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Lipids predict future CVD (1). Although recent evidence 
suggests that altering HDL cholesterol (HDL-C) levels does 
not itself cause changes in CVD risk (2), lower HDL-C may 
serve as a marker of a more atherogenic lipid profile. Preg-
nancy induces profound metabolic, endocrine, and cardio-
vascular changes that may have long-lasting or permanent 
effects in mothers. In the first 10 years after giving birth, 
changes in lipid levels have been observed (3–5). Although 

Abstract  We examined the association between pregnancy 
and life-course lipid trajectories. Linked data from the Nord-
Trøndelag Health Study and the Medical Birth Registry of 
Norway yielded 19,987 parous and 1,625 nulliparous women. 
Using mixed-effects spline models, we estimated differences 
in nonfasting lipid levels from before to after first birth in 
parous women and between parous and nulliparous women. 
HDL cholesterol (HDL-C) dropped by 4.2 mg/dl (95%  
CI: 5.0, 3.3) from before to after first birth in adjusted 
models, a 7% change, and the total cholesterol (TC) to HDL-C 
ratio increased by 0.18 (95% CI: 0.11, 0.25), with no change 
in non-HDL-C or triglycerides. Changes in HDL-C and the 
TC/HDL-C ratio associated with pregnancy persisted for de-
cades, leading to altered life-course lipid trajectories. For 
example, parous women had a lower HDL-C than nulliparous 
women at the age of 50 years (1.4 mg/dl; 95% CI: 2.3, 
0.4). Adverse changes in lipids were greatest after first 
birth, with small changes after subsequent births, and were 
larger in women who did not breastfeed.  Findings suggest 
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total cholesterol (TC) appears to return to prepregnancy 
levels within a year (3, 6–8), there is consistent evidence 
that HDL-C decreases postpartum and remains lower than 
prepregnancy levels for multiple years (3, 6–10) and less 
consistent evidence that triglycerides remain elevated post-
partum (3, 6, 7, 9). However, no study has examined lipid 
trajectories beyond a decade after pregnancy (3, 6–8, 10). 
If adverse changes in lipids continue into midlife and be-
yond, it could provide insight into the early origins of sub-
clinical CVD risk in women. In addition, few previous 
studies were able to characterize how lipid levels changed 
with time since pregnancy. Furthermore, few studies have 
considered breastfeeding as part of the peripartum year. 
Lactation is a modifiable factor that might minimize ad-
verse changes in lipids postpartum and is associated with 
higher HDL-C levels (11–15) and a more rapid return of 
triglycerides to prepregnancy levels (16). A previous study 
found that women who breastfed longer had smaller post-
partum decreases in HDL-C (17).

The population-based Nord-Trøndelag Health Study 
(HUNT), linked with the Medical Birth Registry of Norway, 
includes data on pregnancy, breastfeeding, and measured 
lipid values in women from before and up to 41 years after 
first birth, enabling an examination of changes in lipid levels 
pre- to postpregnancy. These data enable us to examine, 
for the first time, the impact of pregnancy on the ratio of 
TC to HDL-C, which performs as well as or better than 
other lipid measures in CVD risk prediction (18–24). Using 
these data, we investigated the association of first birth with 
short- and long-term changes in lipid levels. We also exam-
ined the impact of later births on lipid levels. Finally, we 
investigated the extent to which these changes differed by 
breastfeeding length.

MATERIALS AND METHODS

Study population
HUNT is a population-based open cohort study of adult Nord-

Trøndelag county residents designed for a wide range of health-
related research. County-wide surveys are conducted roughly 
every decade, with three completed at the time of this analysis. 
This analysis was restricted to the second and third surveys in 
which lipids were sampled: HUNT2 (1995–1997) and HUNT3 
(2006–2008). During the surveys, participants received an exten-
sive health assessment that included blood sampling, clinical mea-
surements, and questionnaires (25). All current county residents 
aged 20 years or older identified from the national population 
register were invited to participate in each survey, with participation 
rates among women of 76% in HUNT2 (26) and 59% in HUNT3 
(25). Residents of Nord-Trøndelag county are predominantly 
white and generally representative of Norway as a whole (26).

