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Many organisms can time intervals flexibly on average with high accuracy but substantial

variability between the trials. One of the core psychophysical features of interval timing

functions relates to the signatures of this timing variability; for a given individual, the

standard deviation of timed responses/time estimates is nearly proportional to their

central tendency (scalar property). Many studies have aimed at elucidating the neural

basis of interval timing based on the neurocomputational principles in a fashion that

would explain the scalar property. Recent experimental evidence shows that there is

indeed a specialized neural system for timekeeping. This system, referred to as the

“time cells,” is composed of a group of neurons that fire sequentially as a function

of elapsed time. Importantly, the time interval between consecutively firing time cell

ensembles has been shown to increase with more elapsed time. However, when the

subjective time is calculated by adding the distributions of time intervals between these

sequentially firing time cell ensembles, the standard deviation would be compressed

by the square root function. In light of this information the question becomes, “How

should the signaling between the sequentially firing time cell ensembles be for the

resulting variability to increase linearly with time as required by the scalar property?”

We developed a simplified model of time cells that offers a mechanism for the synaptic

communication of the sequentially firing neurons to address this ubiquitous property

of interval timing. The model is composed of a single layer of time cells formulated in

the form of integrate-and-fire neurons with feed-forward excitatory connections. The

resulting behavior is simple neural wave activity. When this model is simulated with noisy

conductances, the standard deviation of the time cell spike times increases proportionally

to the mean of the spike-times. We demonstrate that this statistical property of the model

outcomes is robustly observed even when the values of the key model parameters are

varied.
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1. INTRODUCTION

Time is a fundamental quantity that cannot be derived from
other dimensions. Thus, keeping track of time requires its
measurement by a neural “clock” mechanism. To that end,
evolution has favored at least two timing mechanisms that
operate at different time-scales. One of these timekeeping
mechanisms, namely the circadian clock, captures periods with
24-h long cycles based on well-regulated molecular machinery
(e.g., Partch et al., 2014). Many events in nature, on the other
hand, are rarely periodic and/or too short to be captured
based on the time-scales of the molecular events implicated
for the circadian clock. Thus, capturing the temporal features
of such events requires a rather flexible timekeeping apparatus
that can be started and stopped arbitrarily, namely a neural
mechanism with stopwatch-like properties (Buhusi and Meck,
2005). Accordingly, a mechanism of the latter type indeed enables
many animals ranging from fish (Drew et al., 2005), to mice
(Balci et al., 2009), to humans (Rakitin et al., 1998; Çavdaroğlu
et al., 2014) to flexibly keep track of time intervals in the range
of seconds to minutes. This very ability is referred to as “interval
timing.”

There are a number of core features of this ubiquitous
cognitive timekeeping function. For instance, for a given target
time interval, the timed anticipatory responses of animals are
approximately Gaussian distributed, which is typically centered
at around the target interval, pointing at on-average high
timing accuracy. However, the flexibility of this mechanism
exerts a non-negligible cost in the form of imprecision:
predictions/productions of a given target interval exhibit
substantial variability between trials, which is reflected in the
spread of the response time distributions. Thus, when it comes
to precision, the operation of the internal stopwatch is far from
perfect (i.e., outputs are not Dirac delta distributed). Importantly,
within an individual, the resultant timing imprecision has a well-
defined relationship to the target intervals; the standard deviation
of the timed responses is proportional to their mean, namely the
coefficient of variation of timed responses is virtually constant.
This statistical property leads to the timescale invariance of
interval timing and accounts for Weber’s Law in the timing
domain (Gibbon, 1977).

A line of empirical and theoretical research in the timing
field has focused on the neurocomputational principles that
would explain interval timing with its psychophysical features
outlined above (for review see Karmarkar and Buonomano, 2007;
Simen et al., 2011; Merchant et al., 2013; Hass and Durstewitz,
2014; Balcı and Simen, 2016). A recent line of neuroscientific
evidence has introduced novel empirical ground for these
approaches by demonstrating the existence of a specialized neural
mechanism for timekeeping, namely the time cell ensembles
that fire sequentially during different episodes of a temporally
structured task (Kraus et al., 2013; Salz et al., 2016; Tiganj et al.,
2016). Importantly, as a feature of information processing in
the time cell architecture, the time interval from the activation
of one ensemble to the next ensemble (inter-spike interval, ISI)
has been shown to lengthen with progressing neuronal activity
(MacDonald et al., 2011). In a very simple network of a neural
chain architecture with feedforward excitatory connections,

we aimed to address how the communication between the
consecutive cell ensembles can be set to achieve scalar variability
of interval timing behavior.

