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Abstract: Potential drug toxicities and drug interactions of redundant compounds of plant complexes
may cause unexpected clinical responses or even severe adverse events. On the other hand, super-
additivity of drug interactions between natural products and synthetic drugs may be utilized to
gain better performance in disease management. Although without enough datasets for prediction
model training, based on the SwissSimilarity and PubChem platforms, for the first time, a feasible
workflow of prediction of both toxicity and drug interaction of plant complexes was built in this
study. The optimal similarity score threshold for toxicity prediction of this system is 0.6171, based on
an analysis of 20 different herbal medicines. From the PubChem database, 31 different sections of
toxicity information such as “Acute Effects”, “NIOSH Toxicity Data”, “Interactions”, “Hepatotoxic-
ity”, “Carcinogenicity”, “Symptoms”, and “Human Toxicity Values” sections have been retrieved,
with dozens of active compounds predicted to exert potential toxicities. In Spatholobus suberectus
Dunn (SSD), there are 9 out of 24 active compounds predicted to play synergistic effects on cancer
management with various drugs or factors. The synergism between SSD, luteolin and docetaxel in
the management of triple-negative breast cancer was proved by the combination index assay, synergy
score detection assay, and xenograft model.

Keywords: herbal bioinformatics; in-silico toxicity prediction; drug-drug interaction; ligand-based
virtual screening; synergism; triple-negative breast cancer

1. Introduction

For the treatment of some advanced cancer such as triple-negative breast cancer
(TNBC), there are still seldom medications, but chemotherapeutic drugs can achieve mod-
erate effects on patient overall survival according to the latest therapy guidelines and
clinical trials [1–3]. More than 20 potential severe adverse events can be incurred during
chemotherapy [4]. So, it’s important to discover strategies to reduce the negative effects of
chemotherapy to improve patients’ quality of life. The synergistic effects of natural sub-
stances combined with chemotherapy medications may shed light on this [5–7]. Moreover,
the paradigm shift from a “one-target, one-drug” mode to a “network-target, multiple-
component-therapeutics” mode like network pharmacology will offer much more potential
for cancer management. Nonetheless, conventional network pharmacology is based on
simple additivity of the potencies and efficacies of individual active compounds of herbal
medicines [8,9]. There are potentially super-additive (synergistic) effects and subadditivity
(antagonism) in terms of drug combination [10], which may cause unexpected pharmaco-
logic or clinical responses. Plus, conventional network pharmacology is lacking in toxicity
analysis for plant complexes. Pharmacological and toxicological assessments for compound
combinations by experiments would be exceedingly time- and cost-intensive. Similar com-
pounds may be conferred by similar bioactivities [11]. This fundamental idea allows for the
integration of chemical informatics and bioinformatics tools into hypotheses constructs for
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drug discovery. Advancements in Big Data management have opened up access to massive
public datasets and powerful tools, e.g., virtual screening. In-silico drug targets, toxicity,
and drug-drug or drug-food interaction predictions based on chemical similarity through
virtual screening and machine learning will offer us many preliminary outcomes efficiently
for natural products research.

The concept and framework of network toxicity in Traditional Chinese Medicine (TCM)
were first proposed by Fan et al. in 2011. They claimed to employ network pharmacology
approaches to reconstruct the network of “compound-protein/gene-toxicity” to identify
dangerous chemicals and anticipate the harmful side effects of existing compounds [12].
However, no successful practice has been reported based on this concept, which may
because of the knowledge gap between compound-target and compound toxicity. And
limited information about the toxicity and drug interactions of natural compounds can
be found in the public databases for model training. But there are many expert systems
(DEREK [13], AMBIT [14], DSSTox [15], Derek Nexus [16], Meteor [17], HazardExpert [18],
PASS [19], cat-SAR [20], Toxmatch [21], VEGA [22], ChemIDplus [23]) built for toxicity
prediction of synthetic drugs [24]. All of them are based on two different methodologies:
The quantitative structure-activity relationship (QSAR) and molecular docking [25]. There
are huge knowledge gaps between the molecular docking result and drug toxicity for the
distinguished roles of one protein in systematic toxicity and the roles of compound-protein
interactions in the activation or degradation of proteins are elusive. So, QSAR-based systems
are the most employed computational approaches to predict drug toxicity. However, most
QSAR-based systems employing models trained by datasets of FDA-approved synthetic
drugs may show less confidence in the prediction of natural products. The performance of
some expert systems for toxicity prediction such as TOPKAT, DEREK, and HazardExpert
has been reported to be poor [26–29]. In addition, most toxicity prediction systems only
offer limited endpoint alerts without any insight interpretation. Hence, this study aims
to construct a prediction workflow (Figure 1) for natural products to alert comprehensive
endpoints with detailed information for the first time. Although there are no qualified
datasets for “one-step” alert model training for toxicity and drug interaction prediction of
natural products. Many models for quantitative structure-activity relationship analysis
are available. Firstly, based on one of the best QSAR models and platforms, the basic
information about the similar bioactivity compounds of active compounds can be mined.
Then the comprehensive toxicity and drug interaction information of similar compounds
was collected as the indicator for active compounds. The toxicity and drug interaction
prediction can be conducted based on a reasonable similarity score threshold.

