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Introduction

Accumulation of genetic mutations can contribute to cancer 
development, progression, and metastasis.1 Some rearrangements 
are simple balanced translocations that result from a single fusion 
and preserve the proper complement of genetic information, 

although such translocations often disrupt regulation of the 
genes involved. Other rearrangements are complex, with mul-
tiple fusions at a single locus and do not maintain the normal 
complement of genetic information. Such rearrangements have 
the potential to cause cancer if they mutate a tumor suppressor 
gene or activate an oncogene2 and can also contribute to tumor 
heterogeneity and clonal evolution as mechanisms for metastasis 
and drug resistance.3,4 Thus, chromosomal rearrangements are 
important in cancer etiology. This review will first describe recent 
advancements in technologies that drove the discovery and charac-
terization of translocations. Next, we describe cancers that exhibit 
simple balanced translocations or more complex rearrangements. 
Finally, we review potential mechanisms that lead to chromosomal 
rearrangements and present possible intervention strategies.

Technologies for the Discovery and Evaluation  
of Genomic Rearrangements

The technological advances summarized in Table 1 have 
enabled the detection of chromosomal rearrangements in can-
cer cells. Chromosomal rearrangements in cancer were first 
identified in the early 50s by karyotype analyses based on 
Giemsa (G-banding) or reverse Giemsa banding (R-banding). 
G-banding is a technique that produces a visible display of con-
densed chromosomes whereas R-banding produces bands that are 
complementary to Giemsa bands.5,6 This technology allowed the 
observation of whole chromosomes during metaphase and pro-
vided the basis for the hypothesis that tumorigenesis is a genetic 
disease based on the realization that alteration of chromosome 
structure is a frequent event in cancer. However, this technology 
did not effectively identify the specific chromosomal locations or 
structures involved in complex rearrangements.
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Many cancers exhibit chromosomal rearrangements. These 
rearrangements can be simple, involving a single balanced 
fusion that preserves the proper complement of genetic infor-
mation, or complex with one or more fusions that disrupt this 
balance. Recent technological advances have improved our 
ability to detect and understand these rearrangements, lead-
ing to speculation about potential causal mechanisms such 
as defective DNA double strand break repair and faulty DNA 
replication. A better understanding of these potential cancer-
causing mechanisms will lead to novel therapeutic regimens 
to fight cancer. This review describes technological advances 
in methods used to detect simple and complex chromosomal 
rearrangements, cancers that exhibit these rearrangements, 
potential mechanisms for rearrangement of chromosomes, 
and intervention strategies designed specifically against fusion 
gene products and causal DNA repair/synthesis pathways.
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To address this issue, the technique of fluorescence in situ 
hybridization (FISH) was developed in the late 70s. FISH greatly 
improved the resolution of standard karyotyping by providing 
tools for visualizing specific loci on metaphase chromosomes. In 
addition, FISH allowed the quantitative analysis of chromosomal 
alterations in interphase cells, thus providing a technique for 
analyzing non-dividing cells. Refinements and improvements of 
the technology have been ongoing and approximately 40 differ-
ent applications of FISH have been reported to date.7 Although 
several of these applications specifically address unique biologic 
questions, others are widely employed for the analysis of chro-
mosomes in cancer cells and are routinely used for the clinical 
evaluation of patient samples.

In general, the most commonly used methods of FISH 
require the generation of a locus-specific probe (LSP) targeting 
a gene of interest (usually an oncogene or a tumor suppressor 
gene) that is labeled with one fluorochrome, combined with one 
or more reference probes (a subcentromeric probe mapping to 
the same chromosome as the LSP of interest or a probe map-
ping to a region flanking the LSP) that is labeled with a differ-
ent f luorochrome. A variety of probes can be used in different 
combinations depending on the specific loci of interest, allow-
ing precise and highly detailed analysis of chromosome altera-
tions including visualization of chromosome breakpoints, copy 
number alterations (gains and losses), and inversion of chromo-
somal regions. FISH is a cost-effective approach that has the 
advantages of allowing analysis at the single cell level and facili-
tating characterization of genomic regions that are notoriously 
difficult to study with other approaches (e.g., structural altera-
tions that map to repetitive regions such as pericentromeres and 
telomeres).

Spectral karyotyping (SKY) is a more sophisticated FISH 
approach that requires access to a spectra cube (interferom-
eter).8,9 SKY is based on the combinatorial use of paint probes 
targeting all chromosomes in a single hybridization, providing 
an exceptional ability to visualize complex structural alterations. 
The application of SKY to the analysis of human and murine 
samples has been instrumental in advancing the field of molecu-
lar cytogenetic analysis and gaining a better understanding of the 
complexity of chromosome alterations in cancer. It has allowed 
refinement of the complexity of previously known breakpoints 
and better characterization of cases that were difficult to resolve 
because of poor spreads or contracted metaphase chromosomes, 
highly rearranged karyotypes with numerous marker chromo-
somes, or subtle chromosomal aberrations.10-12 SKY has also been 
proven to be a powerful tool in the analysis of murine chromo-
somes. The use of genetically engineered mice as model sys-
tems of human cancer has fueled the need for better methods 
of cytogenetic analysis because of the challenges associated with 
studying murine chromosomes that are similar in size and are 
acrocentric.13 As a result, the characteristic banding pattern typi-
cally used for the identification of human chromosomes is less 
helpful in mice, making karyotyping very difficult. Furthermore, 
at the present time there are few cytogeneticists trained in karyo-
typing mouse chromosomes. There are more than 160 reports 
describing the use of SKY to characterize the karyotype of a wide 
range of murine models. In our experience, SKY has been an 
extremely valuable tool for analyzing structural alterations result-
ing in complex rearrangements in murine chromosomes.14,15 In 
one specific application, SKY has been used to resolve the chro-
mosomes involved in the formation of dipericentrics and chro-
mosomes with extra pericentromeres and telomeres (EPTs). The 

