
EDITORIAL
Hepatocentric Leptin Signaling Modulates Gluconeogenesis via
MKP-3
ince its discovery in 1994, leptin has been recog-
Figure 1. Model of hepatic leptin suppression of gluco-
neogenesis. Leptin binds to its receptor OBRb at the plasma
membrane, which activates STAT3 via JAK2 (Janus kinase 2)
signaling. STAT3, possibly by complexing directly with ERK1/
2 (extracellular signal‑regulated protein kinase 1/2) and MKP-
3, leads to MKP-3 protein degradation. Decreased MKP-3
levels lead to increased phosphorylation of FOXO1 (fork-
head box protein O1), thereby excluding FOXO1 from the
nucleus and decreasing expression of key gluconeogenic
genes, G6pc and Pck1, and their regulatory gene Pgc1a.
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Snized as a satiety hormone required for body weight
homeostasis. Leptin is secreted predominantly by white
adipose tissue, and its levels in blood are correlated posi-
tively with the amount of body fat. Extensive studies of
leptin’s actions in the central nervous system (CNS) have
shown its ability to control food intake and energy expen-
diture. However, despite the profound obesity and diabetes
resulting from homozygous loss of leptin or its receptor,
there has been very limited efficacy of leptin treatment for
obesity because most obese individuals already have high
circulating leptin levels, rendering them unresponsive to its
weight-reducing effects.

Research now has shifted to leptin’s effects in the pe-
riphery, particularly in the context of its glucoregulatory ac-
tions, where it may have a role independent of body weight
regulation.1 Indeed, hyperinsulinemia occurs before weight
gain in leptin-deficient ob/ob mice,2 and there are significant
improvements in hyperglycemia and hyperinsulinemia
before weight loss in leptin-treated ob/ob mice.3

The leptin receptor (Obr) is present at highest levels in
the CNS, but also is expressed throughout the periphery.
There are 6 isoforms of Obr that result from alternative
splicing and, importantly, only Obrb, the long leptin receptor
isoform, is capable of mediating signal transduction. OBRb
activates the Janus kinase (JAK)-signal transducer and
activator of transcription 3 (STAT3) and phosphatidylino-
sitol 3-kinase (PI3K) systems, which are critical pathways
involved in energy homeostasis and glucose metabolism,
respectively.

In this issue of Cellular and Molecular Gastroenterology
and Hepatology, Huang and He et al4 reported hepatocyte-
specific effects of leptin signaling through Obrb to sup-
press glucose production. The investigators showed that
leptin treatment of primary hepatocytes and hepatoma
cells in vitro resulted in STAT3 phosphorylation, sup-
pression of glucose production, and decreased expression
of the gluconeogenic genes G6pc, Pepck1, and Pgc1a.
These effects were reversed after small interfering
RNA–mediated suppression of Obr. These in vitro findings
support a cell-autonomous effect of leptin on hepatocyte
glucose production (Figure 1). In 2 different mouse models of
obesity—leptin-receptor–deficient db/db mice and high-fat
diet–fed mice—Obrb overexpression specifically in liver
was sufficient to lower blood glucose levels, improve glucose
tolerance, and improve insulin tolerance. On the other hand,
small interfering RNA–mediated suppression of liver Obr in
lean mice had no effect on blood glucose.

Through which signaling pathway does hepatocyte leptin
signaling control glucose production? Previously published
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data from the same research group showed that mitogen-
activated protein kinase phosphatase-3 (MKP-3) is
increased significantly in the liver of diet-induced obese
mice and has regulatory control over gluconeogenesis.5

They showed that MKP-3 dephosphorylates forkhead box
protein O1 (FoxO1) to promote its nuclear translocation,
subsequently inducing the transcription of gluconeogenic
genes.5 The investigators now show that leptin and Obrb
overexpression in the presence of leptin significantly de-
creases MKP-3 protein levels in primary hepatocytes and in
mice, whereas Obrb suppression in primary hepatocytes
increases MKP-3. Moreover, Mkp-3 deficiency blocks the
ability of leptin and Obrb overexpression to suppress
glucose production and gluconeogenic gene expression,
showing that MKP-3 mediates the effects of leptin signaling
on hepatic gluconeogenesis (Figure 1).
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These data support an effect of leptin signaling through
STAT3 and MKP-3 to decrease gluconeogenesis in hepato-
cytes. However, critical questions remain. The investigators
noted no effect of liver Obr suppression in lean mice. Is
hepatocyte leptin signaling activated only under certain
physiologic or pathologic conditions? Leptin can be thought
of as an adipostat, relaying information about body fat sta-
tus to the brain to control energy balance. Is there a role for
leptin’s effects on hepatic glucose production in this
context? How do the effects of leptin compare, or synergize,
with classic suppression of gluconeogenesis by insulin
signaling? Overall, this work highlights the signaling role of
leptin outside the CNS and suggests that further research
should be performed to understand these pathways.
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