We linked HUNT data to the Medical Birth Registry of Norway, 
which includes all births in Norway from 1967 (27) through the 
end of our data collection in 2012. Because older women were 
unlikely to have their pregnancy history captured in this registry, 
we restricted analyses to women aged 20–60 years during lipid 
measurement. Figure 1 outlines the process of identifying two 
overlapping study populations. The first included parous and nul-
liparous women with similar age distributions to compare lipids 
trajectories between the two groups. The second included parous 

women to compare lipids before and after first birth. For the first 
population, we excluded women born before 1940 or after 1974 
to prevent misclassification of women as nulliparous who had a 
birth before the birth registry started in 1967 or after the end of 
data collection in 2012. We applied this exclusion to parous 
women to achieve a comparable age distribution. For the second 
population of only parous women, we did not restrict based on 
birth year. All participants in HUNT signed an informed consent 
form allowing the use of their data and samples for research. This 
project was approved by the Central Norway Regional Committee 
for Medical and Health Research Ethics and was considered ex-
empt from institutional review board review by the Harvard T. H. 
Chan School of Public Health. This study abides by the Declara-
tion of Helsinki principles.

Lipid and covariate assessment
Participants’ ages ranged from 20 to 60 years during measure-

ments. Among parous women, 2,488 women had at least 1 mea-
surement before their first birth (with a total of 2,521 prepregnancy 
observations), including 747 women with measurements both be-
fore and after first birth (supplemental Fig. S1). Nonfasting lipids 
were measured from serum samples. For technical details about 
TC, HDL-C, and triglyceride measurements, see supplemental 
Table S1. We calculated non-HDL-C as TC minus HDL-C and the 
TC/HDL-C ratio. LDL cholesterol (LDL-C) was not analyzed be-
cause the Friedewald formula (28), typically used to calculate 
LDL-C, performs poorly in nonfasting samples (29–31). At the 
time of lipid measurements, staff recorded the time since last 
meal in hour categories.

Covariates were collected during HUNT surveys and were  
selected based on the causal diagram shown in supplemental  
Fig. S2. We used data from all HUNT questionnaires, including 
HUNT1 (1984–1986), to identify the following time-invariant  
covariates: 1) family history of CVD (any reported myocardial in-
farction or angina pectoris in siblings or parents); 2) smoking status 
at the age of 20 years, defined as ever versus never smoked daily 
prior to or at the age of 20 years, to approximate prepregnancy 
smoking behavior for parous women; and 3) highest obtained 
education level. HUNT3 did not collect education level and was 
instead derived from work titles for 13% of women based on rec-
ommendations from Statistics Norway (32). We also included the 
following time-varying, or updated, covariates: 1) BMI, 2) smok-
ing status, 3) alcohol use, 4) vigorous leisure-time physical activity, 
and 5) oral contraceptive use. Time-varying covariates were mea-
sured at the time of lipid assessment either from HUNT2 and 
HUNT3 clinical examinations (in the case of BMI) or HUNT2 
and HUNT3 questionnaires (for all other covariates). We ob-
tained additional information about first births, including mater-
nal age and preterm status (<37 weeks gestation), from the birth 
registry and breastfeeding length after first birth (self-reported as 
0, <3, 3–6, and >6 months) from HUNT questionnaires. We addi-
tionally obtained self-reported information about menopause 
transition and hormone replacement therapy (never, previous, or 
current user) from HUNT questionnaires.

Analysis
We used linear mixed-effects models to estimate lipid trajectories 

as a function of age, accounting for the timing of a woman’s first 
birth. Age was modeled using restricted cubic splines with four 
knots located at ages 23, 37, 46, and 57 years based on prespeci-
fied quantiles of the age distribution, as recommended by Harrell 
(33). Two variables were used to estimate the effect of pregnancy. 
The first indicated whether measurement preceded or followed 
the first birth, providing an estimate of short-term change in lip-
ids after first birth. The second indicated continuous time since 
first birth, providing an estimate of longer-term change in lipids 
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postpartum. All models controlled for the participant’s age at 
measurement, HUNT survey (HUNT2 vs. HUNT3), time since 
last meal, education, smoking initiation by the age of 20 years, and 
family history of CVD.

First, we compared life-course lipid trajectories for parous and 
nulliparous women based on completed reproductive history. In 
this analysis (see supplemental Methods section 1), nulliparous 
women represented background age and secular trends indepen-
dent of parity. These analyses included an indicator of final parity 
status (i.e., none vs. one or more births; covariate Pi in supplemen-
tal Methods equation 1) and an interaction between parity and 
the spline terms, allowing the age-related splines to differ through-
out the life course based on final parity status. We chose final 
rather than updated parity status because nulliparous and parous 
women are likely to be different even before the latter give birth, 
given observed associations between infertility and lipid levels 
(34, 35). For these and other analyses controlling only for baseline 
covariates, we used a complete case analysis, excluding partici-
pants with missing data on education (0.6%) or smoking (2.5%). 
To present the trajectories graphically, predicted lipid trajectories 
were derived for hypothetical nulliparous women and parous 
women with a first birth occurring at the age of 23 years (the me-
dian age at first birth in the study population), setting all other 
covariates to their mean levels.