Table 1. Techniques for identification of chromosomal rearrangements

Technique Procedure Purpose Limitations

Giemsa (G)-banding
MSP with a banding pattern used to 

identify chromosomes
identify chromosome number and 

structural rearrangements
Resolution < 10 Mb, not sensitive 
enough to detect small inversions

Reverse giemsa (R)-banding
MSP with a banding pattern 

complementary to G-banding
identify chromosome number and 

structural rearrangements
Resolution ~10 Mb, not sensitive 

enough to detect small inversions

Fluorescence in situ hybridization 
(FiSH)

Probes anneal to specific regions 
such as pericentromere and 

telomere in MSPs

identify chromosome number, 
rearrangements, and specific 

structures such as pericentromeres 
and telomeres

Allows analysis of only 4 
fluorochromes at one time

Spectral karyotyping (SKY)

Sophisticated FiSH using a 
combination of paint probes 

targeting all chromosomes in a 
single hybridization

identify all chromosomes and 
visualize complex structural 

alterations

Resolution 5–10 Mb, not sensitive 
enough to detect small inversions

Comparative genomic hybridization 
(CGH)

Hybridize test DNA to reference 
DNA to identify copy number 

variation

identify deletions and 
amplifications

Resolution depends on the 
density of the probes, does not 

allow detection of inversions and 
balanced translocations

whole genome sequencing (wGS) Sequencing the entire genome
Analysis of sequence at the fusion 
site at single nucleotide resolution

Costly and requires intensive data 
analysis

High-throughput genome-
wide translocation sequencing 

(HTGTS) and translocation capture 
sequencing (TC-Seq)

Sequencing applied to sites of 
induced DSBs in B cells

identify large numbers of 
translocations

Requires skilled personnel for 
library preparation, costly and 

requires intensive data analysis

Abbreviations: DSB, double-strand break; MSP, metaphase spread
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pericentromere is the region surrounding the centromere, which 
is a highly complex structure important for chromosome segrega-
tion during mitosis. The pericentromere is more easily detected 
than the centromere using FISH, hence the term dipericentric. 
Dipericentric chromosomes, also called dicentric chromosomes, 
have a pericentromere at each end of the chromosome and none 
in the middle. EPTs are complex structural alterations involving 
segmental duplications with extra centromeres and telomeres at 
the poles of a chromosome as well as in the middle of the chro-
mosome.15 However, although SKY is well suited for the analysis 
of complex alterations it has a limited resolution of 10 Mb and is 
therefore not suitable for fine mapping of break points.

Comparative genomic hybridization (CGH), which was 
developed during the 90s, can be used to better define break-
points.16 Conventional CGH (cCGH), originally designed for 
hybridization on metaphase chromosomes, makes use of dif-
ferentially labeled test DNA and reference DNA that are co-
hybridized with chromosomes to identify regions of copy number 
variation (CNV). To overcome limitations of the resolution pro-
vided by karyotyping and cCGH the technique was adapted to 
matrix-based hybridization protocols in array CGH (aCGH).17 A 
large variety of matrices is now available, offering different lev-
els of resolution and dynamic ranges (from one to several fold 
changes in copy number, as frequently observed in cancer cells). 
aCGH, often combined with single nucleotide polymorphism 
(SNP) arrays, is routinely used in clinical settings to diagnose 
prenatal and intellectual disabilities. Several array designs are 
available for the cancer genome (e.g., Agilent 400K CGH/SNP 
and Affymetrix CytoScan and OncoScan FFPE arrays). Such 
arrays are used in cancer clinical genomics to stratify lymphoma 
patients; for example, chronic lymphocytic leukemia/small 
lymphocytic lymphoma (CLL/SLL), large B-cell lymphoma 
(DLBCL), and mantle cell lymphoma (MCL). In basic research 
aCGH is extensively applied to analyze complex rearrangements. 
For example, Carvalho and colleagues applied a custom-designed 
44 k microarray to study genomic segments at the methyl CpG 
binding protein 2 (MECP2) and the proteolipid protein 1 (PLP1) 
loci that are characterized by a common genomic organization, 
duplication-inverted triplication-duplication.18 By mapping the 
junctions of breakpoints in a cohort of 9 subjects they provided 
evidence supporting the mechanism leading to the formation of a 
triplicated segment embedded within a duplication: duplication-
inverted triplication-duplication complex rearrangements are 
formed by the combination of homology-directed break-induced 
replication (BIR) with microhomology-mediated BIR or non-
homologous end joining (NHEJ) that involves replication fork 
repair after stalling and template switching (discussed below). 
A major limitation of aCGH is the inability to detect balanced 
translocations; in addition, as the technique is based on analysis 
of bulk DNA (DNA isolated from a pool of cells) it has restricted 
sensitivity to detect mosaic alterations (more than 20% of the 
population of cells must present the same alteration to enable 
detection).