PubChem (https://pubchem.ncbi.nlm.nih.gov/) (accessed on 31 December 2021) is
the world’s largest repository of publicly available chemical data at the National Institutes
of Health. It provides detailed information on chemical and physical properties, biological
activity, safety and toxicity, patents, and literature citations. It houses data on about
111 million chemicals, 295 million bioactivities, 34 million publications, and 42 million
patents [30]. So, it is the most popular database for chemical-related data mining with
detailed research protocols and insights. SwissSimilarity (http://www.swisssimilarity.ch/)
(accessed on 30 December 2021) is run by the Molecular Modelling Group of the SIB Swiss
Institute of Bioinformatics and the University of Lausanne. It is a user-friendly tool for
ligand-based virtual screening from several libraries of small compounds using various
methodologies. This platform can work based on various structure descriptors such as
FP2 [31], ECFP4 [32], MHFP6 [33], Pharmacophore [34,35], ErG [36], Electroshape [37],
and E3FP [38,39]. Even an in-house combined model on this platform can be available to
show better performance for structure-activity prediction compared to an independent
fingerprint similarity-based or shape similarity-based prediction model [40].

https://pubchem.ncbi.nlm.nih.gov/
http://www.swisssimilarity.ch/
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Figure 1. Workflow of in-silico toxicity and drug interaction analysis based on chemical similarity.
Active compounds of herbal medicines are screened out based on some criteria. Then, as a query for
mining similar compounds, the SMILES of active compounds will be collected. Based on the proper-
ties of similar compounds, the information on toxicity and drug interactions of similar compounds are
retrieved. The final predictions and interpretations of active compounds will be made on a reasonable
similarity score threshold. Experiments will be conducted to demonstrate the prediction results.

2. Results
2.1. Similarity Score Threshold Analysis

To build a workable and dependable in-silico prediction workflow, the similarity
threshold setting plays an important role in the balance of prediction precision and predic-
tion yield. Presumably, there is a positive correlation between the similarity score and a
true prediction, which means a “strict” threshold will eliminate the false predictions. But it
does not mean that a “strict” similarity threshold is better than a “low” similarity threshold
in terms of prediction yield because there is a significantly negative correlation between
the number of active compounds predicted and the similarity threshold (Figure 2). The
similarity score in this workflow was regarded as a kind of descriptor of active compounds
but not the final probability of a prediction model. Further analysis will be made based on
the similarity threshold.

Twenty herbal medicines, 495 active compounds, and 84,056 similar compounds
were involved in similarity threshold analysis. The lower the similarity threshold is
the more distinct retrieves can be collected. There is a significantly negative correlation
between similar compounds retrieved and the similarity threshold (Figure 2a). There is a
significantly negative correlation between the number of active compounds with similar
compounds retrieved and the similarity threshold when the similarity score is higher than
0.56 (Figure 2b). Similarly, there is a linear (negative) correlation between the total toxicity
information retrieved and the similarity threshold (Figure 3a). And there is a significantly
negative correlation between the number of active compounds with toxicity prediction
retrieved and the similarity threshold.
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Figure 2. Similar compounds properties retrieved through computer programming for 20 herbal
medicines. (a) Retrieve number curve of similar compounds properties dependent on similarity
threshold. There is a significantly negative correlation between similar compounds retrieved and
the similarity threshold. (b) Number curve of active compounds in herbal medicines for which the
corresponding similar compounds were retrieved dependent on similarity threshold.

Figure 3. Toxicity information retrieved for 20 representative herbal medicines on different similarity
thresholds. (a) Retrieve curve of toxicity information dependent on similarity threshold. There is a
significantly negative correlation between the total toxicity information retrieved and the similarity
threshold. (b) Number curve of active compounds in the 20 representative medicinal plants with tox-
icity information retrieved on different similarity thresholds. There is a negative correlation between
the number of active compounds with toxicity information retrieved and the similarity threshold.

However, elusive information or even contrast information about the toxicities of the
same compound can be retrieved due to a low similarity score. For example, in Table 1, the
first elusive retrieve regarding hepatotoxicity of 3-Hydroxystigmast-5-en-7-one compared
to the retrieve with the largest similarity score occurred when the similarity score decreased
to 0.498, while the first contrast retrieves for beta-sitosterol and campesterol occurred when
the similarity score decreased to 0.588 and 0.594, respectively. Herein, we introduced two
different concepts: FEP-SS and FCP-SS (Defined in Box 1) which can be utilized to set
an optimal similarity score threshold for predictions to balance the prediction precision
and yield. The FCP-SS of one active compound is the threshold for retrieves without
any controversial results, while the FEP-SS is the threshold for that all the retrieves are
consistent. Based on two different toxicity aspects: hepatotoxicity and carcinogenicity, the
optimal similarity score threshold analysis for consistent retrieves was conducted. The
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representative FEP-SS and FCP-SS data of four different herbal medicines can be referred
to in Table 2. The sum of all the FEP-SS and FCP-SS values of 20 herbal medicines can
be referred to in Supplementary Table S1. Low FCP-SS and FEP-SS values probably were
gained because of insufficient information from PubChem, herein, values of FCP-SS or FEP-
SS ≤ 0.3 were excluded in the descriptive analysis of FCP-SS and FEP-SS values (Figure 4a).
Generally, the FCP-SS is numerically less than FEP-SS (Figure 4b). The mean value of
FCP-SSs and FEP-SSs are 0.6171 and 0.6181, respectively, and the third quartile value of
FCP-SS is 0.759. Given the prediction yield and precision, the similarity score threshold of
this prediction project was set at the concentrated value of FCP-SS, the representative value
of FCP-SS, 0.6171.

Table 1. The toxicity information summary of similar compounds of representative active compounds.