Second, we used the same mixed-effects spline models among 
parous women (study population 2) to obtain estimates of the 
short-term effect of the first birth on lipid levels and to describe 
differences in this effect estimate by length of breastfeeding (sup-
plemental Methods section 2). The short-term effect of the first 
birth was estimated based on the discontinuity between predicted 
trajectories before first birth and predicted trajectories after first 

birth (captured by the coefficient Iij in supplemental Methods 
equation 2). Fully adjusted results from these models included 
updated BMI, alcohol use, physical activity, and oral contraceptive 
use as well as maternal age and preterm status of first birth. Both 
baseline and updated covariates were multiply imputed using 
fully conditional specification (36) with 25 iterations. Models in-
vestigating whether breastfeeding length moderated the change 
in lipid levels from before to after first birth included distinct in-
dicator terms for the postpartum versus prepartum effect based 
on breastfeeding length. Approximately 99% of lipid measure-
ments informing after first birth trends in our analysis occurred 
after breastfeeding ended; thus, the before versus after first birth 
effect we estimated would include changes associated with breast-
feeding. We used F-tests to determine whether the postpartum 
versus prepartum effect differed by breastfeeding length (37). Fi-
nally, we investigated the change in lipids after second and third 
births among women with multiple births.

Sensitivity analyses
We performed sensitivity analyses among women with mea-

surements at both HUNT2 and HUNT3 (47% of women) to verify 
that our main results, which included some women with only one 
measurement, were consistent with within-woman changes in lipids 
observed among women with more than one lipid measurement. 
First, we replicated the lipid trajectory models among women with 
repeated measures to verify that our results could be interpreted 
as within-woman life-course trajectories. Second, we compared 
the within-woman change in lipid levels from HUNT2 to HUNT3 
for women who had one or more births during the 11 year inter-
val to the within-woman lipid changes for women who remained 
nulliparous during the interval using a difference-in-differences 

Fig.  1.  Flow chart of the study population.
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approach (38). We additionally performed sensitivity analyses 
controlling for menopause transition and hormone replacement 
therapy to see whether this differentially affected life-course lipid 
trajectories for parous compared with nulliparous women. All 
analyses were performed using Stata IC 13 (StataCorp, College 
Station, TX) and MLwiN (39) version 2.34.

RESULTS

Among 21,312 study participants born between 1940 and 
1974 (study population 1), 8% were nulliparous through-
out the follow-up period, at which point the youngest were 
38 years old. Nulliparous and parous women had similar 
age distributions, but nulliparous women were less likely to 
smoke or consume alcohol and more likely to participate 
in vigorous physical activity (Table 1). Nulliparous women 
were slightly more likely to be obese and had greater levels 
of nonparticipation and missing data.

Predicted life-course lipid trajectories, based on multi-
variable models, suggested higher HDL-C levels among 
parous women before first birth compared with nullipa-
rous women (Fig. 2A), with a difference of 2.0 mg/dl (95% 
CI: 0.1, 4.2) at the age of 20 years (Table 2). However, the 
HDL-C levels of parous women dropped at first pregnancy 
and thereafter were lower or equal to those of nulliparous 
women (Table 2). HDL-C in parous women after their first 
birth never returned to the same levels that would be pre-
dicted given the observed prepregnancy slope (Fig. 2A). 
Using the full population of parous women, the estimated 
short-term drop in HDL-C after first birth was 4.2 mg/dl 
(95% CI: 5.0, 3.3) (model 1, Table 3), representing a 
7% decrease in HDL-C compared with average prepreg-
nancy levels. This decrease dropped to 3.0 mg/dl (95% 
CI: 4.2, 1.8) after adjusting for updated covariates,  
including BMI (model 2, Table 3).

Non-HDL-C was lower in parous compared with nul-
liparous women (Fig. 2B, Table 2), with no meaningful 
changes at first birth (Table 3). Triglycerides were simi-
lar in the two groups (Fig. 2C, Table 2) and did not 
meaningfully change after first birth. As expected, given 
lower non-HDL-C levels and higher HDL-C levels, the 
TC/HDL-C ratio was lower in parous women before their 
first birth compared with nulliparous women [0.23 
units (95% CI: 0.40, 0.06)] (Table 2). After first birth, 
this ratio increased by an estimated 0.18 units (95% CI: 
0.11, 0.25) among parous women (model 1, Table 3). In 
the decades after first birth, the TC/HDL-C ratio for par-
ous women was similar to the ratio for nulliparous women 
of the same age, with no indication of a return to the lower, 
more favorable ratio experienced by parous women be-
fore their first birth (Fig. 2D, Table 2). Changes in lipid 
levels before to after first birth did not differ based on ma-
ternal age at first birth or gestation length of first birth 
(results not shown).