Next-generation sequencing (NGS) approaches, including 
whole genome sequencing (WGS), promise to further advance 
our understanding of complex chromosomal alterations by 

precise mapping of breakpoints and junctions, thus enabling 
unprecedented sensitivity and resolution of structural and 
mutational changes. Improvements in WGS have allowed the 
discovery of complex chromosomal rearrangements in solid 
tumors.19 Furthermore, although these translocations were ini-
tially thought to be simple and balanced, deep sequencing has 
revealed that some are in fact quite complicated. WGS has 
revealed genomic architecture that is susceptible to complicated 
rearrangements and has narrowed down the sequence flanking 
the genomic alterations so that breakpoints can be identified. 
The single-nucleotide resolution of WGS enables mapping of 
chromosome regions too small for analysis by FISH or aCGH. 
A combination of WGS, SNP arrays, and FISH approaches were 
used in the discovery of the phenomenon of chromothripsis (or 
chromosome shattering), which shows a complicated pattern of 
multiple fusions at a single location.20 In the past few years WGS 
has been instrumental in revealing new causative mechanisms of 
chromosomal breaks and rearrangements.

High-throughput genome-wide translocation sequencing 
(HTGTS) and translocation capture sequencing (TC-Seq) were 
applied to identify translocation junctions in B cells upon induc-
tion of DNA double-strand breaks (DSBs) at specific locations 
in the genome.21,22 These studies identified a large number of 
translocations, revealing a marked association between transcrip-
tion start sites and translocation targets. The majority of trans-
location junctions were formed through end joining with short 
microhomologies. Although most cells repair induced DSBs by 
rejoining the ends without causing major genomic rearrange-
ments, a significant fraction of cells join the induced DSB ends 
to endogenous DSBs elsewhere in the genome, creating intra- and 
interchromosomal rearrangements. Translocations occur more 
frequently on the chromosome carrying the induced break and 
preferentially target transcribed chromosomal regions, even up 
to 50 Mb away.

The application of NGS sequencing to study chromosome 
alterations in cancer opens new and exciting directions of study 
but has certain challenges. Although the price of sequencing is 
decreasing dramatically, the cost of sequencing a mammalian 
genome remains high when considering that analysis of sev-
eral samples is usually required to address biological questions. 
Moreover, the analytical tools essential for WGS analysis in 
cancer samples are not yet fully developed. For example, in the 
case of chromothripsis, automated methods designed to detect 
or annotate high throughput sequencing data are not available. 
To address these limitations, several new technologies are being 
developed. One such method is ShatterProof, which uses struc-
tural variation calls (translocations, copy number variations, 
short insertions, and loss of heterozygosity) and performs robust 
statistical tests to accurately predict the presence and location of 
chromothriptic events.23 Another limitation of applying WGS 
studies to cancer cells is the need for high coverage (> 30 × ) to 
allow characterization of clonal heterogeneity by tumor biopsy. 
Despite these limitations, advances in technology have greatly 
improved our ability to identify and characterize chromosomal 
rearrangements, thus presenting the opportunity to address 
causal factors.
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The technologies described above have been instrumental 
for the mapping of genomic alterations, especially in the cancer 
genome where chromosomal alterations characterize many solid 
tumors and hematologic malignancies. As a result, specialized 
databases compiling a detailed inventory of chromosomal altera-
tions have been developed. The most comprehensive of these are 
the Mitelman Database (http://cgap.nci.nih.gov/Chromosomes/
Mitelman), which contains all published chromosome aber-
rations in neoplastic disorders with clinical features of more 
than 64,000 cancers, and the Catalogue of Somatic Mutations 
in Cancer (COSMIC) database,24 which currently reports the 
characterization of 327 types of gene fusions identified in more 
than 60,000 cancer cases (accessed May 5, 2014). Data available 
at this time indicate that gene fusions occur in approximately 

15% of all solid cancer cases analyzed, which is less frequent 
than the reported rate in hematological malignancies (16.2%). 
Chromosomal rearrangements might be found in more tumors 
as high throughput NGS sequencing becomes more widespread 
and affordable.

Simple and Complex Rearrangements Found  
in Cancers

The presence of simple and balanced rearrangements (summa-
rized in Table 2) can increase cancer risk. Simple rearrangements 
have no or limited alterations at the fusion ends whereas bal-
anced rearrangements fuse chromosomes without losing genetic 

Table 2. examples of simple balanced rearrangements found in cancers

Fusion partners Breakpoint Cancer Defect Targeted therapy

Philadelphia chromosome: 
breakpoint cluster region 

with c-abl (BCR-ABL1)
t(9;22)(q34;q11) CML, ALL, AML

Tyrosine kinase activation
Balanced

imatinib

Anaplastic lymphoma 
kinase gene with 

echinoderm microtubule-
associated protein like 4 

(ALK-eML4)

inv(2)(p21;p23) NSCLC
Tyrosine kinase activation

Balanced
Crizotinib

c-ros oncogene 1 (ROS1) 
with multiple genes

NSCLC, 
cholangiocarcinoma, 

glioblastoma multiforme,
gastric adenocarcinoma

Tyrosine kinase activation
Balanced and non-balanced

Crizotinib

AML1/eTO t(8;21)(q22;q22) AML

Aberrant recruitment 
of epigenetic modifiers 

affecting normal 
myelomonocytic 

development
Balanced

General chemotherapy 
(cytarabine and 
anthracycline)