Active Compound Name Similarity Score PubChem CID of
Similar Compounds Hepatotoxicity Carcinogenicity

3-Hydroxystigmast-5-en-7-one 0.992 6010 0 N.A.
3-Hydroxystigmast-5-en-7-one 0.986 10631 0 N.A.
3-Hydroxystigmast-5-en-7-one 0.976 5997 N.A. −1
3-Hydroxystigmast-5-en-7-one 0.917 6917715 0 N.A.
3-Hydroxystigmast-5-en-7-one 0.540 54454 0 N.A.
3-Hydroxystigmast-5-en-7-one 0.520 53232 0 N.A.
3-Hydroxystigmast-5-en-7-one 0.498 5280453 −1 N.A.
3-Hydroxystigmast-5-en-7-one 0.302 445354 1 N.A.

beta-sitosterol 0.999 5997 N.A. −1
beta-sitosterol 0.804 5280453 −1 N.A.
beta-sitosterol 0.588 445354 1 N.A.
beta-sitosterol 0.588 445354 1 N.A.
campesterol 0.999 5997 N.A. −1
campesterol 0.836 5280453 −1 N.A.
campesterol 0.594 445354 1 N.A.

1: Toxic; 0: Ambiguous; −1: Non-toxic or anti-toxic; N.A.: Not applicable.

Table 2. Similarity score corresponding to the first elusive or contrast prediction for certain toxicity of
active compounds of four herbal medicines.

Active Compound Name PubChem CID of
Similar Compound

FEP-SS
(Hepatotoxicity)

FCP-SS
(Hepatotoxicity)

FEP-SS (Car-
cinogenicity)

FCP-SS (Car-
cinogenicity)

(+)-catechin 2369 0.472 - - -
(20S)-Dammar-24-ene-3beta,20-diol

3-acetate 5280453 0.31 - - -

18alpha-hydroxyglycyrrhetic acid 10133 0.331 - - -
3,22-Dihydroxy-11-oxo-delta(12)-

oleanene-27-alpha-methoxycarbonyl-
29-oic acid

5281004 0.265 - - -

3-Hydroxystigmast-5-en-7-one 5280453 0.498 - - -
DFV 4764 - 0.558 -

Glabranin 16078 0.703 - - -
Glabrene 3005573 - - - 0.353

Kanzonol F 441140 0.212 - - -
Medicarpin 441140 - 0.561 - -
Olitoriside 54687/12560 0.337 0.449 - -

Psi-Baptigenin 6237 - 0.176 - -
Stigmasterol 445354 - 0.468 - -
Aloe-emodin 42890/3059 0.463 0.413 - -
Beta-sitosterol 445354 - 0.588 - -
Campesterol 445354 - 0.594 - -
Hederagenin 10133 0.486 - - -

Liquiritin 30323 - - 0.379 -
Naringenin 5281576 - - 0.477 -
Sitosterol 445354 - 0.588 - -

FEP-SS: First elusive prediction-similarity score; FCP-SS: First contrast prediction-similarity score; -: Not applicable.



Int. J. Mol. Sci. 2022, 23, 10056 6 of 19

Figure 4. Statistical analysis of in-silico drug toxicity and interaction prediction for 20 different
herbal medicines. (a) Histogram of FEP-SS and FCP-SS values of >0.3; (b) Box plots of FEP-SS
and FCP-SS values of >0.3 for toxicity prediction; (c,d) The different amounts of active compounds
with similar compounds or toxicity predictions based on different Swiss combined similarity score
thresholds. AC: The group of toxicity information mining using active compounds of medicinal
plants on PubChem platform, ST-0.759: Toxicity prediction group based on similarity score threshold
of the third quartile value of FCP-SS (0.759), ST-0.6171: Toxicity prediction group based on a threshold
of the mean value of P-SS (0.6171).

2.2. Toxicity Prediction Interpretation

After the construction of the prediction workflow and similarity threshold setting,
the toxicity and drug interaction predictions were made for several herbal medicines.
From the PubChem database, for the four representative herbal medicines, thirty-one
different sections of toxicity information of active compounds such as “Acute Effects”,
“NIOSH Toxicity Data”, “Interactions”, “Hepatotoxicity”, “Evidence for Carcinogenicity”,
“Symptoms”, “Human Toxicity Values”, and “TSCA Test Submissions” sections have been
retrieved (See Supplementary Table S2, with 26 active compounds predicted to exert various
potential toxicities.

(20S)-Dammar-24-ene-3beta,20-diol 3-acetate was predicted to possess potential hepa-
totoxicity and reproductive developmental toxicity. Cajinin, calycosin, formononetin, glyza-
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glabrin, hederagenin, jaranol, kaempferol, luteolin, odoratin, olitoriside, psi-Baptigenin,
quercetin, 3-Hydroxystigmast-5-en-7-one and so on may have potentially reproductive
developmental toxicity. Olitoriside is an analog of digoxin with a relatively high similarity
score of 0.992, which means it may also exert similar toxicity to digoxin. In addition,
3-Hydroxystigmast-5-en-7-one, glycyrrhiza flavonol A, isolicoflavonol, jaranol, kaempferol,
luteolin, isoflavanone, and quercetin are probably genotoxic predicted by the toxicity infor-
mation retrieve of their similar compounds, respectively. Presumably, reproductive and
developmental toxicity should be paid enough attention to the consumption of all these
four herbal medicines. It is also warranted that digoxin toxicity may occur when Fructus
ligustri Lucidi is taken at toxic doses. Besides, the prediction results of acute toxicity, anti-
dote and emergency treatment, protein binding, ecotoxicity values, ongoing test status, skin
symptoms, eye symptoms, and target organs of some active compounds can be available in
Supplementary Table S2.

2.3. Drug Interaction Prediction Interpretation

The prediction of drug interaction of plant complexes is another important role of this
workflow. There are 41 different active compounds involved in the 4 representative herbal
medicines, of which the detailed information can be referred to Supplementary Table S3.
Many active compounds may have significant super-additive or sub-additive effects on
drug pharmacokinetics, cancer management, cell survival, drug-induced reproductive
developmental toxicity, antibacterial, anticoagulation, or/and cardiovascular function.