The majority of parous women breastfed for at least  
3 months (Table 1), and longer breastfeeding times were 
associated with less adverse changes in all lipid levels (Table 3). 
The changes in lipid analyte levels before to after first 
birth were moderated by breastfeeding length in all models 

included in Table 3 (P < 0.01; results not shown). How-
ever, women who breastfed >6 months after first birth still 
experienced a decrease in HDL-C and an increase in the 
TC/HDL-C ratio after first birth, even after adjusting for 
updated covariates (model 2, Table 3). After restricting 
analyses to women with two or more births, we found simi-
lar changes in HDL-C and the TC/HDL-C ratio after first 
birth, but changes after subsequent births were smaller in 
magnitude (Table 4).

TABLE  1.  Description of covariates at the individual and 
observational level based on final parity status among HUNT2  
and HUNT3 study participants born between 1940 and 1974  

(n = 21,312 women)

Final Parity Status

Nulliparous Parous

Women (n) 1,625 19,687
Birth year [median (IQR)] 1959 (1951–1967) 1958 (1951–1966)
Smoking status at the age of  

  20 years [n (%)]
  Never smoked daily 919 (57) 9,043 (46)
  Ever smoked daily 653 (40) 10,166 (52)
  Not reported 53 (3) 478 (2)
Education [n (%)]
  Lower secondary 309 (19) 3,164 (16)
  Upper secondary 672 (41) 9,185 (47)
  Tertiary 604 (37) 7,244 (37)
  Missing 40 (2) 94 (0)
Family history of CVD [n (%)] 504 (31) 6,611 (34)
HUNT exam participation [n 

(%)]
  Only HUNT2 751 (46) 6,827 (35)
  Only HUNT3 288 (18) 3,333 (17)
  Both HUNT2 and 3 586 (36) 9,527 (48)
Age in years at first birth  

[median (IQR)]
N/A 23 (20–26)

Births [n (%)] 
  1 N/A 2,171 (11)
  2 N/A 8,804 (45)
  3 N/A 8,712 (44)
Breastfeeding length of first  

  birth [n (%)]
  Did not breastfeed N/A 1,120 (6)
  <3 months N/A 3,086 (16)
  3-6 months N/A 5,503 (28)
  >6 months N/A 7,462 (38)
  Missing N/A 2,516 (13)
Preterm first birth [n (%)] N/A 1,187 (6)
Observationsa (n) 3,329 31,743
BMI at HUNT exam [n (%)]
  <25 kg/m2 1,674 (50) 15,728 (50)
  25–29.9 kg/m2 963 (29) 10,826 (34)
  30 kg/m2 665 (20) 5,136 (16)
  Not available 27 (1) 53 (0)
Alcohol consumption [n (%)]
  <1 glasses per 2 weeks 1,162 (35) 9,277 (29)
  1–4 glasses per 2 weeks 1,167 (35) 14,797 (47)
  5 glasses per 2 weeks 932 (28) 7,221 (23)
  Missing 68 (2) 448 (1)
Vigorous physical activity [n 

(%)]
  <1 h per week 1,669 (50) 18,327 (58)
  1 h per week 1,183 (36) 9,921 (31)
  Missing 477 (14) 3,495 (11)
Oral contraceptive use [n (%)]
  Nonuser 2,024 (61) 22,716 (72)
  Current user 564 (17) 2,961 (9)
  Missing 741 (22) 6,066 (19)

a Observations reflect HUNT survey periods. Individual women 
who participated in both HUNT2 and HUNT3 contributed two 
observations.
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Sensitivity analyses among the subset of women with re-
peated lipid measurements yielded similar predicted lipid 
trajectories, although with wider CIs due to the lower statis-
tical power (supplemental Fig. S3). Women with a birth 
between HUNT2 and HUNT3 experienced a decrease in 
HDL-C and an increase in TC/HDL-C compared with 
women who did not give birth during the 11 year period, 
with a magnitude similar to associations seen in the main 
analysis (supplemental Table S2). Lipid trajectories were 
also similar after adjusting for menopause and hormone 
replacement therapy use (supplemental Fig. S4).