Promyelocytic leukemia 
with retinoic acid receptor α 

(PML-RARA)
t(15;17)(q22;q21) AML

Nuclear receptor signaling 
and PML body assembly

Balanced

ATRA and arsenic oxide 
(AS203)

Mixed lineage leukemia 
(MLL)-unclassified partners

AML

Four types of unclassified 
fusion partners: (1) nuclear 

proteins, (2) cytoplasmic 
proteins, (3) histone 

acetyltransferases, (4) 
septins

Balanced

ATRA

Paired box with Forkhead 
box

(PAX3-FOXO1)
t(2;13)(q36;q14) ARMS

Transcriptional activation
Balanced

Thapsigargin

PAX7-FOXO1 t(1;13)(p36;q14) ARMS
Transcriptional regulation

Balanced and non-balanced
Targeting downstream 

pathways

FOXO3-MLL t(6;11)(q21;q23) Leukemia and ARMS
Transcriptional regulation

Usually balanced
ATRA

FOXO4-MLL t(X;11)(q13;q23) Leukemia and ARMS
Transcriptional regulation

Usually balanced
ATRA

FOXP1-PAX5 t(3;9)(p13;p13) Lymphoblastic lymphoma
Transcriptional regulation

Balanced and non-balanced
None

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; ARMS, alveolar rhabdomyosarcoma; ATRA, all-trans-retinoic acid; 
CML, chronic myelogenous leukemia; NSCLC, non-small cell lung cancer.
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information. Their role in cancer etiology was first described 
in 1960 with the discovery of the Philadelphia chromosome in 
patients with various forms of leukemia.25,26 The Philadelphia 
chromosome arises from a head-to-tail fusion of the breakpoint 
cluster region (BCR) with the gene encoding the c-abl (ABL1) 
proto-oncogene tyrosine kinase to generate the BCR-ABL fusion 
transcript. The BCR-ABL fusion generates a constitutively active 
tyrosine kinase that can transform cells and inhibit apoptosis 
induced by a variety of agents.27 Activation of protein kinases is 
seen in other gene fusions. For example, anaplastic lymphoma 
kinase (ALK) can be activated by an inversion that fuses the 
ALK gene with the echinoderm microtubule-associated pro-
tein like 4 (EML4) gene. This rearrangement occurs in 2–5% 
of non-small cell lung cancers (NSCLCs).28 C-ros oncogene 1 
(ROS1) receptor tyrosine kinase (conserved with ALK) is also 
activated in approximately 1% of NSCLCs and in other cancers 
(cholangiocarcinoma, glioblastoma multiforme, gastric adeno-
carcinoma) after fusion with a variety of genes.29-31 In addition to 
the Philadelphia chromosome, a variety of other balanced trans-
locations are commonly observed in hematologic malignancies.19 
For example, 10% of all cases of acute myeloid leukemia (AML) 
exhibit one of the following three fusions: (1) the N-terminal 
DNA-binding domain of AML1 with the Eight-Twenty One 
oncoprotein (ETO); (2) the promyelocytic leukemia (PML) gene 
with the retinoic acid receptor α (RARA); and 3) the mixed lin-
eage leukemia (MLL) gene with one of several partners.32 The 
AML-ETO fusion causes aberrant recruitment of epigenetic 
modifiers, thus affecting normal myelomonocytic development, 
whereas PML-RARA affects both nuclear receptor signaling and 
PML body assembly. In addition, the transactivation domains of 
the forkhead box (FOX ) gene family fuse with the DNA bind-
ing domains of a variety of genes to produce a fusion transcript 
that encodes an unregulated transcription factor. Such fusions 
include paired box (PAX) with FOXO133-35 and MLL with either 
FOXO3 or FOXO4. These translocations have been found in 
alveolar rhabdomyosarcoma and leukemia.36,37 Furthermore, 
PAX3-FOXO1 is associated with an aggressive phenotype and 
poor prognosis.38 The presence of fusion proteins that activate 
similar oncogenic pathways suggests that cancers of different 
molecular and cellular origin share common pathogenetic mech-
anisms determined by the transcriptional effector properties of 
the forkhead protein subfamily.39 Thus, simple and balanced 
chromosomal translocations can result in fusion proteins that 
enable cancer development.

