
molecules

Article

High Milk-Clotting Activity Expressed by the Newly
Isolated Paenibacillus spp. Strain BD3526

Feng Hang 1,2,3, Peiyi Liu 2, Qinbo Wang 2, Jin Han 2, Zhengjun Wu 2, Caixia Gao 2,
Zhenmin Liu 2, Hao Zhang 1,3 and Wei Chen 1,4,*

Received: 16 October 2015 ; Accepted: 6 January 2016 ; Published: 12 January 2016
Academic Editor: Nancy D. Turner

1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology,
Jiangnan University, Wuxi 214122, China; fhang0427@126.com (F.H.); zhanghao@jiangnan.edu.cn (H.Z.)

2 State Key Laboratory of Dairy Biotechnology, Technology Center and Dairy Research Institute of Bright
Dairy & Food Co. Ltd., Shanghai 200436, China; liupeiyi@brightdairy.com (P.L.);
wangqinbo@brightdairy.com (Q.W.); hanjin@brightdairy.com (J.H.); wuzhengjun@brightdairy.com (Z.W.);
gaocaixia@brightdairy.com (C.G.); liuzhenmin@brightdairy.com (Z.L.)

3 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
4 Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University,

Beijing 100048, China
* Correspondence: chenwei66@jiangnan.edu.cn; Tel.: +86-510-8588-4620; Fax: +86-510-8591-2155

Abstract: Paenibacillus spp. BD3526, a bacterium exhibiting a protein hydrolysis circle surrounded
with an obvious precipitation zone on skim milk agar, was isolated from raw yak (Bos grunniens)
milk collected in Tibet, China. Phylogenetic analysis based on 16S rRNA and whole genome
sequence comparison indicated the isolate belong to the genus Paenibacillus. The strain BD3526
demonstrated strong ability to produce protease with milk clotting activity (MCA) in wheat bran
broth. The protease with MCA was predominantly accumulated during the late-exponential phase of
growth. The proteolytic activity (PA) of the BD3526 protease was 1.33-fold higher than that of the
commercial R. miehei coagulant. A maximum MCA (6470 ˘ 281 SU mL´1) of the strain BD3526 was
reached under optimal cultivation conditions. The protease with MCA was precipitated from the
cultivated supernatant of wheat bran broth with ammonium sulfate and purified by anion-exchange
chromatography. The molecular weight of the protease with MCA was determined as 35 kDa by
sodium dodecyl sulfate-polyacrylamide gels electrophoresis (SDS-PAGE) and gelatin zymography.
The cleavage site of the BD3526 protease with MCA in κ-casein was located at the Met106–Ala107

bond, as determined by mass spectrometry analysis.
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1. Introduction

Traditionally used as a milk coagulant, calf rennet plays a critical role in the production of cheese.
Chymosin (EC3.4.23.4), a predominant aspartic protease (AP) in calf rennet, specifically cleaves the
Phe105–Met106 peptide bond in the κ-casein (κ-CN). After cleaving κ-CN, the destabilized casein
micelles consequently aggregate to form cheese curd. However, decrease in the global supply of
calf rennet versus the increasing demand of coagulant in the production of cheese necessitates the
exploration for potential substitutes [1]. Candidate calf rennet substitutes has mainly been resourced
from animals beyond calf [2–4], plants [5–12], genetic engineering and microorganisms [13].

The extracellular proteases of many microorganisms behave similarly to chymosin, and are
therefore potential alternatives for rennet. Proteases from over 100 fungal sources have been reported
to display milk-clotting activity (MCA) and fungal coagulants, especially those originated from
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Rhizomucor miehei, R. pusillus and Endothia parasitica, have already been widely used in commercial
cheese-making [14]. In contrast, few commercial applications of bacterial coagulants have been
reported, despite a marked increase in the documentation of bacterial proteases exerting MCA [15–18].
Recently, the milk-clotting proteases from Bacillus amyloliquefaciens and Bacillus spp. P45 have been
successfully applied to the preparation of cheddar and cream cheese [19,20]. So far, there have been
few reports on milk-clotting enzymes expressed by members of the genus Paenibacillus.