DISCUSSION

We found that women who bore children had more posi-
tive lipid profiles before first birth compared with women 
who remained nulliparous throughout life. However, this 
advantage changed at first birth, when new mothers had a 
decrease in HDL-C and an increase in the TC/HDL-C ratio 
compared with nulliparous women. Our findings suggest 
that adverse changes in HDL-C and TC/HDL-C associated 
with pregnancy persist across a woman’s life course. In ad-
dition, the specificity of the timing of the change in these 
lipid profiles suggests that pregnancy itself causes the drop 
in HDL. Adverse changes after pregnancy were present af-
ter adjusting for a variety of behavioral changes associated 
with a first birth, including higher BMI, lower alcohol  
use, less physical activity, and less oral contraceptive use. 
Although longer breastfeeding appeared to moderate 

adverse changes in HDL-C and the TC/HDL-C ratio after 
pregnancy, women who breastfed for >6 months still expe-
rienced worse lipid profiles postpartum compared with 
prepregnancy levels.

The magnitude of the drop in HDL-C associated with 
first pregnancy of 4.2 mg/dl is consistent with previous 
studies that examined short-term changes in lipids from 
prepregnancy to postpartum (3, 6, 7, 9). In the longitudi-
nal Coronary Artery Risk Development in Young Adults 
(CARDIA) Study, HDL-C differed by 3 to 4 mg/dl over 
an interval of 2–8 years for women who had a first birth 
during the interval compared with a nulliparous reference 
group (6, 9). Using a study design similar to CARDIA, ado-
lescents in the National Heart Lung and Blood Institute’s 
Growth and Health Study who had a first birth during a 10 
year interval had a 4 mg/dl decrease in HDL-C com-
pared with a nulliparous reference group. The similarity 
of estimates in an adolescent population is consistent with 
our finding that the changes in lipids associated with preg-
nancy did not differ based on maternal age at first birth. 
These studies similarly found that the changes after preg-
nancy were specific to HDL-C (3, 6–9), although one study 
found elevated triglycerides postpartum (7). Our study 
obtained similar results despite different strengths and 
weaknesses compared with previous studies. For instance, 
CARDIA had repeated measurements for all participants 
but examined changes only up to 10 years, while our study 
expanded measurement up to 40 years postpartum but in-
cluded a mixture of cross-sectional and longitudinal data.

Fig.  2.  Predicted lipid trajectories and 95% CIs based on final parity status for (A) HDL-C, (B) non-HDL-C, (C) triglycerides, and (D) TC-
HDL-C ratio. Estimates for parous women are predicted for women with a hypothetical first birth at the age of 23 years. Gaps represent 
pregnancy and 3 months postpartum. Predictions are at the mean level for the following covariates: HUNT survey, time since last meal, edu-
cation, smoking initiation by the age of 20 years, and family history of cardiovascular disease.
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Our study is the first to report the association between 
parity and the TC/HDL-C ratio, which has been found to 
have a stronger independent predictive power for CVD 
over its component lipid measures (18, 22, 23, 40), provid-
ing a more holistic atherogenic index. Based on this mea-
sure, while parous women lose their initial advantage of 
high HDL-C and low non-HDL-C after their first birth, 
their long-term TC/HDL-C trajectory is no worse than that 
of nulliparous women.

The use of a nulliparous comparison group is a strength 
of this study, as it allowed us to distinguish the change after 
pregnancy from any background age or secular trends in 
our population. Previous cross-sectional studies that com-
pared nulliparous and parous women postpartum have 
generally found lower lipid levels among parous women 
after they deliver, consistent with our findings (15, 41, 42). 
Our study suggests that the findings from these cross- 
sectional studies may have underestimated differences re-
lated to pregnancy, as nulliparous women had more ath-
erogenic lipid profiles compared with parous women 
before their first birth. Given the less atherogenic lipid pro-
files among parous women earlier in life, it is striking that 
they experienced an almost identical TC/HDL-C ratio 
and a significantly worse HDL-C profile from postpartum 
through the age of 50 years.

Our findings that breastfeeding may moderate the short-
term adverse changes in HDL-C levels associated with preg-
nancy is consistent with findings from the CARDIA study 
(17). However, the CARDIA study found more dramatic 
associations between breastfeeding and the change in 
HDL-C levels after birth, with those who breastfed 0 to <3 

months having a 7.3 mg/dl drop in HDL-C compared 
with only a 1.3 mg/dl drop among women who breastfed 
3 months. We were able to control for potential con-
founders not captured in the CARDIA study, including al-
cohol use, physical activity, and preterm first birth, and 
found that women who breastfed >6 months still experi-
enced a drop in HDL-C of 2.9 mg/dl compared with a 
drop of 3.9 mg/dl among those who did not breastfeed. 
Despite controlling for several covariates, there is still the 
potential for confounding to explain some or all of the dif-
ferences we observed across categories of breastfeeding 
length. In Norway, there are particularly high breastfeed-
ing rates (43) and fewer cultural barriers (44), potentially 
leading to less confounding by socioeconomic factors than 
in other contexts; however, the minority of women who do 
not breastfeed are still likely a highly selected population. 
While breastfeeding is associated with higher HDL-C levels 
before weaning (11–14) and a more rapid return of triglyc-
erides to prepregnancy levels (16), it is also unclear whether 
these findings would extend over a longer period of time 
(15, 45). While we were able to quantify the association 
of breastfeeding duration with the change in lipid levels 
before and after pregnancy, we lacked sufficient data  
to examine long-term lipid trajectories by breastfeeding 
history.