More complex rearrangements are also found in cancer. 
These rearrangements have multiple joins at the fusions and can 
involve more than two chromosomes, and result in a change in 
genetic content as well as a change in the chromosomal linear 
structure. Complex genomic rearrangements have been reported 
in lymphoma.40-45 Complex chromosomal translocations lead-
ing to gene fusions are also found in solid cancers,19 including 
whole arm translocations and isochromosomes in head and neck 
squamous cell carcinoma,46 complex genomic rearrangements 
including inversions in pancreatic cancer,47 and rearrangements 
including tandem duplications in breast cancers.48,49 Palindrome 
structures were also found in cells derived from colon cancer, 

breast cancer, and embryonal rhabdomyosarcoma, and in pri-
mary medulloblastomas.50 Furthermore, rearrangements that 
have undergone chromothripsis have been identified, with tens 
to hundreds of fusions mapping to a single chromosomal loca-
tion.20,51,52 Chromothripsis has been detected in as many as 3% 
of cancers (and more might be found with wider application of 
WGS) and occurs in a wide range of cancers including leukemia, 
medulloblastoma, melanoma, glioma, sarcoma, bone cancer, 
colorectal cancer, renal cancer, and thyroid cancer.53 It appears 
that chromosomal disruption and pulverization might be linked 
to the generation of micronuclei as a consequence of mitotic 
errors.54 The discovery and understanding of these complex rear-
rangements is continuing to advance as technology improves yet 
the causal mechanisms are still not understood. Defects in the 
repair of DNA DSB repair and faulty DNA synthesis have been 
proposed as mechanisms underlying these rearrangements.40

Double Strand Break Repair Pathways that 
Influence Chromosomal Rearrangements

Multiple pathways are responsible for DNA DSB repair, 
including nonhomologous end joining (NHEJ), homologous 
recombination (HR), and break-induced replication (BIR). 
These pathways are important for maintaining chromosomal 
integrity. Conversely, their faulty application has the potential to 
cause chromosomal rearrangements (Fig. 1).

The NHEJ pathway repairs DSBs without a homologous 
DNA template; therefore, it is the predominate repair path-
way during G

1
 but also can be involved during S/G

2
.55 NHEJ 

components include the KU heterodimer composed of KU70 
and KU80, which binds to DNA ends together with the kinase 
DNA-PK

CS
. The XRCC4/DNA ligase IV heterodimer sub-

sequently ligates the DNA ends. Loss of any of these proteins 
results in a severe DSB repair defect that causes hypersensitivity 

Figure 1. Replication fork maintenance and double strand break repair 
can either suppress or cause chromosomal rearrangements. BiR, break-
induced replication; DSB, double-strand break; DSBR, double strand 
break repair; HR, homologous recombination; RF, replication fork; NHeJ, 
nonhomologous end joining; PRR; post replication repair; RFM, replica-
tion fork maintenance .
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to clastogenic agents and defective V(D)J recombination during 
lymphocyte development.56,57 NHEJ-deficient cells are predis-
posed to chromosomal alterations and telomere joining events 
that result in chromosome fusions.58,59 In contrast, NHEJ itself 
can also rearrange chromosomes by joining noncontiguous ends, 
as occurs in Fanconi anemia cells.60,61 This is a particularly inter-
esting find, because the Fanconi anemia pathway maintains rep-
lication forks in association with HR.62 Similarly, NHEJ enables 
chromosomal translocations in cells mutant for breast cancer 1 
(BRCA1), breast cancer 2 (BRCA2), and ataxia telangiectasia 
mutated (ATM),63,64 which are all tumor suppressors important 
for HR. Theoretically, NHEJ-mediated joining of chromosome 
ends after telomere deletion would result in dicentric products of 
two chromosomes. Similarly, NHEJ could join the ends of sister 
chromatids to generate a palindromic chromosome. Thus, NHEJ 
repairs DSBs to suppress rearrangements but can also inappropri-
ately join ends to yield rearrangements.

There are also alternative pathways to the classic KU-dependent 
NHEJ that have the potential to rearrange chromosomes.65 This 
alternative-NHEJ is poorly understood, but is known to be error 
prone because it frequently changes the DNA ends found at the 
joins.66,67 Furthermore, alternative-NHEJ can utilize micro-
homology to imprecisely join ends (microhomology-mediated 
end joining or MMEJ). Microhomologies are often found at the 
fusion joins of translocations in human cancer cells, implicating 
MMEJ as an enabler of cancer development and progression.68 
Thus, alternative end joining pathways also have the potential to 
rearrange chromosomes.

Homologous recombination pathways repair DSBs using a 
homologous template for fidelity, and HR is therefore restricted 
to S/G

2
 phases of the cell cycle. The RecA recombinase RAD51 

forms a filament on 3′ single DNA strands to induce annealing 
to the sister chromatid template.69 The recombination mediator 
BRCA2 assists in the formation and stability of the RAD51 fila-
ment. The RecQ helicase Bloom Syndrome mutated (BLM)70,71 
regulates unwanted recombination that occurs through the disso-
lution of Holliday junctions.72-75 Both BRCA2 and BLM suppress 
cancer, thereby demonstrating that deficient or unregulated HR 
is mutagenic. Expression of mutant RAD51 (K133A) in mam-
malian cells causes a large number of chromosomal rearrange-
ments, some of which are highly complex.15 The K133A mutation 
prevents binding of ATP to the highly conserved Walker A motif 
and disables the ability of RAD51 to induce topological changes 
in duplex DNA in an ATP-dependent manner. This mutant is 
highly toxic when expressed in proliferating cells. In addition, 
normally functioning HR can also rearrange chromosomes if the 
invading strand anneals to a homologous but nonallelic substrate, 
which creates a potential problem with repeated sequences.