Even in very simplified cell and network settings, one needs
to address several neurocomputational challenges to explain the
statistical features of experimentally observed activity/behavior
as a function of time. One of these features is the scalar property
of interval timing. The challenge faced here is that when the
distributions are added together, the standard deviation of the
resulting distribution is compressed by the square root function.
For example, whenN identical normal distributions withmean=
1, 000 and the standard deviation = 100 are summed, the mean
of the resulting distribution would be 1, 000N and its standard
deviation would be 100N. Thus, the standard deviation would
not increase linearly with the mean, contrary to what would be
required by the scalar property. The important question that
arises at this point is whether it is possible to compensate for
the compression in variability (i.e., CV) due to the square root
function via some inherent property of neural networks and
thereby explain the scalar property as an emergent property of
the network.

The second challenge faced in accounting for the
experimentally observed activity with realistic neurons is
the limiting timescale of the neuronal currents. Whether
intrinsic or synaptic, many known neuronal currents operate in
a timescale ranging from milliseconds to a few seconds. But the
increase of ISIs in time cells (TC) is observed for as long as tens
of seconds (Ermentrout and Terman, 2010). This motivated us to
ask how neuronal currents with very short lifetimes can be used
to generate effects that last much longer than their individual
timescales.

In order to address such neurocomputational issues in signal
transmission between the time cells, we constructed a simple time
cell model in such a way that the delay from the firing of the ith
time cell ensemble to the firing of the i + 1th ensemble increases
with the inhibition. This is due to the hyperpolarizing intrinsic
current that is activated with inhibition and inactivated with
excitation. In other words, in this model, the time cells undergo
a temporal integration that depends on the level of inhibitory
current. In the chain architecture, when the time cells are
connected with feedforward excitatory current, the way the time
cells are modeled leads to experimentally observed increasing
ISIs with propagating activity in the chain. We simulated the
outlined network with noisy conductances multiple times to
generate the distribution of spike times of various time cells.
We observed that the standard deviation of the time cell spike
times indeed increased linearly with the mean spike times and
the mean-normalized distributions of different time cell activity
superposed as often observed in the empirical data (i.e., time-
scale invariance). We finally showed that the observed results are
the robust features of the model outputs that are preserved even
after changing the values of the key parameters of the model.

2. METHODS: THE MODEL

In the current model, we use a network with feedforward
connections among excitatory time cells to simulate the
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transmission of activity between time cells (see Figure 1).
Importantly, the model focuses on the time it takes to transmit
the excitatory signal from one time cell to the next time cell in the
chain, namely, the inter-spike intervals (ISIs). Our assumptions
regarding the role of inhibition in the model are explained below.
The time cells are modeled using the spikeless integrate-and-
fire type neuron model (see Ermentrout and Terman, 2010)
with currents that are modeled using the Hodgkin-Huxley type
formalism as follows:

Cm
dv

dt
= − (IL + ID + IExc + IInh) + Iinput + Inoise

where IL, ID, IExc, and IInh stand for leak, D-type potassium,
excitatory and inhibitory synaptic currents, respectively. The
membrane potential is reset to vR = − 85 mV when v = VT

with VT = −50mV . Cm is the membrane capacitance with
Cm = 200µF/cm2. IL denotes the leak current with IL = gL(v−
EL). gL and EL denote the leakage conductance and the reversal
potential with values gL = 8 µS and EL = − 65 mV .
The D-type potassium current is described by the equation
ID = gDmdh

2
d
(v − EK) with the maximal conductance and the

reversal potential, gD = 4 µS and EK = −90 mV, respectively
(Storm, 1988; Grissmer et al., 1994). The variables describing
the fast activation (md) and slow inactivation (hd) of the D-
current are described by the following differential equations:
dmd
dt

= (md∞ − md)/mdτ ,
dhd
dt

= (hd∞ − hd)/hdτ where
md∞ = 1 − 1/(1 + exp((v + 65)/2)), mdτ = 0.6, hd∞(v) =
1/(1+ exp((v+ 65))) and hdτ = 1500 ms−1.

