2 cells by inhibiting 
Akt / PKB phosphorylation. The effect of 40 μM quercetin on the induction of apoptosis in HeP2 cells increased 
from 18.7 to 42.2%39. Rutin can inhibit the activity of NF-kappa B and P38 and regulate the occurrence and 
development of lung cancer40. It can also induce mitochondrial apoptosis in colon cancer cells through a caspase-
dependent mechanism41. In breast cancer, rutin inhibits P-GP and BCRP pumps non-selectively. It can effectively 
reverse the resistance of breast cancer cells and restore sensitivity to cyclophosphamide42. Chlorogenic acid 
inhibits tumorigenesis of breast cancer cells by causing mitochondrial dysfunction. It can increase the sensitivity 
of tumour cells to chemotherapy43. Besides, chlorogenic acid can also affect the expression of apoptosis-related 
genes in A549 human lung cancer cells44. In addition to quercetin has been reported to be associated with 
laryngeal cancer, rutin and chlorogenic acid have been reported to be associated with a variety of cancers. But 
whether they can treat laryngeal cancer has not been reported, and it may become a potential therapeutic drug.

Our method is different from the common PPI-based network module division method. In the past, network 
modules were divided based on scale-free topological characteristics to obtain the modules with the best connec-
tivity. In this study, we integrated gene expression data for laryngeal cancer. Modules are divided by co-expressed 

Figure 5.   Constructing compound-target interaction network diagram based on Cytoscape 3.7.0. (https​://cytos​
cape.org/). The blue nodes are top ten compounds with free binding energy for each target. The red nodes are 
important targets. The black lines indicate the relationship between compounds and targets.

https://cytoscape.org/
https://cytoscape.org/
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genes in laryngeal cancer so that they have a better degree of connection in biological functions. After this, we 
performed a topology analysis on the mapped network and found that important targets are in the center of 
the network. Therefore, our method not only integrates the patient’s disease information but also ensures the 
high connectivity of the important targets. As the number of patient samples in TCGA, GEO and other public 
databases increases, more potential targets and active ingredients can be discovered in the future. Besides, our 
research lacks the validation of animal or cell experiments. In future research, we will perform pharmacodynamic, 
and toxicity experiments on these candidate components, and in vivo and in vitro experiments such as RT-PCR 
and western blot will perform biological verification of potential critical genes.

In this study, we analyzed the gene expression data of 109 laryngeal cancer samples and screened to obtain 
three important targets (MMP1, MMP3, and MMP10). Their expression in tumor samples was significantly 
higher than in normal samples, and patients in the high expression group had significantly shorter survival times. 
The components that can be combined with critical targets in HQ are quercetin, rutin, and Chlorogenic acid. 
These components may be the primary mechanism of the anti-cancer effect of HQ. These findings provide a pre-
liminary research basis for Chinese medicine treatment of laryngeal cancer and offer ideas to related drug design.

Methods
Data download and preprocessing.  The laryngeal cancer GSE27020 data set was obtained from the 
GEO database and contained a total of 109 laryngeal cancer samples. The downloaded data needs to be pre-
processed before analysis. The clinical information of the samples was extracted based on the Affymetrix Human 
Genome U133A Array platform, and the probe names were converted into gene names. Finally, a gene expres-
sion matrix with row names of gene names and column names of sample names was obtained for subsequent 
analysis.

Construction of weighted gene co‑expression network.  In this study, we use WGCNA package in 
R software to construct the weighted gene coexpression network of laryngeal cancer. Before constructing net-
work, we need to remove outliers. In this study, the goodsamplesgenes algorithm was used to remove the genes 
with too many missing values. Then, the hclust algorithm was used to cluster the tissue samples. The top 25% 
of genes with variance in expression were selected. The remaining samples were used to build a weighted gene 
co-expression network. The weighting coefficient β is selected according to the criteria of the scale-free network, 
and the correlation matrix is converted into an adjacency matrix, which is hierarchical clustering based on the 
value of topology matrix (TOM) value. The dis-TOM is used as the distance measurement of the modules. The 
minimum module size is set as 10. We use a dynamic hybrid cutting algorithm to identify the module and draw 
the gene tree45.