For cancer management, there are roughly seven different activities (Enhanced radio-
therapy, metastasis inhibition, carcinogenesis inhibition, enhanced chemotherapy, enhanced
genotoxicity, enhanced bioavailability, and weakened target therapy) influenced by poten-
tial drug interactions predicted based on the similarity score threshold of 0.6171. Cajinin,
calycosin, formononetin, glyzaglabrin, isotrifoliol, luteolin, odoratin, and psi-Baptigenin
may potentiate the sensitivity of cancer cells to ionizing radiation. Isorhamnetin, isotrifo-
liol, jaranol, kaempferol, luteolin, quercetin, and sitosterol were predicted with the same
similar compound, apigenin or lupeol, to inhibit cancer metastasis. Hederagenin may
inhibit carcinogenesis by 1,2-dimethyl-hydrazine, 12-O-tetradecanoylphorbol 13-acetate, or
azoxymethane. Gadelaidic acid and icos-5-enoic acid were predicted to inhibit carcinogene-
sis caused by methyl nitrosourea. Glycyrrhiza flavonol A, 8-C-alpha-L-arabinosylluteolin,
isolicoflavonol, isorhamnetin, jaranol, kaempferol, luteolin, and quercetin probably sup-
press UV-induced skin tumorigenesis. 8-C-alpha-L-arabinosylluteolin, Glycyrrhiza flavonol
A, hederagenin, isorhamnetin, isotrifoliol, jaranol, licochalcone B, kaempferol, liquiritin,
luteolin, mairin, olitoriside, quercetin, and sitosterol may have potential synergistic effects
when treated in combination with many chemotherapeutic drugs on cancer management.

However, mairin may also be a promoter of N-Nitrobis(2-hydroxypropyl)amine and
N-methyl-N′-nitro-nitrosoguanidine triggered cancer progression. There is a theoretical
risk of enhanced genotoxicity using cisplatin with isorhamnetin, isotrifoliol, kaempferol,
luteolin, quercetin, or 8-C-alpha-L-arabinosylluteoli. In addition, weakened target therapy
of bortezomib may occur due to the combined treatment of 8-C-alpha-L-arabinosylluteolin,
glycyrrhiza flavonol A, isorhamnetin, jaranol, kaempferol, luteolin, or quercetin.

2.4. Synergism Detection

Based on the drug interaction prediction, in Spatholobus suberectus Dunn (See Figure 5),
3-Hydroxystigmast-5-en-7-one, 8-C-alpha-L-arabinosylluteolin, beta-sitosterol, cajinin, ca-
lycosin, campesterol, formononetin, luteolin, and psi-Baptigenin (9 out of 24 screened
active compounds) may play synergistic effects on cancer metastasis inhibition, carcinogen-
esis inhibition, chemotherapy, or/and radiotherapy with various chemotherapeutic drugs
or factors. Cajinin, calycosin, luteolin, and psi-Baptigenin, similar to kaempferol, were
predicted to enhance the chemotherapeutic drug bioavailability because of the inhibition
effects on P-glycoprotein (P-gp) and cytochrome P450 (CYP) (See Supplementary Table S4).
These two enzyme families play important role in the neutralization and effluxion of vari-



Int. J. Mol. Sci. 2022, 23, 10056 8 of 19

ous chemotherapeutic drugs including docetaxel [41–43], the first-line chemotherapeutic
drug in TNBC management [44]. Collectively, there may be potential synergism between
SSD and docetaxel in TNBC therapy. Luteolin, extremely similar to apigenin, myricetin,
genistein, and kaempferol which have been proved to play synergistic effects on cancer
metastasis inhibition, carcinogenesis inhibition, chemotherapy, drug bioavailability en-
hancement, and radiotherapy with various drugs or factors, attracted our special interests.
To prove the efficacies of SSD when treated in combination with docetaxel, a combination
index assay, synergy score of matrix assay, and xenograft model were conducted.

Figure 5. The network of cancer management-related interactions of active compounds in Spatholobus
suberectus Dunn with drugs, ionizing radiation, or carcinogens, predicted through chemical similar-
ity. Cajinin, calycosin, formononetin, luteolin, and psi-Baptigenin may potentiate the sensitivity of
cancer cells to ionizing radiation. Luteolin enjoying similarity of 0.999 to apigenin was predicted to
inhibit cancer metastasis. 8-C-alpha-L-arabinosylluteolin, and luteolin probably not only suppress
UV-induced skin tumorigenesis but also have potential synergistic effects when treated in combina-
tion with many chemotherapeutic drugs. Cajinin, calycosin, luteolin, and psi-Baptigenin, similar
to kaempferol, were predicted to enhance the chemotherapeutic drug bioavailability because of the
inhibition effects on P-glycoprotein (P-gp) and cytochrome P450 (CYP). However, there is a theo-
retical risk of enhanced genotoxicity using cisplatin with luteolin or 8-C-alpha-L-arabinosylluteolin
supplements. In addition, weakened target therapy of bortezomib may occur due to the combined
treatment of 8-C-alpha-L-arabinosylluteolin or luteolin.
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In the Combination Index assay (Figure 6), the IC50 values of SSP and docetaxel
in anti-MDA-MB-231 cells are 70.48 µg/mL, and 1.85 nanomolar, respectively. When
treated simultaneously, the IC50 values of SSP and docetaxel decreased to 4.73 µg/mL,
and 1.18 nanomolar, respectively. The Combination Index is 0.70, which means there is a
synergism of SSP and docetaxel in anti-MDA-MB-231 cells. The consistent results can be
gained by the Synergy score detection assay where the mean value of the synergy score
calculated by the ZIP method is 5.79, with the most synergistic area score of 20.68. In the
combination of luteolin and docetaxel, the mean value of the synergy score is 7.217, and
the synergy score of the most synergistic area (White rectangle) is 19.58 (Figure 7).