2.1. Excitatory Synaptic Currents
The synaptic excitation is given as IExc = IExc1+IExc2. The current
IExc1 for the nth time cell that represents feedforward excitatory
connection from the n− 1th time cell to the nth time cell is given
by IExc1 = gExcs(V − Eexc), where s is the synaptic variable of the
n − 1th time cell. The equation describing the synaptic variable
is reset to 1 with every spike of the corresponding time cell and
decays exponentially with respect to the equation ds/dt = −βs
with the decay rate β = 0.2ms−1 .

The maximal excitatory conductance and the excitatory
reversal potentials are given by gExc = 15 µS and EExc = 0
mV, respectively. Another excitatory current, IExc2 represents
the recurrent excitatory connections within each time cell
ensemble. The recurrent excitation is given by the equation
IExc = gExcrs(V − Eexc), where the maximal conductance
gExcr = 50µS and s is the synaptic variable of the time cell
receiving the synaptic current.

2.2. Model Assumptions
The model incorporates a synaptic slow inhibitory current, and
this current is assumed to increase linearly with every activated
time cell. The equation for the inhibitory current to a time cell is
given by IInh = NgInh(V − Einh) with the maximal conductance
gInh = 0.02 µS and the reversal potential EInh = −100 mV . N
is the number of time cells that has fired since the beginning of
the current simulation. The second assumption is that the active

time cell stops firing after the excitatory transmission and thus
after the firing of the next time cell.

2.3. External Input and Initial Conditions
A 10 ms-long square pulse input current Iinput = 4mA/cm2

is given to the first time cell at the beginning of each trial.
Initial values of the membrane potentials are taken to be equal
to the resetting value of −75 mV. The D-current activation
and inactivation variables are assumed to have initial values
of md0 = 0 and hd0 = 1, as the equilibrium value for the
inactivation variable is 1 for a resting neuron. Initial values for
all synaptic variables are assumed to be 0.

2.4. Network Architecture
A network of 60 time cells was simulated unless stated otherwise.
We assumed feedforward AMPA-type excitatory connections
between the time cells (Figure 1). All the time cells receive the
same inhibitory current that incrementally increases in a linear
fashion with the activation of each additional time cell.

2.5. Noise
Large network simulations were run by assigning the D-current
and synaptic excitation maximal conductance values as normally
distributed random variables. The standard deviation values for
generating the data presented in section 3.4 are 1 for D-current
maximal conductance and 5 for the maximal conductance of
the synaptic excitation. In addition, the synaptic noise Inoise has
the form Inoise =

∑
n sn(V − Eexc), where the variable sn from

100 presynaptic neurons is activated at predetermined times tk,
k = 1, 2, . . . from a Poisson process with an average firing rate
of 50 Hz (see e.g., Fourcaud and Brunel, 2002). In simulations
with non-zero Inoise, the value of the maximal conductance of the
synaptic noise current is given by gnoise = 1 µS. The variable sn
obeys the differential equation dsn/dt = −βnsn with βn = 0.1
ms−1.

3. RESULTS

3.1. Time Cells in vivo
The characteristic feature of timing behavior is the reduced
absolute timing precision with increasing target time intervals.
Recent studies that aimed to find the neural correlates of
the interval timing behavior in accordance with its statistical
signatures discovered the so-called time cells in many different
brain areas such as the striatum, hippocampus, and medial
prefrontal cortex (Kraus et al., 2013; Eichenbaum, 2014; Salz
et al., 2016; Tiganj et al., 2016). The conclusion that time cells
can encode time came from the critical fact that different cell
ensembles are activated during different time periods. Moreover,
the time interval between subsequently activated cell ensembles
has been observed to slowly increase with the elapsing time.
In fact, it is this very property that leads to the increased
absolute imprecision (constant level of relative imprecision) for
the representation of longer time intervals. The increase in delays
between the sequentially activated cell groups also means that
“later periods” of an event are represented with fewer neurons
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FIGURE 1 | Network Architecture. Regular arrowheads denote the excitatory synaptic connections. Filled circles denote the slow inhibitory synaptic connections.