In this study, a potentially new coagulant producer, Paenibacillus spp. BD3526, was screened
and identified. The parameters of the BD3526 protease with MCA in milk curding was assessed
and compared with some commercial coagulants. The cultivation conditions were optimized for the
strain BD3526 to express maximum MCA. The BD3526 protease with MCA was precipitated from the
cultivated supernatant of wheat bran broth with 60% saturated ammonium sulfate and purified by
anion-exchange chromatography. The molecular weight of the protease was determined by SDS-PAGE
and gelatin zymography. The cleavage site of the BD3526 protease in κ-CN was determined by mass
spectrometry analysis.

2. Results and Discussions

2.1. Morphological Characteristics of BD3526

The BD3526 colony exhibited an obvious protein hydrolysis circle around with a casein
precipitation zone on skim milk agar (Figure 1A), indicating that the strain secretes protease with
promising MCA [17].
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The BD3526 cells were Gram-positive, motile, end-rounded and non-swelling rods with 
peritrichous flagella (Figure 1C). The cells were 0.4~0.6 μm in width and 5~8 μm in length (Figure 1B). 
The BD3526 strain was proposed as a novel species belonging to the genus Paenibacillus, based on the 
results of 16S rRNA and whole genome sequencing. The 16S rRNA and whole genome sequence of 
this strain is available in GenBank under the accession No. KM978955.1 and No. CP013023.1, respectively. 

Figure 1. The protein hydrolysis zone and casein precipitation circle of a single colony of Paenibacillus
spp. BD3526 on skim milk agar (A) and the micrographic characteristics of cell observed by scanning
electron microscopy (B) and atomic force microscope (C).

The BD3526 cells were Gram-positive, motile, end-rounded and non-swelling rods with
peritrichous flagella (Figure 1C). The cells were 0.4~0.6 µm in width and 5~8 µm in length (Figure 1B).
The BD3526 strain was proposed as a novel species belonging to the genus Paenibacillus, based on the
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results of 16S rRNA and whole genome sequencing. The 16S rRNA and whole genome sequence of this
strain is available in GenBank under the accession No. KM978955.1 and No. CP013023.1, respectively.
Based on 16S rRNA and whole genome sequence comparison, although the strain BD3526 is most
closely related to the recently described P. shenyangensis A9T (= JCM 19307T = CGMCC 2040T), and a
homologous gene sequence possible for encoding the protease in the latter has been submitted, no
assay of the enzyme has been carried out [21].

2.2. Effect of Concentration of Wheat Bran on the Expression of MCA by BD3526

Wheat bran has been reported as an ideal protease production medium for microorganisms [22,23].
The effect of wheat bran broth with concentrations from 1% to 6% (w/v) on the expression of MCA
by BD3526 at 30 ˝C and 180 rpm was investigated. Wheat bran concentration and cultivation time
had a significant influence on the protease production by BD3526 (p < 0.01, Figure 2). The MCA in 1%
and 2% (w/v) wheat bran broth showed a downward trend at all points observed, whereas those in
3%–6% (w/v) wheat bran broth tended to rise first and then fall gradually. In 1% (w/v) wheat bran
broth, no residual MCA was observed at 48 h, probably due to depletion of nutrients [24] and reduced
viable cell density. The optimal concentration of wheat bran for protease production by BD3526 was
30 g¨L´1 and peak MCA was achieved at 30 h of cultivation. At higher concentrations, the wheat bran
broths were much thicker, which might hinder oxygen dissolving, and thus limit the propagation of
the BD3526 cells, leading to low expression of protease. Although the optimal concentration of wheat
bran broth required for BD3526 to produce protease was much lower than that for B. amyloliquefaciens
D4 (180 g¨L´1 ), the peak MCA observed in the former was much higher [16].
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Figure 2. The milk-clotting activity (MCA) in the BD3526 cultivated supernatants of wheat bran broth
of different concentrations and periods. The cultivation was carried out in 250 mL flask containing
50 mL wheat bran broth at 30 ˝C and 180 rpm. The columns were shown as mean ˘ S.D. *: p < 0.05,
**: p < 0.01 and ns: no significant (p > 0.05).