A limitation of this study is the lack of repeated measure-
ments for all women. By including women who contributed 
only one measurement, we were able to examine a much 
larger span of time postpartum than had previous studies. 
However, such trajectories, constructed of both longitudinal 
and cross-sectional data, may not reflect an individual 

TABLE  2.  Predicted lipid levels by age based on final parity status for HUNT2 and HUNT3 participants born 
between 1940 and 1974 (n = 21,312 women)

Lipidsa

Nulliparous
Parous with First Birth  
at the Age of 23 Years Difference (Parous  Nulliparous)

Estimate 95% CI Estimate 95% CI Estimate 95% CI P

HDL-C (mg/dl)
  20 years 53.7 51.6, 55.8 55.8 54.8, 56.7 2.0 0.1, 4.2 0.06
  30 years 55.0 54.0, 56.0 53.1 52.6, 53.7 1.8 2.8, -0.8 <0.001
  40 years 57.6 56.7, 58.5 55.8 55.4, 56.2 1.8 2.7, -1.0 <0.001
  50 years 60.5 59.5, 61.5 59.1 58.7, 59.6 1.4 2.3, 0.4 0.006
  60 years 61.3 59.5, 63.1 61.3 60.6, 62.0 0.0 1.8, 1.8 0.99
Non-HDL-C (mg/dl)
  20 years 136.0 129.9, 142.1 130.6 127.8, 133.4 5.4 11.6, 0.7 0.09
  30 years 141.6 138.7, 144.5 135.4 133.9, 136.9 6.2 9.0, 3.3 <0.001
  40 years 153.1 150.5, 155.7 148.2 146.9, 149.5 4.9 7.4, 2.5 <0.001
  50 years 172.5 169.6, 175.4 167.6 166.3, 169.0 4.9 7.7, 2.1 <0.001
  60 years 194.0 188.5, 199.5 188.0 185.9, 190.0 6.1 11.6, -0.6 0.03
Triglycerides (mg/dl)
  20 years 101.3 90.4, 112.2 99.6 94.5, 104.6 1.7 12.7, 9.2 0.76
  30 years 100.2 95.0, 105.3 94.3 91.6, 97.1 5.9 10.9, 0.9 0.02
  40 years 103.3 98.6, 108.1 100.2 97.8, 102.7 3.1 7.6, 1.4 0.18
  50 years 115.3 109.6, 120.9 116.9 114.3, 119.5 1.6 3.8, 7.0 0.56
  60 years 133.8 122.5, 145.2 137.9 133.8, 141.9 4.0 7.4, 15.5 0.49
TC/HDL-C ratio
  20 years 3.7 3.6, 3.9 3.5 3.4, 3.6 0.23 0.40, 0.06 0.008
  30 years 3.8 3.7, 3.8 3.7 3.7, 3.8 0.05 0.13, 0.04 0.28
  40 years 3.9 3.8, 3.9 3.9 3.8, 3.9 0.01 0.09, 0.07 0.78
  50 years 4.1 4.0, 4.2 4.1 4.0, 4.1 0.03 0.12, 0.05 0.45
  60 years 4.4 4.3, 4.6 4.3 4.3, 4.4 0.11 0.26, 0.05 0.17

a Adjusted for participant’s age at measurement, HUNT survey, time since last meal, education, smoking 
initiation by the age of 20 years, and family history of CVD.
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woman’s trajectory across her life course, as there is the 
potential for secular trends to influence the shape of trajec-
tories. Such concerns should not affect the comparisons  
of parous and nulliparous women, who experienced the 
same secular trends. We also found similar results after re-
stricting our analysis to the 47% of women with repeated 

measurements, suggesting that it is reasonable to estimate 
within-woman changes from these trajectories.