Time cell (TC) ensembles are connected to each other via excitatory synaptic connections in a chain network architecture. For each time cell, we assume the

existence of a slow inhibitory cell (SICn). Each time cell receives inhibition from each slow inhibitory cell.

per unit of time. This seemingly simple behavior has two neuro-
computational challenges to be tackled.

Any given time interval is the combination of time intervals
between the activity of consecutively firing time cells; in other
words, the combination of inter-spike intervals (ISI). The sum

of the ISIs determines the perceived time interval. The scalar
property dictates the noise in the timing behavior or in the
resultant temporal representation to increase linearly with the
target time. That is, if the standard deviation of the timed
responses with a mean time of 10 s is 1 s, then the standard
deviation of the same type of responses with a mean time of
20 s should be 2 s. The difficulty in here is that, when the noisy
data are added, the noise in the combined data decays with the
square root of the total number of datum combined. For example,
if we add N normally distributed random variables with the
same mean µ and the standard deviation σ , the mean of the
sum is Nµ and the standard deviation of the sum is

√
Nσ . On

the other hand, for the scalar property to emerge, the standard
deviation of the combined data should be proportional toN. Note
that even if we add distributions with an increasing mean and
standard deviation that is proportional to the mean, it takes a lot
of fine-tuning to achieve the scalar property.

The main idea of the current work is that the simple
exponential decay of a neuronal current can explain both the
lengthening ISIs observed in time cells and the scalar variability.
In our model, as in the empirical data, one time cell fires
after another via chain-like excitation. We assumed that the
inhibition over time cells increases along with time, making the
firing of the time cells less likely during the later periods of an
event. For time cells to fire within such a network setting, some
other hyperpolarizing current has to decay to compensate for
it. It turns out that simple exponential decay of this particular

current indeed explains the lengthening ISIs and maybe, more
importantly, the scalar property is manifested as an emergent
property of the model. With the increasing inhibition, the
hyperpolarizing intrinsic current has to decay more to account
for the increased inhibition, which explains the longer ISIs. What
accounts for the non-linear increase in the noise is the fact
that as the inhibition increases with time, the intrinsic current
has to decay more with time to compensate for the increased
inhibition and the exponential decay becomes more prone to
noise as small perturbations in membrane conductance now lead
to larger deviations in time. In this work, we used the D-type
potassium current for the mentioned hyperpolarizing intrinsic
current. But there are other currents such as the A-type potassium
current, which can function like the D-type potassium current
(Grünewald, 2003).

3.2. Oscillations in One Time Cell
In this section, we stimulate a time cell with step current
stimulus for different amounts of inhibitory current to study
the inhibition-dependent increase in the activation time of a
time cell (see Figures 2A,B). We ran the simulations with three
different levels of inhibition (i.e., N = 20, 40, and 60) applied
for time intervals (1, 000 − 4, 000 ms), (4, 000 − 7, 000 ms), and
(7, 000−10, 000ms), respectively. A square-pulse input is applied
1,000 ms after the onset of each time interval (Figure 2C).The
hyperpolarizing D-current is already active at the resting
potential without any applied inhibition (Figure 2D). With the
application of the first external step current at t = 2, 000 ms
(Figure 2C), the D-current begins decreasing (Figure 2D) to
compensate for the increased inhibition (N = 20). The time cell
fires with a delay of about 600ms. When the inhibition coefficient
is increased to N = 40 and N = 60, it takes increasingly longer
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FIGURE 2 | The delayed firing of a time cell (TC) in response to a square pulse input under varying inhibitory synaptic currents. (A) describes the inputs to the time

cell, namely, input, and persistent inhibition. The coefficient N of the inhibitory current is increased for different time intervals to simulate the time cell under varying

inhibitory inputs (B) with square-pulse input current (C). Delay of the time cell to spike increases with the inhibition. Increasing inhibition makes the firing of the time cell

less likely. Delayed spiking of the time cell is made possible by the slow inactivation of the hyperpolarizing D-current displayed in (D).