Microbial proteases are largely accumulated during post-exponential and stationary phases,
and thus are generally regulated by carbon and nitrogen stress [25]. The protease with MCA was
accumulated in the late-exponential phase of BD3526 (12–18 h). The cultivation time required to reach
the peak MCA by BD3526 was longer than those required by Enterococcus faecalis TUA2495L [26],
B. subtilis YB-3 [27] and B. subtilis natto [28], but much shorter than those required by B. amyloliquefaciens
JNU002 [17], B. subtilis [22], B. licheniformis USC13 [29], and fungal milk-clotting protease
producers [24,30–33]. The rapid production of the enzyme by BD3526 seems to be a promising
advantage for industrial purposes.
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2.3. Effect of Rotation Speeds on the Expression of MCA by BD3526

Rotation speeds had significant effects on the production of protease with MCA by BD3526
(p < 0.01). The MCA in the supernatants of 3% (w/v) wheat bran broth at different rotation speeds
and cultivation times were shown in Figure 3. Increasing rotation speeds from 140 to 300 rpm were
beneficial for BD 3526 to express protease, resembling the results obtained in R. miehei [34], which
indicated oxygen supply should be crucial for enzyme production by BD3526 in liquid cultures. The
highest MCA was observed at 300 rpm (4120 ˘ 174 SU mL´1), the upper limit of the rotary shaker
used in the study (Yiheng HZQ-X300C, Shanghai, China). It could be speculated that at higher rotation
speeds or enhanced levels of oxygen dissolution, even higher levels of MCA might be achieved. The
optimal rotation speed of 300 rpm for the BD3526 strain to produce protease was higher than those
required for B. amyloliquefaciens D4 [35], M. mucedo DSM 809 [33] and B. subtilis [22] in shake-flask
fermentations, which might be caused by the difference in the medium or the rotating semi-diameter
of the shaker employed.
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2.4. Effect of Liquid Volume on the Expression of MCA by BD3526

The oxygen transfer coefficient KLa in shake-flasks has been reported to decrease with the
increment in liquid volume in the flask and increase with the enhancement of the shaker speeds [36].
To investigate the concentration of dissolved oxygen in the medium on the MCA expression, the liquid
volume in the flask was reduced from 50 mL to 10 mL and the cultivation in 3% (w/v) wheat bran
broth was carried out at 30 ˝C and 300 rpm. The MCA in the supernatant increased as the volume of
liquid decreased from 50 to 30 mL, but decreased thereafter (Figure 4). The viable cell counts were
7.5ˆ 108, 8.1ˆ 108, 1.2ˆ 109, 7.8ˆ 108 and 7.3ˆ 108 CFU mL´1 in 10, 20, 30, 40 and 50 mL of medium
in 250 mL flasks respectively, after 20 h cultivation. Higher availability of dissolved oxygen favored
a high cell density of BD3526 and ultimately resulted in a high expression of MCA. The maximum
MCA of 6470 ˘ 281 SU mL´1 was achieved in 30 mL broth in 250 mL flask at 20 h and 300 rpm, much
higher than the peak MCA observed in 50 mL liquid in 250 mL flask at 300 rpm for 30 h (Figure 3).
Our result was in agreement with that reported by Ding [18], who found the peak MCA was enhanced
1.33-fold and cultivation time was shortened by 18 h through a two-stage oxygen supply control
strategy. The MCA expressed by BD3526 was much higher than most reported microorganisms in
submerged fermentation (Table 1) [22,33,37–42].
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Table 1. Comparison of milk-clotting protease production, type and molecular weight among
different microorganisms.

Microorganism Enzyme Production Type MW (kDa) Reference

R. miehei NRRL 3420 1200 SU mL´1 AP - [38]
R. pusillus 1026 SU mg´1 protein AP 49 [43]

M.mucedo DSM 809 130 SU mL´1 AP 32.7 [33,44]
Thermomucor indicae-seudaticae N31 60.5 SU mL´1 AP - [23]

Amylomyces rouxii 1.9 SU mL´1 AP 40 [45,46]
B. amyloliquefaciens D4 2683 SU mL´1 MP 58.2 [16,35]

B. amyloliquefaciens JNU002 6590.41 SU mL´1 MP 28 [17,18]
B. subtilis natto 685.7 SU mL´1 - - [28]

B. subtilis B1 1129.05 SU mL´1 - - [15]
B. subtilis YB-3 200 SU mL´1 MP 42 [27]

B. subtilis MTCC 10422 - - 27 [47]
B. sphaericus NRC 24 1212 SU mL´1 SP - [39]

B. licheniformis USC13 45 U mL´1 * SP 34 [29]

* Determination and definition of milk-clotting activity were different from Soxhlet unite; AP, aspartic protease;
MP, metalloprotease; SP, serine protease; MW, molecular weight; -, not mentioned.