Figure 6. Combination index analysis for the synergistic effects of SSP and docetaxel. (a) MDA-MB-
231 cells treated with different doses of docetaxel independently for 48 h, IC50 (DTX) = 1.85 nM, R
square = 0.9805. (b) MDA-MB-231 cells treated with different doses of SSP independently for 48 h,
IC50 (SSP) = 70.48 µg/mL, R square = 0.9854. (c,d) MDA-MB-231 cells treated with different doses of
SSP (µg/mL)/docetaxel (nM) (100/25; 50/12.5; 25/6.25; 12.5/3.13; 6.25/1.56; 3.13/0.78; 0.78/0.20)
for 48 h, IC50 (DTX) = 1.18 nM, IC50 (SSP) = 4.726 µg/mL, R square = 0.9424. CI ≈ 0.70, which means
there is a synergism between SSP and docetaxel.
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Figure 7. Quantitative analysis of the synergistic effect of SSP or luteolin combined with docetaxel
through the ZIP method on the growth inhibition of MDA-MB-231 cells. (a,c) 2-D heat map of
the dose-response matrix (Inhibition ratio) of drugs. (b,d) 2-D heat map of synergy score. In the
combination of SSP and docetaxel, the mean value of the synergy score is 5.79, and the synergy score
of the most synergistic area (White rectangle) is 20.68; In the combination of luteolin and docetaxel,
the mean value of the synergy score is 7.217, the synergy score of the most synergistic area (White
rectangle) is 19.58. The data were gained from two independent experiments.
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In-vivo assay (Figure 8), there are no significant differences among the Vehicle control
group, DTX group, and SSP-L group in terms of tumor volume. However, the tumor
volume of the combination group of docetaxel treatment at low dose plus the SSP treatment
at low dose was significantly less than that of the Vehicle control group, which means there
is supper-additivity between SSP and docetaxel in anti-TNBC.

Figure 8. Qualitative analysis of the synergistic effects of SSP and docetaxel in anti-TNBC. (a) Rep-
resentative pictures of mice xenograft with different treatments for 21 days. (b) Tumor volume
curve. The Vehicle Control group received oral administration of Milli-Q water; The SSP-L group
received oral administrations of SSP (0.4 g/kg/day); The SSP-H group received oral administrations
of SSP (0.8 g/kg/day). The DTX group received administration of docetaxel (i.p., 2.5 mg/kg/week).
The DTX & SSP-L group received oral administrations of SSP (0.4 g/kg/day) and docetaxel (i.p.,
2.5 mg/kg/week). Data are shown as mean ± SEM (n = 6) with two independent experiments.
(c) Statistical analysis of tumor volume at the endpoint of different mice with different treatments
aforementioned. Data are shown as mean ± SEM (n = 6). * p < 0.05 (Vehicle control vs. SSP-H; Vehicle
control vs. SSP-L + DTX; DTX vs. SSP-H), ** p < 0.01 (SSP-L vs. SSP-L + DTX) and *** p < 0.001
(SSP-L vs. SSP-H). (d) Bodyweight detection of the xenograft model experiment. Data are shown as
mean ± SD (n = 6) with two independent experiments. (e) Statistical analysis of mice body weight
at the endpoint of different groups. Data are shown as mean ± SD (n = 6). * p < 0.05 (DTX vs.
SSP-L), ** p < 0.01 (Vehicle control vs. SSP-L + DTX), *** p < 0.001 (Vehicle control vs. SSP-H; DTX vs.
SSP-L + DTX), **** p < 0.0001 (DTX vs. SSP-H).

3. Discussion

For the first time, a workflow (Figure 1) for both toxicity and drug interaction predic-
tion of herbal medicine based on virtual screening and text mining [45,46] was constructed.
For studies on drug toxicity, drug-drug interactions, and drug-food interactions, with
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detailed related information retrieved, this workflow is beneficial for hypothesis construc-
tion and insight interpretation. Moreover, it has many superiorities over fixed prediction
models. First, no prediction model can predict the toxicity and drug interactions like this
workflow at the same time, which is important for a comprehensive safety assessment
of complex drug mixture. Second, drug-drug interaction prediction models can only be
utilized for drug pairs of interest, where the name of the interested drug pair should be
offered in advance. However, this workflow can show some insights into drug combina-
tions of >2 compounds without any pre-purpose needed. Even, the interaction between
active compounds and some other factors such as ionizing radiation or carcinogens can be
indicated by this workflow. Third, no detailed insights or interpretations of any toxicity
prediction model are available. But this text mining-based procedure will include data
resources, clinical trial details, and even experiment protocols for a result assessment in
addition to the endpoint alert. Forth, as more and more information is documented in the
chemical databases, a flexible workflow show much more potential and comprehensive
assessment of the compound toxicity and interactions compared to a fixed prediction model
which is only trained for specific toxicities prediction and utilized in limited scenarios.
Fifth, this workflow is based on a combined SwissSimmlarity score, which has been proved
to show better performance compared to fingerprint as the unique structure descriptor in
activity prediction.