for the time cell to fire (about 800 and 1, 200 ms, respectively).
This is because the hyperpolarizing D-current has to decay more
to make up for the increased inhibition. Note that even though
the increase in the inhibition is the same from N = 20 to N =
40 and from N = 40 to N = 60, the decay time increases
non-linearly because of the exponential decay of the D-current
inactivation variable (Figure 2D). When the intrinsic current is
required to decay more with high inhibition during the later
stages of the interval timing, the delay to spike (or ISI) becomes
more prone to noise in the membrane potential. This is because
the later stages of the exponential decay occur in a much slower
manner and small perturbations in themembrane potential cause
large deviations in decay time.

3.3. Larger Network Simulation
We then simulated forty time cells (see Figure 1 for the
architecture) with feedforward excitatory connections to test
for the increasing delay in the ISIs with elapsing time
(Figure 3A). The D-current decay time constant is set to be
hdτ = 3, 000ms−1. In order to represent the within-ensemble
excitatory connections, each time cell is designed so that it can
send feedback excitation to itself (i.e., self-excitation; Figure 1).
With the onset of the temporary external stimulus, the first time
cell begins persistent spiking with feedback excitation and sends
excitatory synaptic input to the second time cell. The activity
progresses with the excitatory transmission between the time
cells. Since we assume that with the activation of each time
cell a slow inhibitory cell is activated persistently, the overall

inhibition on the time cells increases with the progressing activity
(Figure 3B). As discussed in the previous section, the increasing
inhibition leads to longer delays in the activation of subsequent
time cells with the elapsing time.

3.4. Statistical Results
In this section, we summarize the results of the simulations of
the larger network for 200 times until the activation of each time
cell is achieved to evaluate the variation in the spike times of
each time cell in the chain under noisy network settings (see
Methods). For example, for TC = 30, we run the network until
the activation of the 30th time cell for 200 times. Figure 4A
shows the coefficient of variation (CV) of spike times of the
time cell with respect to the mean spike times. The red line
refers to the constant value that the observed CV converges
on. Figure 4B presents the mean spike times of time cells with
the associated standard deviations. Note that the increase in the
standard deviation is observed with the increasing cell index.
Finally, Figure 4C shows the histograms of mean-normalized
spike time distributions corresponding to the 30 th and the 40 th
time cells. As an important property of interval timing behavior
and consistent with the visual inspection of Figure 4C, the spike-
time distributions that correspond to different time intervals are
expected to superpose.

We next ran the simulations to observe the dependency of
CV to the D-current decay constant hdτ and D-current maximal
conductance gD (Figures 5, 6); hdτ is a key parameter as it
determines the decay rate of the D-current. We simulated the
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FIGURE 3 | Raster plot of the larger network is displayed in (A). An inhibitory cell contributes to the overall inhibition of the time cells with every activated time cell. The

overall inhibition increases along with time. The increase in inhibitory synaptic current delays the firing of time cells as depicted in Figure 2. The buildup of the synaptic

inhibitory current is depicted in (B).

FIGURE 4 | Statistical results of simulation of the larger network for every time cell for 200 trials. In order to record the firing time of each time cell, the larger network

is simulated until the firing of a given time cell with noisy conductances for 200 trials. (A) shows the coefficient of variation of spike times of time cells with respect to

the mean spike times. In (B), mean spike times of each time cell are plotted with standard deviation lines. (C) shows the mean-normalized histograms of spike times

of time cells TC 30 and TC 40, respectively.

large network for the increasing values of the hdτ again for
200 times. The results of these simulations are displayed in
Figure 5. The CV converges to the same constant value for
all tested values of the D-current decay rate parameter. As

expected, since D-current decays faster with the smaller values
of hdτ , the wave speed changes considerably. The maximal D-
current conductance gD alters the delay to spiking. If gD is
small, D-current has to inactivate more to compensate for the
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FIGURE 5 | Simulation of time cell spike times for different values of the D-current inactivation variable decay rate, hdτ . In (A–D), the values for hdτ are taken to be

500, 1,000, 1,500, and 2,000 ms−1, respectively.