2.5. Effect of Cultivation Temperature on the Expression of MCA by BD3526

The production of enzymes by microorganisms is profoundly affected by cultivation temperature.
The effect of cultivation temperature on the expression of MCA by BD3526 in 3% (w/v) wheat bran
broth at 300 rpm for 20 h was shown in Figure 5. The MCA peaked at 30 ˝C, close to the optimal
temperature required by Amylomyces rouxii [45], Aspergillus oryzae [48], Mucor spp. J20 [30] to express
coagulants, but lower than those required by B. amyloliquefaciens D4 [35], B. subtilis natto [28] and
Mucor miehei [49,50]. At cultivation temperatures higher or lower than 30 ˝C, the MCA expressed by
BD3526 decreased significantly (p < 0.01). The MCA was almost undetectable when the strain was
cultivated at temperatures lower than 20 ˝C or exceeding 40 ˝C.
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2.6. Characterization of BD3526 Protease

The crude milk-clotting proteases were separated into five peaks on the DEAE Sepharose Fast
Flow column eluted with a linear gradient of NaCl from 0 to 0.75 M, with only one peak exerting
MCA (Figure 6). The targeted protein was eluted out at 0.38–0.45 M NaCl. The purified enzyme was
detected to be a single band with an apparent molecular mass of 35 kDa on SDS-PAGE (Figure 7A,
lane 1). To ascertain the purified protein with protease activity, the crude and purified enzymes were
further assayed with gelatin zymography. There was one clear hydrolytic band in the purified and
crude enzyme on the gelatin zymography (Figure 7B, lanes 1 and 2), indicating no other proteins
exerted PA beyond the 35 kDa protein band in crude enzyme. The purified enzyme obtained from
DEAE Sepharose Fast Flow chromatography was further checked by hydrophilic interaction liquid
chromatography. The purified enzyme displayed a major symmetrical peak with a retention time of
2.560 min in the HPLC, and the purity of the enzyme reached 98.8% ˘ 0.2% calculated from the target
peak area to total peak area (Figure 7C).
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One of the essential characteristics of a milk-clotting protease suitable in the manufacture of 
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release para-κ-casein and glycomacropeptide (GMP) [14]. κ-CN (5 mg·mL−1) was incubated with 
BD3526 protease at the final MCA of 0.1 SU mL−1 at 35 °C for 3 min, and the proteolytic peptides were 
determined by mass spectrometry analysis [51]. According to the detected peptides (Table 2), the 
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site, the Met106–Ala107 bond of κ-CN might be the primary proteolytic site of BD3526 protease and the 
other sites could be attributable to the consequent proteolysis of the hydrophilic peptide, κ-CN (f107–169). 

Figure 7. (A) Sodium dodecyl sulfate polyacrylamide gels electrophoresis patterns of crude and purified
Paenibacillus spp. BD 3526 milk-clotting protease. Lane M, molecular weight marker proteins; lane 1,
SDS-PAGE profile of the purified enzyme; lane 2, SDS-PAGE profile of the crude enzyme; (B) Gelatin
zymography of purified and crude Paenibacillus spp. BD 3526 milk-clotting protease. Lane 1, gelatin
zymography of the purified enzyme and Lane 2, gelatin zymography of the crude enzyme; (C) The
hydrophilic interaction liquid chromatography (HILIC) elution profile of the purified Paenibacillus spp.
BD 3526 milk-clotting protease.