There is limited information about toxicity and drug interactions of natural active
compounds (Table 3) documented in public databases. In PubChem, the most powerful
database of chemical information regarding toxicity, only 23 out of 495 active compounds of
20 representative herbs can be retrieved. So, it is not feasible to make a safety assessment on
herbal medicines by searching through public databases. Although there are many expert
systems constructed for drug toxicity prediction based on QSAR or molecular docking,
most QSAR-based systems employing models trained by FDA-approved drugs may show
less confidence in the prediction of natural products. Plus, there are huge knowledge
gaps between the molecular docking result and drug toxicity for the distinguished roles of
one protein in systematic toxicity and the roles of compound-protein interactions in the
activation of proteins are elusive. To solve this problem, this workflow tries to predict the
properties of the unknown compounds by their similar bioactive compounds based on
optimal QSAR on the SwissSimilarity platform.

Table 3. Toxicity and drug interaction data mining in PubChem by active compounds of Fructus
ligustri Lucidi, Spatholobus suberectus Dunn, Hedysarum multijugum Maxim, and Licorice.

PubChem
CID

Active Compound
Name AE Is AET HTE NHTE CC PSR HT EC NHTV OTS NTPS

5280448 Calycosin - + + + + - - - - - - -
9064 (+)-catechin + - - - - - - - - - - -

222284 Beta-sitosterol + - - - - - - - - - - -
73299 Hederagenin + - - - - - - - - - - -

5280863 Kaempferol - + + + + + + - - - - -
5280445 Luteolin + - - - - - - - - - - -
5280343 Quercetin + + + + + + + + + + + +
5280794 Stigmasterol - - + + - - - - - - - -
439533 Taxifolin + - - - - - - - - - - -

AE: Acute Effects; Is: Interactions; AET: Antidote and Emergency Treatment; HTE: Human Toxicity Excerpts;
NHTE: Non-Human Toxicity Excerpts; CC: Carcinogen Classification; PSR: Populations at Special Risk; HT: Hep-
atotoxicity; EC: Evidence for Carcinogenicity; NHTV: Non-Human Toxicity Values; OTS: Ongoing Test Status;
NTPS: National Toxicology Program Studies. +: with retrieves; -: no retrieves.

There are no available models for toxicity or drug-drug interaction prediction for
a mixture of more than two different compounds because no dataset can be gained for
this kind of model training. All drug interaction prediction models are just trained for
drug pairs of interest [47–49]. Although there is some interaction information of three-
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compound combinations retrieved in this study, even based on the most powerful database
for chemical information-PubChem, most drug interaction retrieves are also documented
for drug pairs. So, there is still a knowledge gap between the predictions of this workflow
and the final clinical performance of plant complexes. All the predictions should be proved
by experiments. The prediction result should be treated as preliminary hypotheses.

For a logistic regression model evaluation, metrics of sensitivity and specificity are the
most introduced. Receiver operating characteristic curves (ROC), graphs of the specificity
vs. the sensitivity, dependent on different thresholds, can show the performance of various
models trained by the same dataset. Moreover, the area under the ROC curve can be used
to compare different models trained by various algorithms and strategies. However, for
the toxicity and drug interaction prediction of natural compounds, there are insufficient
data for a logistic regression model training. Here we employed a combined system as
beforementioned. To evaluate this system, two new concepts FEP-SS and FCP-SS (Defined
as Box 1) were introduced to find the similarity range corresponding to consistent predic-
tions or uncontroversial predictions compared to the retrieve with the highest similarity,
respectively. More similar compounds and the toxicity and drug interaction information
can be retrieved for active compounds with a relatively large similarity range because there
is a significantly negative correlation between information retrieved and the similarity
threshold (Figure 2a). The higher the similarity threshold is set, the more precise the predic-
tion of this system is, but the less active compounds can be predicted (Figures 3b and 4c,d).
Ambiguous predictions are acceptable for the toxicity prediction of natural compounds, so
the mean value of FCP-SS was set as the similarity score threshold. As more and more data
are documented in the PubChem database, theoretically, a “stricter” similarity threshold
for the prediction of most active compounds can be set in the future.

There are no distinct conclusions about the relationship between the content of an
active compound and the weight of the compound on the activity of plant complexes. Some
compounds accounting for a small proportion of the total herbal medicine may still exert
remarkable activities, while some compounds accounting for a large proportion of total
extracts may show little bioactivities. Given the drug interactions, situations will be much
more complex, that is where the significance of this manuscript comes from. It filled a
vacancy in conventional network pharmacology which lacks drug toxicity and interactions
analysis in a complex system.

In QSAR analysis, chemical similarities such as fingerprints [50,51] and shape similar-
ity [37] are the most popular descriptors for the structure of small molecules. In general,
fingerprint similarity performs better than shape similarity in terms of bioactivity predic-
tion [40]. That is why most toxicity prediction-expert systems take fingerprints of molecules
as the structure descriptors. But shape similarity, independent of fingerprint similarity, can
bring some extra information for indicating the chemical structure of drugs. So, a combined
model trained by machine learning plays better performance in terms of structure-activity
relationship prediction [40]. Herein, we tended to employ the combined model offered
by the SwissSimilarity platform, a user-friendly platform with the “Bioactive”-compound
class and several compound libraries for natural compound-data mining, to find the similar
compounds with similar bioactivities [38]. For the stage of endpoint alert, most expert sys-
tems show limited information, which is difficult for prediction and insight interpretation.
To solve this problem, ligand-based virtual screening outperforms an ambitious prediction
model. However, this workflow was much more time-consuming for manual prediction
interpretation compared to conventional expert systems. And it needs professional knowl-
edge to interpret toxicity information to avoid an interpretation error. Text-classification
and interpretation models trained via machine learning may solve this problem someday.