FIGURE 6 | Simulation of time cell spike times for different values of the D-current maximal conductance, gD. In (A–D), the values for gD are taken to be 3.6, 3.8, 4,

and 4.2 µS, respectively.

hyperpolarizing inhibition. Hence, the smaller values of gD lead
to longer ISIs and higher values of gD lead to shorter ISIs. When
gD is small, it takes less neurons to reach a given time as the
ISIs are now longer. Similarly, when gD is large, it takes more
neurons to reach a given time since ISIs are now shorter. Adding
a different number of ISIs with increased gD reduces the CV as
seen in Figure 6. The addition compresses the noise, hence, as gD
gets larger, the CV value converged on gets smaller. Importantly,

the fact that the CV approaches a constant value remains intact
irrespective of the changes in gD.

In order to evaluate the differential effect of the synaptic
noise arriving from multiple presynaptic cells (Inoise), we finally
ran the simulations only with the Inoise removing the other
sources of the noise (i.e., noise from D-current and TC-
TC synaptic excitation). When the synaptic noise arriving
from multiple presynaptic cells is used, the resultant CV
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increased depending on the maximal conductance but still
remained constant again supporting the fact that virtually
any manipulation that modifies the membrane potential
of the time cells would result in a constant CV (see
Figure 7).

4. DISCUSSION

In this paper, we developed a new simple neural model of
interval timing that explains the key experimental observations
regarding the time cell activity patterns and is closely related
to the prominent behavioral and information processing models
of interval timing. The model consisted of a single layer
of time cells formulated as integrate-and-fire neurons, which
results in wave activity with the application of a temporary
external stimulus. The observed wave activity propagates with
excitatory connections between the time cells and the ISIs
increase with the resultant propagating wave. The model has
a simple charge-discharge, loading-unloading mechanism. The
overall inhibition converging on to all the time cells charges
(loads) the time cells. When a time cell begins to receive
synaptic excitation, the total hyperpolarizing inhibition over that
particular time cell has to be compensated by the decay of the
hyperpolarizing internal current (discharge-unload). Since the
inhibition increases with the total number of activated time cells,
the time it takes for a given time cell to spike also increases,
resulting in incrementally longer ISIs. Importantly, the simple
exponential decay of the internal current determines the length
of the ISI. Hence, another mechanism for the wave activity
propagation that utilizes exponential decay of some process
would also give similar results to those presented here. For
example, each unit can activate an additional slow inhibitory
current on to the next time cell. The next time cell now has to

wait for the exponential decay of the slow inhibition to spike,
which takes longer as the inhibition builds up with the ongoing
activity.

It is well-known that inhibition can help generate many neural
rhythms, such as neural synchrony, irregularity in spike-times,
persistent behavior, bursting, etc. (see e.g., Whittington et al.,
2000; Rotstein et al., 2005; Moustafa et al., 2008; Guo et al., 2012,
2016; Neymotin et al., 2016; Zeki and Moustafa, 2017). In the
current model, inhibition is used to modulate the behavior of
the time cells. In particular, with the buildup of inhibition, the
delay to the firing of time cells is increased with the help of a slow
intrinsic current (D-current) that activates with inhibition and
inactivates with excitation.

This architecture coupled with the biophysically-plausible
functional characteristics of the proposed model captures the
scalar property of interval timing, namely the constant coefficient

of variation of timed responses for different target durations.
Due to within- and between-trial noise characteristics, when

the timed behavior of the model for different target intervals is

expressed on a relative timescale, the predicted timed response
curves superpose (Figure 4C). Furthermore, the model is also
shown to be robust with respect to different values of the key
model parameters.

The fact that ISIs extend with the progressing activity alone
is not enough to get scalar variability in the model behavior.
In fact, we did many numerical simulations by adding normal

distributions with increasing mean ISIs and standard deviation
that is increasing proportionally with the mean. In these
simulations, the distributions obtained by adding the normal
distributions with an increasingmean and standard deviation did
not result in the scalar property; in fact, a lot of fine tuning would
have to be done to obtain such a linear relationship between the
standard deviation and mean. This observation supports the fact

FIGURE 7 | Simulation of time cell spike times for different values of the excitatory synaptic noise maximal conductance gnoise. No other noise sources are used. In

(A–D), the values for gnoise are taken to be 0.6, 0.8, 1, and 1.2 µS, respectively.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 January 2019 | Volume 12 | Article 111

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Zeki and Balcı The Linear Increase of Noise in Time Cells

that the mechanism used in our paper has scalar variability as an
emergent property.