The residual MCA were more than 90% in the presence of 0.02 mM pepstatin A (inhibitor
of aspartate protease), 1 mM PMSF (inhibitor of serine protease), and 4 mM 2-iodoacetamide
(inhibitor of cysteine protease), revealing that this enzyme did not belong to aspartate protease,
serine protease, or cysteine protease. The enzyme activity was completely inhibited by 5 mM
of ethylenediaminetetraacetic acid (EDTA), indicating that it was a metalloprotease. This result
suggested the protease was different from other reported bacterial coagulants, such as those from
B. amyloliquefaciens D4 [35], B. amyloliquefaciens JNU002 [17], B. subtilis YB-3 [27] and B. licheniformis
USC13 [29], in both molecular weight and type, as listed in Table 1.

One of the essential characteristics of a milk-clotting protease suitable in the manufacture of
cheese is to specifically cleave at or immediately adjacent to the Phe105–Met106 bond of κ-CN and
release para-κ-casein and glycomacropeptide (GMP) [14]. κ-CN (5 mg¨mL´1) was incubated with
BD3526 protease at the final MCA of 0.1 SU mL´1 at 35 ˝C for 3 min, and the proteolytic peptides
were determined by mass spectrometry analysis [51]. According to the detected peptides (Table 2), the
cleavage sites were predominantly located in the macropeptide moiety of κ-CN at the Met106–Ala107,
Glu129–Pro130, and Asp148–Ser149. Based on the occurrence frequency of each amino acid at the cleavage
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site, the Met106–Ala107 bond of κ-CN might be the primary proteolytic site of BD3526 protease and
the other sites could be attributable to the consequent proteolysis of the hydrophilic peptide, κ-CN
(f107–169).

Table 2. Identity of peptides produced from kappa-casein by BD3526 milk-clotting protease.

Observed
Mass

Calculated
Mass ∆ppm Missed

Cleavages Peptide Sequences n

2464.3154 2464.3173 1.14 0 M.AIPPKKNQDKTEIPTINTIASGE.P 11
4394.2116 4394.2228 2.54 0 M.AIPPKKNQDKTEIPTINTIASGEPTSTPTTEAVESTVATLED.S 9

n, number of peptides.

2.7. Comparison of the BD3526 Protease with Commercial Coagulants

Apart from the yields of microbial proteases with MCA, MCA/PA ratio is also a very important
criterion for evaluating their potential as rennet substitutes [35]. Milk-clotting protease with strong PA
would excessively hydrolyze caseins, and thus led to cheese yield reduction, flavor and texture defects.
PA of milk-clotting protease varies greatly in terms of determination and definition methods [32,52],
which complicates the comparisons among different studies. Thus, MCA/PA of different milk-clotting
proteases should be assessed under the same conditions, and similar to those employed in the
cheese-making. Released amino acids (e.g., tyrosine) in whey, one of the assays usually employed to
measure proteolysis, is efficient to reflect the PA of coagulant [47].

Curd forming and whey syneresis were positively correlated with the PA of coagulants. At 10-,
20-, 40-, 60- and 90-min intervals, curd forming and proteolysis by different coagulants including the
BD3526 protease were assayed. Curds formed 10 min after the addition of coagulants remained intact,
without excessive proteolysis and whey syneresis until 40 min. The increments of concentration of
tyrosine in the whey resulted by Chy-MAX®, rennet, Marzyme® 150 MG and BD3526 protease at
90 min were 0.02, 0.03, 0.09 and 0.12 µmol¨mL´1, respectively (Table 3). The MCA/PA ratio of the
R. miehei coagulant is the lowest among the commercially microbial coagulants tested [14,49,53], which
was 1.6 to 4.5 folds higher than that of recombinant chymosin [44]. As the coagulants added at the ratio
of 1/20 (v/v), the final MCA in the reconstructed skim milk was approximately 4 SU mL´1 and the
MCA/PA ratios of chymosin, rennet, R. miehei coagulant and BD3526 protease were 200, 133.33, 44.44
and 33.33, respectively. The MCA/PA ratio of BD3526 protease was approximately the same level to
that of R. miehei coagulant, which indicated the potential of BD3526 protease as a rennet substitute.

Table 3. Changes of tyrosine concentration in the whey of curded skim milk by different coagulants.