There are synergistic effects of crude extracts of SSD combined with docetaxel in
anti-TNBC. Luteolin in concomitant use of docetaxel was also proved to show super-
additive effects in anti-TNBC cells at certain doses (Figure 7). These experimental results
are consistent with the prediction results. Till now, there are no effective medications
but chemotherapeutic drugs for the management of triple-negative breast cancer [52,53].
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However, most chemotherapy will incur more than 20 different severe adverse events
such as anemia, diarrhea, fatigue, nausea, vomiting, and hair changes [4]. Based on the
potential synergism of SSD and docetaxel, with less toxicity, lower therapeutic doses of
combination treatment of docetaxel and SSD may accomplish the counterpart even better
efficacies compared to the independent treatment of docetaxel or SSP.

4. Conclusions

For the first time, a workable and dependable workflow of in-silico drug toxicity
and interaction prediction for plant complexes was built. From the PubChem database,
31 different sections of toxicity information such as “Acute Effects”, “NIOSH Toxicity
Data”, “Interactions”, “Hepato-toxicity”, “Carcinogenicity”, “Symptoms”, and “Human
Toxicity Values” sections have been retrieved, with dozens of active compounds predicted
to exert potential toxicities. In Spatholobus suberectus Dunn (SSD), there are 9 out of 24 active
compounds predicted to play synergistic effects on cancer management with various drugs
or factors, which is consistent with the experimental data.

5. Materials and Methods
5.1. Dataset Assembly

A dataset containing the active compounds of 20 herbal medicines was gathered from
the TCMSP database [54], based on the ADME criteria ((“Oral bioavailability” ≥ 0.3 and
“Drug-likeness” ≥ 0.18), given all the herbal medicines are presumed to be administrated
orally. Finally, the dataset “active_comp_pool_tcmsp.csv” contained 561 active compounds
in total (495 distinct active compounds), 13 active compounds of Fructus ligustri Lucidi, and
24 active compounds of Spatholobus suberectus Dunn, 20 active compounds of Hedysarum
multijugum Maxim, and 92 active compounds of Licorice, respectively.

5.2. Similar Compound Data Mining

From the PubChem database, the mining of properties of active compounds was
conducted firstly through a script coded in Python 3 (version 3.8.10) called
“compound_properties_mining.py” using pubchempy (version 1.0.4) and pandas (ver-
sion 1.2.5) packages. This script iterates over the “active_comp_pool_tcmsp.csv” dataset,
specifically, the “Molecule Name” column, while fetching one “Molecule Name” at a time.
The gathered property data of active compounds were written to a CSV file named “ac-
tive_comp_proper_pubchem.csv”. After duplicate values deletion, the mining of similar
compounds of active compounds was done through the web scraper script called “sim-
ilar_comp_crawler.py”. This script iterated the “Active_compound_name” column and
the “isomeric_smiles” column of the dataset storing the properties of active compounds.
The isomeric SMILES code is posted as a query to the SwissSimilarity website (updated
version issued in Dec. 2021), selecting “Bioactive” compound class, choosing “ChEMBL
(actives only)” natural product library [55], based on combined methods [40]. All the data
of similar compounds were stored in the file named “similar_comp_pool_swiss.csv”.

5.3. Toxicity and Drug Interaction Information Mining

Before toxicity and drug interaction information mining, using a script called “simi-
lar_compound_properties_mining.py”, the properties of similar compounds were collected
with a similar method as the mining of properties of active compounds beforementioned
and were stored in the file named “similar_comp_properties_sum.csv”. Then the toxicity
and drug interaction information mining was conducted through the web scraper script
called “toxicity_mining_pubchem.py”. After redundant-value deletion, all the toxicity
and drug interaction information were stored in the file named “Toxi_infor_sum.csv”.
Screened from the “Toxi_infor_sum.csv” file, the drug interaction information retrieved
was separated and split into one “interaction” retrieve per row using a script named
“drug_interactions_split.py” for further manual interpretation. The split data was stored in
the file named “drug_interaction_pred_0.6171.csv”.
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5.4. Prediction Interpretation

The final prediction of the toxicity or drug interactions of active compounds of 4 repre-
sentative herbal medicines was interpreted manually, based on the toxicity information
and drug interaction data of its similar compounds, with a reasonable similarity score
threshold. The definitions of “Active compound”, “Prediction yield”, “Drug interaction”,
“First elusive prediction-similarity score”, and “First contrast prediction-similarity score”
can be referred to Box 1. Every row in the dataset “Toxi_infor_sum.csv” was regarded
as one retrieve. In a retrieve, for certain toxicity annotation, the similar compound was
annotated as toxic if there was at least one in 32 sections clarifying the certain toxicity of
similar compounds, or regarded as ambiguously toxic if there were controversial insights
about the certain toxicity, or regarded as non-toxic or anti-toxic if all the available infor-
mation indicating it was non-toxic or anti-toxic, or documented as “N.A.” if there were
no related insights or evidence in all sections. The prediction results of active compounds
were indicated by the indicators (Similar compounds with a similarity score above the
similarity score threshold). For certain toxicity predictions, the active compound was
regarded as toxic if major indicators were annotated toxic, or regarded as ambiguously
toxic if there were controversial insights about indicators, or regarded as non-toxic or
anti-toxic if all the indicators were non-toxic or anti-toxic, or documented as “N.A.” if there
were no related insights or evidence about all the indicators of one active compound. The
basic statistical analysis of this prediction study was done through the scripts named “pa-
rameter_similar_comp_properties.py”, and “parameter_comp_toxicity.py”. The predicted
drug interaction network of active compounds in Spatholobus suberectus Dunn for cancer
management was made by Cytoscape (Version 3.8.2) [56].

Box 1. Definition of the basic concept in the prediction system.