Break-induced replication repairs one-ended DSBs or gaps 
during replication.76,77 A single strand at the DSB or gap invades 
a complementary strand to initiate DNA synthesis that has the 
potential to proceed to the end of the chromosome, causing 
loss of heterozygosity. BIR in yeast is dependent on Rad52 and 
the Pol32 subunit of DNA polymerase delta, demonstrating its 
dependence on DNA synthesis. In mammals, the Pol32 ortho-
log, POLD3, is required for cell cycle progression and processive 

DNA synthesis in cells undergoing replicative stress induced by 
cyclin E overexpression. Cyclin E overexpression results in BIR-
mediated, POLD3-dependent segmental duplications.78 POLD3-
mediated BIR facilitates genomic amplifications of up to 200 kb. 
Thus, BIR can also cause chromosomal rearrangements.

DNA Synthesis Pathways that Influence 
Chromosomal Rearrangements

As inappropriate NHEJ, HR, and BIR can result in chro-
mosomal rearrangement, pathways that suppress DSB genera-
tion during DNA synthesis would decrease the need to engage 
these potentially mutagenic pathways (Fig. 1). DSB formation 
can occur when a replication fork encounters an incongruity in 
DNA such as secondary structure, damage, a protein adduct, or a 
transcription bubble.79 These impediments have the potential to 
stall or collapse replication forks. Whereas a stalled fork is simply 
a temporary pause, a collapsed fork has lost the replisome and can 
lead to fork failure or “floundering” if not properly resolved.40 
A myriad of proteins can process unresolved collapsed forks 
with the potential formation of intermediate structures such a 
regressed fork (chickenfoot), a hemicatenane, and a single-strand 
gap.73,80-82 These structures are susceptible to formation of one-
ended DSBs that will become two-ended DSBs at the point where 
forks converge, thus invoking DNA repair pathways. To avoid 
fork collapse, the nascent strand could simply switch templates to 
the complementary sister chromatid to bypass the DNA incon-
gruity. In such circumstances, the lesion or alternative structure 
is bypassed but not corrected. Lesion bypass mechanisms appear 
to be important for replication fork maintenance but are not well 
understood.

It is possible that components of the HR pathway facilitate 
lesion bypass. In yeast, HR suppresses blocked replication forks 
through a template exchange mechanism83 and in mammals a 
RAD51-dependent pathway responds to stalled replication forks 
without a DSB.84 RAD51 was also purified from the nascent 
replication strand before formation of DSBs.85 Furthermore, the 
RAD51 K133A mutant shows impaired replication fork restart.15 
RAD51 overexpression and enhanced RAD51 filament stabil-
ity also rescue nascent strand degradation in FANCD2-mutant 
cells.62 Moreover, after nucleotide depletion, BRCA2 protects 
nascent replication strands from degradation and enables repli-
cation fork restart.62,86,87 BLM similarly enables replication fork 
recovery. Moreover, RAD51, BRCA2, and BRCA1 minimize 
long-tract gene conversion in response to stalled forks, but not 
DSBs.88 The response of a RAD51-mediated pathway to stalled 
replication forks is consistent with a potential template switch 
mechanism.

Postreplication repair (PRR) is a lesion bypass pathway that 
suppresses broken replication forks to maintain genome stabil-
ity. The term PRR is actually a misnomer because the lesion is 
not repaired but bypassed, and this pathway may also be called 
lesion bypass or DNA damage tolerance. There are two branches 
to PRR that are best understood in yeast.89,90 The first branch 
is translesion synthesis (TLS), which bypasses lesions simply by 
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exchanging a high fidelity replication polymerase with a transle-
sion synthesis polymerase. TLS is induced by monoubiquitination 
of PCNA lysine 164 (K164) by the E2/E3 ubiquitinase RAD6/
RAD18. A translesion polymerase then replaces the processive 
polymerase to bypass the lesion. Some TLS polymerases have low 
stringency and introduce mismatches at the base lesion, and as 
a consequence are error prone.91 TLS is conserved from yeast to 
mammals. The second branch of PRR is error-free postreplication 
repair (EF-PRR), which bypasses the lesion through a template 
switch. EF-PRR is induced by monoubiquitination of PCNA 
lysine K164 by RAD6/RAD18 followed by polyubiquitination 
of the previously monoubiquitinated K164 by the E2/E3 ubiq-
uitinase UBC13-MMS2/RAD5. EF-PRR is poorly understood 
in yeast and even more elusive in higher eukaryotes. However, 
RAD6/RAD18 and UBC13-MMS2 are conserved from yeast 
to mammals suggesting conservation of function. In addition, 
mammals possess two functional yeast RAD5 orthologs: heli-
case-like transcription factor (HLTF) and SNF2 histone-linker 
PHD-finger RING-finger helicase (SHPRH). Both HLTF 
and SHPRH mediate PCNA polyubiquitination and suppress 
chromosomal alterations92,93; however, they are not redundant 
because they impart lesion specificity.94 Furthermore, HLTF has 
DNA translocase activity that reverses regressed forks95 and can 
form a D loop independent of RAD51 and RAD54,96 both of 
which suggest a mechanism for strand switching. Thus, EF-PRR 
in mammals likely suppresses replication fork anomalies to mini-
mize fork collapse.