Another limitation of our study is the nonfasting collec-
tion of lipids. Although we controlled for the time since 
last meal in all analyses, we lacked information on the con-
tent of the last meal, which may have affected triglyceride 

TABLE  3.  Differences in lipid levels from prepregnancy to after first birth by breastfeeding length for parous 
HUNT2 and HUNT3 study participants (n = 22,047 women)

Model 1a Model 2b

Estimate 95% CI P Estimate 95% CI P

HDL-C (mg/dl)
  All parous women 4.2 5.0, 3.3 <0.001 3.0 4.2, 1.8 <0.001
  By breastfeeding length
    Did not breastfeed 6.2 7.3, 5.1 <0.001 3.9 5.3, 2.5 <0.001
    Breastfed <3 months 5.2 6.1, 4.3 <0.001 3.5 4.7, 2.2 <0.001
    Breastfed 3-6 months 4.0 4.9, 3.1 <0.001 2.7 3.9, 1.5 <0.001
    Breastfed >6 months 3.8 4.6, 2.9 <0.001 2.9 4.1, 1.7 <0.001
Non-HDL-C (mg/dl)
  All parous women 0.4 2.8, 2.1 0.77 1.1 2.3, 4.5 0.53
  By breastfeeding length
    Did not breastfeed 5.6 2.3, 8.8 <0.001 3.7 0.3, 7.7 0.07
    Breastfed <3 months 2.2 0.5, 5.0 0.11 2.1 1.5, 5.7 0.25
    Breastfed 3-6 months 0.5 2.0, 3.1 0.67 1.5 2.0, 5.0 0.39
    Breastfed >6 months 1.9 4.4, 0.5 0.13 0.3 3.1, 3.8 0.85
Triglycerides (mg/dl)
  All parous women 3.6 7.8, 0.7 0.10 1.8 3.8, 7.5 0.52
  By breastfeeding length
    Did not breastfeed 9.7 4.1, 15.4 <0.001 7.5 0.8, 14.2 0.03
    Breastfed <3 months 1.9 2.9, 6.7 0.43 3.8 2.2, 9.8 0.22
    Breastfed 3-6 months 2.6 7.1, 1.9 0.25 1.8 4.0, 7.7 0.54
    Breastfed >6 months 6.6 10.9, 2.3 0.003 0.7 5.1, 6.4 0.82
TC/HDL-C ratio
  All parous women 0.18 0.11, 0.25 <0.001 0.16 0.06, 0.25 <0.001
  By breastfeeding length
    Did not breastfeed 0.43 0.33, 0.52 <0.001 0.27 0.16, 0.39 <0.001
    Breastfed <3 months 0.29 0.21, 0.37 <0.001 0.21 0.11, 0.31 <0.001
    Breastfed 3-6 months 0.19 0.12, 0.26 <0.001 0.15 0.06, 0.25 0.002
    Breastfed >6 months 0.12 0.06, 0.19 <0.001 0.13 0.04, 0.23 0.006

Models include all parous women without restricting to participants born between 1940 and 1974, as in Fig. 2 
and Table 2 comparisons with nulliparous women.

a Adjusted for participant’s age at measurement, HUNT survey, time since last meal, education, smoking 
initiation by the age of 20 years, and family history of CVD.

b Additionally adjusted for updated BMI, updated alcohol use, updated physical activity, updated oral 
contraceptive use, maternal age at first birth, and preterm first birth.

TABLE  4.  Differences in lipid levels from prepregnancy to after birth by birth order for parous HUNT2 and 
HUNT3 study participants with at least two birthsa

Women with 2+ Births (n = 18,956) Women with 3+ Births (n = 8,976)

Estimate 95% CI P Estimate 95% CI P

HDL-C (mg/dl)
  First birth 3.6 4.8, 2.5 <0.001 2.7 4.8, 0.6 0.01
  Second birth 1.6 2.4, 0.7 <0.001 2.0 3.4, 0.5 0.008
  Third birth 2.2 3.2, 1.3 <0.001
Non-HDL-C (mg/dl)
  First birth 2.7 0.6, 6.1 0.11 3.6 2.4, 9.7 0.24
  Second birth 1.4 3.9, 1.1 0.27 0.8 3.6, 5.1 0.73
  Third birth 0.2 2.6, 3.1 0.86
Triglycerides (mg/dl)
  First birth 0.3 6.1, 5.5 0.92 5.9 4.2, 16.0 0.25
  Second birth 2.2 6.6, 2.3 0.34 0.1 7.4, 7.6 0.98
  Third birth 0.1 5.0, 5.2 0.98
TC/HDL-C ratio
  First birth 0.22 0.12, 0.31 <0.001 0.18 0.02, 0.34 0.03
  Second birth 0.03 0.05, 0.10 0.49 0.09 0.03, 0.21 0.12
  Third birth 0.08 0.00, 0.16 0.05