Coagulants Tyrosine Concentration (µmol¨mL´1)

10 min 20 min 40 min 60 min 90 min

calf rennet 0.87 ˘ 0.02 0.94 ˘ 0.03 0.92 ˘ 0.03 0.90 ˘ 0.02 0.90 ˘ 0.03
recombinant chymosin (Chy-MAX®) 0.93 ˘ 0.03 0.91 ˘ 0.05 0.96 ˘ 0.06 0.96 ˘ 0.03 0.95 ˘ 0.04

R.miehei (Marzyme® 150 MG) 0.95 ˘ 0.03 0.96 ˘ 0.04 0.96 ˘ 0.05 1.00 ˘ 0.04 1.04 ˘ 0.03
BD3526 0.90 ˘ 0.03 0.90 ˘ 0.04 0.96 ˘ 0.04 1.01 ˘ 0.04 1.02 ˘ 0.05

3. Experimental Section

3.1. Materials

Medium-heat sprayed skim milk powder (Fonterra Ltd., Auckland, New Zealand) used for
skim milk agar preparation and MCA determination was composed of (%, w/w): fat 0.8, protein
33.4, lactose 54.1, mineral 7.9 and moisture 3.8. Wheat bran was purchased from a local market in
Shanghai, and contained (%, w/w): protein 18.6, fat 6.2, carbohydrates 63.9, ash 3.38 and moisture 7.89.
Marzyme® 150 MG (R. miehei, 662 SU mg´1) and Chy-MAX® (recombinant chymosin, Aspergillusniger



Molecules 2016, 21, 73 9 of 14

var. awamori, 310 SU mg´1) were donated by DuPont Danisco (Vinay, France) and CHR. HANSEN A/S
(Hørsholm, Denmark), respectively. Calf rennet (90 SU mg´1) was purchased from Al-amin Biotech
Co., Ltd. (Shanghai, China). All other chemicals were obtained from commercial sources and were of
analytical grade.

3.2. Strain Screening and Culture Conditions

Reconstituted skim milk (150 g¨L´1 ) and agar solution (16.7 g¨L´1 ) were prepared and sterilized
at 118 ˝C for 15 min in an autoclave (Hirayama HVE-50, Tokyo, Japan), respectively. The sterilized
reconstituted skim milk and agar solution were aseptically mixed in a ratio of 1:9 (v/v) and then
poured plates. Raw yak milk samples collected in Tibet, southwestern China were serially diluted with
sterile physiological saline and spread on skim milk agar plates. The plates were then incubated at
30 ˝C for 48 h. A colony, designated as BD3526, with an obvious casein hydrolysis circle surrounded
with a casein precipitation zone, was selected and further purified by streaking on skim milk agar
plates. The strain was deposited in the China General Microbiological Culture Collection Center
(CGMCC No. 8333) as well as German collection of microorganisms and cell cultures (DSM No. 28815).
The strain BD3526 was routinely propagated on Tryptone Yeast Cystine agar (TYC), which contained
(g¨L´1) tryptone 15, yeast extract 5, L-cystine 0.2, sucrose 50, sodium acetate 20, sodium hydrogen
carbonate 2, disodium hydrogen phosphate 2, sodium chloride 1, sodium sulfite 0.1, agar 15, and the
pH value was adjusted to 7.2. Stock culture was maintained at ´80 ˝C in sterile 10% (w/v) skim milk.
Prior to the experiments, the strain was activated twice on TYC agar.

3.3. Morphological Observations and Characterization

Freshly cultured BD3526 cells on nutrient agar (Merck, Darmstadt, Germany) slant at 30 ˝C for
24 h were employed for morphological observation. After Gram staining, the slide with BD3526 was
immediately visualized under ˆ1500 magnification using an optical microscope (Olympus BX-60,
Tokyo, Japan). A loop of fresh culture of BD3526 was suspended in 5 mL of sterilized phosphate
buffered saline (PBS), and aliquots of the suspension was checked for cell motility under phase contrast
microscope (Olympus BX-60, Tokyo, Japan). The morphology of the cells was observed using a
scanning electron microscope (SEM) (FEI Quanta 200, Eindhoven, Netherlands) and the existence
of flagella was observed with an atomic force microscope (AFM) (Nanonavi E-Sweep, SII Nano
Technology, Tokyo, Japan).