Template switch pathways have been mostly studied in bacteria 
and yeast by observing the switch between nonallelic repeats that 
result in a chromosomal alteration. In bacteria, a template switch 
was observed between inverted97,98 and direct99 repeats and found 
to be independent of the recA recombinase. In yeast, a template 
switch between repeats occurred during BIR.100 Faulty template 
switching was also observed between inverted repeats during rep-
lication that required RAD59, but not RAD51.101 In fission102 
and budding103,104 yeast, replication-based pathways without 
a DSB fuse inverted repeats to generate palindromic chromo-
somes. In fission yeast, HR was found to be primarily respon-
sible for fusing repeats after replication forks were experimentally 
induced to stall at a reporter. In budding yeast, a genetically 
undefined pathway was found to be responsible for spontaneous 
inverted repeat fusion and this process was suppressed by HR 
and EF-PRR. Thus, template switch-mediated repeat fusion is 
observed in bacteria and yeast, although the causal pathways for 
spontaneous fusion are not fully understood.

Mammalian cells are potentially vulnerable to template 
switch-mediated rearrangements because of the high number of 
repeats found in the genome. Approximately 11% of the human 
genome is composed of 300-bp Alu repeat elements and an addi-
tional 5% includes larger repeat regions called low copy number 
repeats (LCRs).105 Furthermore, pericentromeres, centromeres, 
and telomeres are composed of repeats that are dispersed in the 
chromosomal arms.106-109 These repeats are potential substrates 
for rearrangements.105 Replication forks are prone to stalling in 
areas dense with repeats such as telomeres,110 tRNA genes,111,112 
and triplet repeats.113,114 Inverted repeats can form hairpins that 

have the potential to stall replication forks and cause chromo-
somal rearrangements in yeast115 and stimulate PCNA polyu-
biquitination in human cell-free extracts.116 Rearrangements 
are found at palindromic structures in humans,117 suggesting 
that they originate from a homology-based mechanism com-
bined with defects in DSB repair20 or DNA synthesis.118-120 DNA 
repeats pose a particular problem for replication forks because 
they can form cruciforms, hairpins, triplex H-DNAs, left handed 
Z-DNAs, and slipped strand S-DNAs.121 Repeat-induced chro-
mosomal rearrangements are common. Copy number varia-
tion is a spontaneous change in the number of DNA segments 
that occurs between repeats.44,120 Moreover, monozygotic twins 
display different DNA CNV profiles, demonstrating plasticity 
involving repeats.122 CNV is a common event that is important 
for murine123 and primate124,125 evolution. Palindromic chromo-
somes are also found in human cells50,117 and the involvement 
of repeats at the rearrangement joins suggests a DNA synthesis 
mechanism such as faulty template switch or fork stalling and 
template switching.40,45 The etiology of these structural variations 
is not known, but could involve defects in DSB repair or DNA 
synthesis.

Recently, we described two template switch pathways in wild 
type mouse embryonic stem cells that fused inverted repeats to 
generate unstable multipericentric chromosomes.14 The level of 
sequence identity within the repeats determined pathway choice: 
exposure to γ-radiation enhanced the fusion of identical but 
not mismatched repeats whereas exposure to UV light had the 
opposite affect. Thus, genotoxic exposure delineated two path-
ways that fuse repeats based on sequence identity. Even though 
these are distinct pathways, both appear to fuse repeats as a con-
sequence of replication fork stalling rather than DSB repair since 
fusion of both identical and mismatched repeats was spontaneous 
(a DSB was not induced) and enhanced by hydroxyurea-induced 
replication fork stalling (hydroxyurea depletes nucleotides to stall 
forks).

We hypothesized that HR enabled identical repeat fusion 
because HR repairs damage caused by hydroxyurea and 
γ-radiation but not UV light84,126 and only identical repeats con-
tain sufficient homology for HR.127 Repeat fusion was tested in 
BLM-deficient cells which exhibit unregulated HR.128 We found 
that BLM-deficient cells exhibited enhanced fusion of identical, 
but not mismatched, repeats and that reducing the level of either 
RAD51 or BRCA2 substantially reduced identical repeat fusion 
in these cells.14 The existence of a BLM-regulated pathway that 
depends on RAD51 and BRCA2 and fuses identical, but not mis-
matched, repeats is consistent with HR.

We hypothesized that EF-PRR fuses mismatched repeats 
because EF-PRR, as measured by PCNA ubiquitination, pro-
cesses damage induced by UV light but not by γ-radiation.93,129 
Repeat fusion was tested in RAD18-mutant cells130 which do not 
efficiently ubiquitinate PCNA14 and should therefore be defec-
tive in EF-PRR. We found that lack of RAD18 slightly decreased 
identical repeat fusion, possibly reflecting a subtle role in HR.131-

133 In contrast, loss of RAD18 almost completely ablated mis-
match repeat fusion implicating a role for EF-PRR.14 Moreover, 
mutation of a nonprocessive 3′®5′ exonuclease, TREX2, ablated 
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mismatch repeat fusion but enhanced identical repeat fusion, 
clearly delineating these pathways. TREX2 appears to be epi-
static with RAD18 with regard to PCNA ubiquitination and both 
are important for replication fork maintenance. These observa-
tions are consistent with an epistatic relationship for RAD18 and 
TREX2 mediating mismatch repeat fusion through EF-PRR.