1. Active compound
The active compounds of herbal medicine defined here, are the natural products docu-

mented in the TSCSP database for a certain herbal medicine, screened out based on the criteria
(“Oral bioavailability” ≥ 0.3 and “Drug-likeness” ≥ 0.18).

2. Drug interactions
Drug interactions, in such a prediction system, include drug-food interactions, drug-drug inter-

actions, and interactions of drugs with other factors such as carcinogens and ionizing radiation.
3. Prediction yield

In such a prediction system, the prediction yield is defined as the number of active com-
pounds of herbal medicines with at least one kind of toxicity or drug interaction informa-
tion predicted.

4. First elusive prediction-similarity score (FEP-SS)
Among all the information retrieved of similar compounds, for a certain toxicity prediction

of an active compound based on such a system, as the similarity score decreases, the first
elusive prediction-similarity score is the similarity score corresponding to the first elusive,
arguable, or equivocal toxicity information retrieve compared to the toxicity information
retrieve with the largest similarity score.

5. First contrast prediction-similarity score (FCP-SS)
Among all the information retrieves of similar compounds, for a certain toxicity prediction

of an active compound based on such a system, as the similarity score decreases, the first
contrast prediction-similarity score is the similarity score corresponding to the first contrast
toxicity information retrieve compared to the toxicity information retrieve with the largest
similarity score.

5.5. Preparation of Spatholobus Suberectus Dunn-Percolation (SSP) Extract

SSP was prepared and made a quality control as before described, its chemical profile
can be referred to in previous studies [57]. Dried SSD stems were ground into coarse
powder, then it was extracted using a percolating device with 10 times volumes (v/w)
of 60% ethanol. The filtrate was then concentrated under reduced pressure by a rotary
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evaporator. The concentrated percolation extracts were then freeze-dried (Percent yield
20%) and stored at 4 °C for further use.

5.6. Cell Culture and Treatment

MDA-MB-231 cells were obtained from American Type Culture Collection (Manassas,
VA, USA). All cells were maintained in glucose-containing (4.5 g/L) Dulbecco’s modified
Eagle medium (Gibco, Grand Island, NY, USA), supplemented with fetal bovine serum
(10% v/v, Gibco, Grand Island, NY, USA), penicillin (Sigma-Aldrich, St. Louis, MO, USA,
100 U/mL), and streptomycin (Sigma-Aldrich, St. Louis, MO, USA, 100 µg/mL) in a
humidified atmosphere of 5% CO2 at 37°C. Cells were seeded onto 96-well plates at the
density of 3–5 × 103/well. After undergoing serum starvation for 24 h, they were treated
with different concentrations of SSP, luteolin (DIECKMANN (HK) CHEMICAL INDUSTRY
COMPANY LTD, Hong Kong, China), or docetaxel (Beijing Aosaikang Pharmaceutical
Co., Ltd., Beijing, China). The tumor cell growth inhibitory effects of drugs were detected
by CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay containing 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)- 2H-tetrazolium)
(MTS) kit (Promega, Wisconsin, DA, USA) as per the manufacturer’s protocol. The IC50
values of drugs were calculated by linear or nonlinear regression. The Combination Index
was calculated after 40 h- of drug treatment using the formula [58]: Combination Index =
(D)1/(Dx)1 + (D)2/(Dx)2, where (Dx)1, (Dx)2 are the concentrations of the tested substance
1 and the tested substance 2 used in the single treatment that was required to decrease
the cell viability by x%, and (D)1, (D)2 are the concentrations of the tested substance 1 in
combination with the concentration of the tested substance 2 that together decreased the
cell viability by x%. The synergy score was calculated on the SynergyFinder platform
(http://www.synergyfinder.org/) [59] with “Matrix” format and inhibition-Phenotypic
Response, using the ZIP method [60] after 24 h-drug treatment.

5.7. Xenograft Model

The xenograft model was constructed as before described [57]. Female (BALB/c) nude
mice (6–7 weeks old) were purchased from Harlan Laboratories, Indianapolis, IN, USA that
were housed and maintained in the Laboratory Animal Unit, the University of Hong Kong, a
specific pathogen-free and climate-controlled room (22 ± 2 ◦C, 50 ± 10% relative humidity)
with a 12-h light/dark cycle and provided with diet and water ad libitum. MDA-MB-231
cells (2 × 106/site) were implanted subcutaneously into the bilateral flank of each mouse.
Palpable and measurable tumors were initially found 10 days after cell injection. Then, the
animals were randomly assigned into five groups that were received the following treat-
ments: the Vehicle control group (n = 6) received Milli-Q water; the SSP-L group (n = 6) re-
ceived SSP (0.4 g/kg/p.o, daily); the SSP-H (n = 6) group received SSP (0.8 g/kg/p.o, daily);
the DTX group (n = 6) received docetaxel (2.5 mg/kg/i.p. week); the combination group
(DTX & SSP-L) (n = 6) received docetaxel (2.5 mg/kg/i.p. week) plus SSP (0.4 g/kg/p.o,
daily). The tumor size was calculated using the formula: 0.5 × lengths × width2. All ex-
periments were approved by the Institutional guidelines of Laboratory Animal Care and
Committee on the Use of Live Animals in Teaching and Research (CULATR No.: 4484-17).

5.8. Statistical Analysis

Linear or non-linear regression was operated with GraphPad Prism 7 (GraphPad
Software, San Diego, CA, USA) choosing log(inhibitor) vs. response-Variable slope (four
parameters) as the equation. All data were expressed as Mean ± SD or Mean ± SEM.
One-way ANOVA was employed to make a difference analysis for multiple groups’ com-
paration. The difference between two groups was analyzed by a two-tailed Student’s t-test.
Significance was established at p < 0.05.

http://www.synergyfinder.org/
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