Then, we calculate the eigenvalue of the module, which is the first principal component obtained by principal 
component analysis (PCA) of all genes in the module. Screen the modules that are significantly related to clinical 
characteristics as critical modules. Calculate gene significance (GS) and module membership (MM) to measure 
the correlation between genes and clinical information46.

Enrichment analysis of critical modules.  In order to understand the biological functions of candidate 
genes, this study maps the genes of critical modules to the online website DAVID (https​://david​-d.ncifc​rf.gov/) 
for gene ontology (GO) enrichment analysis and KEGG pathway analysis. The items with P < 0.05 were statisti-
cally significant.

PPI network of potential targets of HQ in the treatment of laryngeal cancer.  Traditional Chi-
nese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, https​://tcmsp​w.com/tcmsp​
.php) includes 499 Chinese herbal medicines registered in the Chinese Pharmacopoeia, 29,384 ingredients, 
3,311 targets, and 837 related diseases47. From this, all components of HQ and corresponding targets can be 
obtained. String (version 11.0, https​://strin​g-db.org) is a database integrating known and predicted protein–
protein interactions, and has the function of visualizing protein–protein interaction network48. The PPIs of the 
HQ target were obtained with medium confidence of 0.4 and then imported into Cytoscape to construct the PPI 
network of HQ target49.

If a node is a potential target of HQ, and it is also in a critical module of a weighted gene co-expression net-
work, this node may be a potential target for HQ treatment of laryngeal cancer50. Therefore, we take the HQ PPI 
network as the background and map the gene modules in the weighted gene co-expression network to the HQ 
PPI network. The Uniprot database (https​://www.unipr​ot.org/) is used to convert gene names and target names41. 
Therefore, the module based on the weighted gene co-expression network automatically divides the PPI network 
into multiple modules. The nodes in the critical module are candidate important targets.

Verification of important targets based on external data sets.  GEPIA (https​://gepia​.cance​r-pku.
cn/) is an interactive web server for integrated analysis of cancer expression profiling data52. It contains 33 
malignant tumor RNA sequencing expression data from TCGA and GTEx. In this study, gene expression data 
from the TCGA and GTEx databases were used as external test sets to verify important targets obtained in the 
previous screening. Run the "BoxPlots" module to analyze whether important targets have been differentially 
expressed between laryngeal cancer and normal samples. Kaplan Meier-plotter (https​://kmplo​t.com/analy​sis/
index​.php?p=servi​ce) is a website for online survival analysis53. The survival analysis of important targets was 
carried out. Under different expression levels, whether the survival time of patients has a significant difference. 
Enrichment analysis of pathways associated with high or low expression of important targets was performed 
using GSEA 3.0 software54. They are grouped by the expression level of important targets in the GSE27020 data-

https://david-d.ncifcrf.gov/
https://tcmspw.com/tcmsp.php
https://tcmspw.com/tcmsp.php
https://string-db.org
https://www.uniprot.org/
https://gepia.cancer-pku.cn/
https://gepia.cancer-pku.cn/
https://kmplot.com/analysis/index.php?p=service
https://kmplot.com/analysis/index.php?p=service
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set. The data set of c2.cp.kegg.v7.0.symbols.gmt in the msigdb database of the GSEA website was selected as the 
reference gene set. The number of random combinations was set to 1,000.

Verification of important targets based on molecular docking.  Download 3D structures of all mol-
ecules in HQ based on the PubChem database55. The 3D structure of the target was searched and downloaded 
from the PDB protein database (https​://www.rcsb.org/pdb/home/home.do)56. We prefer to select high-resolu-
tion crystal structures complexed with corresponding biologically active ligands and use Autodock software for 
docking57. All ligands are removed from the protein receptor complex, plus polar hydrogen atoms and charges. 
Finally, the compounds in HQ dock with protein crystals in a semi-flexible manner.

Received: 7 January 2020; Accepted: 4 June 2020
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