Both the BLM-regulated fusion of identical repeats and the 
RAD18/TREX2-mediated fusion of mismatched repeats gener-
ate very complicated chromosomal rearrangements that include 
dipericentrics and EPTs.14 We propose that a DNA synthesis 
pathway causes dipericentrics as a result of a template switch 
that bypasses a hairpin followed by replication to the telomere. 
Subsequent breakage-fusion-bridge cycles cause further altera-
tions as chromosomes segregate during mitosis. Interestingly, 
using a combination of SKY and LSPs on interphase nuclei we 
showed that a repeat fusion reporter was amplified, mobile, and 
located in micronuclei. Thus, template switch mechanisms have 
the potential to generate extrachromosomal double minutes that 
enhance cancer development and progression and cause resis-
tance to chemotherapeutic agents.134 These repeat fusion path-
ways could influence cancer etiology and drug effectiveness.

Targets for Cancer Therapy

Simple balanced chromosomal rearrangements generate 
gene fusions that can be exploited for cancer therapy. Cancers 
with rearrangements that activate kinases might be susceptible 
to small molecule inhibitors,135 for example the tyrosine kinase 
inhibitors imatinib and crizotinib are for cancers possessing the 
BCR-ABL fusion protein-positive cancers136 and for EML4-ALK 
and ROS1-positive NSCLC,28,137 respectively. Another example 
is the use of all-trans-retinoic acid (ATRA) for PML patients 
with the PML/RARA fusion. Retinoic acids are key players in 
myeloid differentiation and act through their agonistic nuclear 
receptors (RAR α/RXR) to modulate the expression of target 
genes. The PML-RARA fusion generates an oncoprotein that 
blocks granulocytic differentiation, and ATRA is thought to 
modulate cellular differentiation that is dependent on PML-
RARα proteolysis.138 Patients that become resistant to ATRA are 
treated with arsenic trioxide (As2O3), which exerts its therapeu-
tic effect by promoting degradation of the PML/RARA protein 
that drives the growth of acute promyelocytic leukemia cells.139 
ATRA is also able to overcome the differentiation block induced 
by MLL chimeric proteins in acute promyelocytic leukemia and 
therefore constitutes the standard of care for induction therapy 
in this disease. In addition to kinase inhibitors, thapsigargin, a 
sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) inhibitor, 
targets the PAX3-FOXO1 fusion. Thapsigargin activates AKT to 
alter cytosolic calcium levels by blocking the ability to pump cal-
cium into the sarcoplasmic and endoplasmic reticulum, thereby 
inhibiting the fusion of autophagosomes with lysosomes and ulti-
mately causing endoplasmic reticulum stress and cell death.140,141 

Thus, the fusion products from simple balanced translocations 
represent good therapeutic targets for the treatment of cancer.

In addition to targeting fusion proteins, future cancer therapies 
could attack the pathway that compensates for the primary DNA 
repair defect that initially caused the cancer. The compensatory 
pathway is an attractive target because it would attack the tumor 
on multiple fronts. The first front would take advantage of syn-
thetic sickness/lethality.142 A drug that targets the compensatory 
pathway would enhance sensitivity to commonly used cytotoxic 
drugs that cause DNA damage. Such a drug would be especially 
effective if the compensatory pathway is adept at bypassing the 
cytotoxic drug-induced lesions.143 In addition, this class of drug 
would have a good therapeutic index for cases where only the 
cancer, but not the patient, is mutant for the primary pathway as 
a result of loss of heterozygosity. The second front would prohibit 
further genome modification.144 The compensatory pathway is 
often mutagenic because it is overused and under-regulated in an 
attempt to atone for the primary defect. In addition, lesion bypass 
pathways such as TLS are often error prone.143 Thus, a drug that 
targets the compensatory pathway would suppress mutations that 
might otherwise enhance cancer development and metastasis and 
lead to drug resistance. These novel drugs would be especially 
attractive when lesion bypass mechanisms compensate for DNA 
repair defects because such mechanisms are nonessential for cell 
and organism viability,145,146 unlike NHEJ56,147-149 and HR.150,151 
Thus, a drug that attacks a compensatory pathway has the poten-
tial to both enhance sensitivity to genotoxic therapeutics and 
reduce further mutations.

Summary

Chromosomal rearrangements frequently found in can-
cers are proposed to facilitate cancer development, progression, 
metastasis, and drug resistance. Cytogenetics and NGS have 
revealed simple and complex chromosomal rearrangements in 
many cancer cells with more expected as throughput increases. 
Knowledge of such rearrangements will enable drug develop-
ment. Many drugs that target fusion proteins generated from 
simple rearrangements are currently used in treatment of cancers. 
Novel drug strategies could be developed that attack compensa-
tory pathways to enhance the efficacy of current cytotoxic drugs 
through synthetic sickness/lethality and suppress continued rear-
rangements that would otherwise facilitate cancer progression, 
metastasis, and drug resistance. Thus, a better understanding 
of cancer-causing chromosomal rearrangements will enable the 
development of novel anticancer regimens.
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