a Adjusted for participant’s age at measurement, HUNT survey, time since last meal, education, smoking 
initiation by the age of 20 years, and family history of CVD.
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measurements but likely had a minimal effect on other 
lipid measures (19, 46). This source of error combined 
with the relatively large variation in triglyceride measure-
ments (47) may have led to wider CIs for triglycerides com-
pared with other lipid measures and could have obscured 
the effects of pregnancy. Of note, nonfasting lipids are pre-
dictive of CVD risk (46, 48–50), and thus their association 
with pregnancy is relevant for understanding early subclin-
ical CVD risk. Although nonfasting lipid measurement 
limited us from accurately measuring LDL-C, non-HDL-C 
is considered as good as or a better predictor of CVD risk 
(23, 51, 52). Lipid measurement methods also differed 
somewhat between HUNT2 and HUNT3 exams, which 
could have influenced the shape of our life-course lipid tra-
jectories. Although we did not find evidence of systematically 
higher or lower lipid levels by HUNT exam, we controlled 
for HUNT survey occasion in all analyses, which would ad-
just our estimates of within-woman change for any differ-
ences in measurement methods.

We also were unable to adjust for statin use, which may 
have altered the shape of lipid trajectories. However, rates 
of use were low among 20 to 60 year olds during our study 
period (53), and usage is likely to have influenced the 
trend in the nulliparous and parous groups equally. Meno-
pause transition or hormone replacement therapy use may 
also have affected lipid trajectories at older ages; however, 
controlling for these variables did not meaningfully change 
study findings in sensitivity analyses. We were also unable 
to control for either diet or sleep duration, which may 
change after pregnancy and might be considered one of 
the pathways through which parity affects lipid levels. How-
ever, a previous study did not find that diet explained a 
large portion of the drop in HDL-C after pregnancy (6). 
While our study location in Nord-Trøndelag county is fairly 
representative of Norway (26), the population is ethnically 
homogenous, which may limit the generalizability of our 
findings. Previous studies found similar differences in 
lipids associated with pregnancy among white and black 
women (6, 7), suggesting that any effects of first birth on 
lipids are similar across a range of contexts.

As with other studies on this topic, we found that the dif-
ference in HDL-C after pregnancy was still present after 
adjusting for changes in BMI and a variety of lifestyle fac-
tors postpartum (6, 7, 9, 10). The mechanism for the drop 
in HDL-C is only speculative, but one hypothesis is that it is 
related to hormonal changes postpartum. Parous women 
have tended to have lower levels of estrogen compared 
with nulliparous women in most, but not all, studies, in-
cluding those extending over multiple years postpartum 
(54–59). Estrogen is known to be positively associated with 
HDL-C levels, suggesting estrogen suppression after preg-
nancy may be implicated. Declines in HDL-C with pregnancy 
have been shown to differ based on the apoE phenotype, 
suggesting an interaction between genetic and hormonal 
components (60). In addition, studies have suggested that 
changes in HDL may differ by subclass, with larger HDL-2 
particles declining after pregnancy more than other, smaller 
subclasses of HDL-C, leading to a redistribution toward a 
smaller particle size postpartum (9, 61). Only one previous  

study (3) distinguished between changes in lipids after first 
and later births; this study found diminishing changes after 
subsequent births. Mankuta et al. (3) also noted that the 
rise in HDL-C during pregnancy was smaller in each subse-
quent birth. Further studies to elucidate this mechanism 
are needed to explain why the postpregnancy drop in 
HDL-C depends on parity.

These findings suggest that pregnancy is associated with 
a lasting adverse change in HDL-C that sets parous women 
on a more atherogenic trajectory than they had before 
pregnancy. Extrapolating from Hartz et al. (53), the 4.2 
mg/dl decrease in HDL-C with first birth would be associ-
ated with a 7% increase in the rate of coronary heart dis-
ease, while the 1.4 mg/dl decrease in HDL-C at the age of 
50 years among parous women would be associated with a 
2% increase in coronary heart disease rates, suggesting the 
short- and long-term changes in HDL-C associated with 
pregnancy are also associated with relatively small changes 
in CVD risk. While HDL-C is strongly predictive of CVD 
risk (62, 63), recent findings suggest that raising HDL-C 
levels may not causally lead to improvements in cardiovas-
cular endpoints (56). Characterizing the effect of preg-
nancy on more direct measures of HDL function such as 
cholesterol efflux capacity (64, 65), the ability to remove 
cholesterol from cells, would be useful in future studies.

HUNT is a collaboration between the HUNT Research Centre 
(Faculty of Medicine and Health Sciences, Norwegian University 
of Science and Technology), Nord-Trøndelag County Council, 
Central Norway Regional Health Authority, and Norwegian 
Institute of Public Health.
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