One of the important features of these findings is that
interval timing behavior emerges with its well-established
statistical properties based on the dynamics of the proposed
architecture. The memory for time intervals is embedded within
the neural circuit itself, which does not require independent
encoding/decoding and comparison functions/components as
proposed in some other information processing models of
interval timing (e.g., Gibbon et al., 1984) (but see Matell and
Meck, 2004, for a similar feature of Striatal Beat Frequency
Model). Overall, the proposed model extends the scope of
particularly behavioral theories of interval timing (Killeen and
Fetterman, 1988; Bizo andWhite, 1997; Machado, 1997) in terms
of their neural clock implementation based on biophysically
plausible components and neuronal dynamics. In particular,
the proposed model provides neural plausibility to LET-like
(Machado, 1997) approaches in light of the recent neuroscientific
evidence regarding time cells.

The model parameters, for example the decay rate of D-
current inactivation variable or maximal excitatory-synaptic
synaptic conductance, can easily alter wave speed. In Miller et al.
(2006), it is shown that NMDA-type neural excitation is also
capable of manipulating wave speed. To keep the model simple
and parsimonious, we did not include the NMDA current in
this model. However, the possible integration of other NMDA

currents and/or neuromodulators such as dopamine would be

a natural next step for future research. The fact that the wave
speed can be easily manipulated with the model parameters gives

our model the ability to account for clock speed effects that are
usually interpreted in light of the Dopamine-Clock Hypothesis;
dopamine agonists have been shown to lead to overestimation of
the time intervals (e.g., Maricq et al., 1981; Çevik, 2003; Matell
et al., 2006; Balci et al., 2008), whereas dopamine antagonist has
been shown to lead to underestimation of the time intervals (e.g.,
Meck, 1983; Meck and Church, 1984; Drew et al., 2005).

The capacity of the model in terms of the maximum possible
time interval it can measure is limited by many factors. The
built-up inhibition is compensated with the exponential decay
of internal current (D-current). The inactivation of the internal
current puts a cap on the capacity of themodel.With the given set
of parameters, the model can time intervals from a few hundred

milliseconds to tens of seconds, which presents an acceptable
range when compared to behavioral interval timing experiments
(e.g., Meck, 1983; Meck and Church, 1984; Balci et al., 2008).

Interval timing is a complex process that combines various
information-processing components such as reinforcement
learning (e.g., Balci et al., 2009; Balcı, 2014; Petter et al.,
2018), working memory (e.g., Zeki and Moustafa, 2017), etc.
We simplified our model to focus on the mechanism of the
transition from one time cell ensemble to another time cell
ensemble.We assumed that an inhibitory cell activates with every
time cell and stays active throughout the timing episode. This
type of inhibitory layer can easily be realized using CAN-type
calcium current or h-type depolarizing current that is used in
representing persistent activity (e.g., Zeki andMoustafa, 2017). In
order to keep themodel easy to follow, we limited our focus to the
transmission of the signal from one time cell to another. Another
assumption was that, with the activation of an excited time cell,
the time cell that is already active stops firing. An adaptation
current such as the slow afterhyperpolarization (AHP) can make
an active time cell stop in a delayed fashion instead.

Another limitation of the proposed model is the dependence
of the timing behavior on the specific connectivity pattern
between the time cells. This necessitates modular circuits in
the brain that have evolved to specifically keep track of time
intervals in the way proposed here. A modular perspective on
cognitive functions favors the possibility of such specialized
timing networks. Thus, it is possible that different timing circuits
(e.g., at sensory cortices, cortico-striato-thalamocortical loop,
cerebellum) in essence with similar functional characteristics are
present. Recent findings on time cells with sequentially dynamic
activation patterns indeed strengthen this very possibility.
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