3.4. Preparation of Inoculums

A single colony of BD3526 on TYC agar was inoculated into 20 mL sterilized TYC broth in a
100 mL Erlenmeyer flask, and cultivated at 30 ˝C on a rotary shaker at 180 rpm for 18–20 h. The
cultivated TYC broth, with viable cell counts approximately to 5.0 ˆ 108 CFU mL´1, was employed
as inoculum. Enumeration of viable cell counts was carried out after the sample was serially 10-fold
diluted with sterilized PBS, and aliquots of the diluted sample was spread on TYC agar, cultivated
aerobically at 30 ˝C for 48 h.

3.5. Wheat Bran Broth and Cultivation Conditions

The optimal wheat bran concentration for BD3526 to express protease with MCA were determined
by adding varied wheat bran mass (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 g) to 50 mL deionized water in 250 mL
Erlenmeyer flasks and then sterilized at 121 ˝C for 20 min. The sterilized wheat bran broth was seeded
with the inoculum (~5.0 ˆ 108 CFU mL´1) at a ratio of 3% (v/v) and incubated on a rotary shaker at
30 ˝C at 180 rpm for 48 h. Samples at different intervals were taken out and centrifuged at 5000ˆ g for
5 min to remove insoluble materials. The supernatants were diluted with 20 mM phosphate buffer
(PB) (pH 6.0) for MCA assay.

The optimal rotation speed was determined using 3% (w/v) wheat bran broth, 50 mL in a 250 mL
Erlenmeyer flask, 3% (v/v) inoculum, at 30 ˝C and different rotation speeds from 140 to 300 rpm for
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24–32 h. The optimal volume of liquid was determined using 3% (w/v) wheat bran broth, 3% (v/v)
inoculum, at 30 ˝C and 300 rpm from 10 mL to 50 mL in a 250 mL Erlenmeyer flask for 20–32 h. The
optimal cultivation temperature was determined using 3% (w/v) wheat bran broth, 3% (v/v) inoculum,
30 mL in a 250 mL Erlenmeyer flask, at 300 rpm from 20 to 42 ˝C for 20 h.

3.6. Enzyme Preparation and Purification

The supernatant of cultivated broth with 3% (v/v) wheat bran at 30 ˝C, 180 rpm for 30 h was
collected and the protease with MCA was precipitated by ammonium sulfate at 60% saturation. The
precipitate was lyophilized and defined as the crude enzyme. The crude enzyme was redissolved in
20 mM PB (pH 7.0) at concentration of (0.5 g¨mL´1) and loaded on a DEAE Sepharose Fast Flow (GE
Healthcare Bio-Sciences AB, Uppsala, Sweden) column (ID 3.6 cm ˆ 30 cm) previously equilibrated
with 20 mM PB (pH 7.0). Elution was carried out with a linear gradient of NaCl from 0 to 0.75 M
at a flow rate of 5 mL¨min´1 in 20 mM PB (pH 7.0). The elution was monitored at 280 nm and
10 mL fractions were collected. Fractions with MCA were pooled, lyophilized and defined as the
purified enzyme.

3.7. Gel Electrophoresis

Ten microliter of crude and purified enzymes solutions were assessed by SDS-PAGE using
12% (w/v) acrylamide. Molecular weight marker proteins MP102 (Tiangen Biotech Co., Ltd., Beijing,
China) were used as standards. To determine the band responsible for the protease activity, gelatin
zymography was carried out according to the method described by Vishwanatha with a slight
adjustment [54]. Gelatin zymography was carried out on 12% acrylamide gels with 0.1% (w/v) gelatin
in the separating gel. Precision Plus Protein™ All Blue Standards (Bio-Rad, Hercules, CA, USA)
were used as molecular weight markers for gelatin zymography. Electrophoresis was carried out at
4 ˝C at a constant voltage of 110 V for 90 min when the tracking dye (bromophenol blue) exited the gel.
After electrophoresis, the gel was washed three times with 1.5% (w/v) Tween 80 solution to remove
SDS and recover enzyme activity, and incubated in the 20 mM Tris-HCl (pH 7.0) at 30 ˝C for 24 h. The
gel was further stained with Coomassie brilliant blue R-250 for 30 min and then decolored to see the
apparent hydrolytic band.

3.8. Hydrophilic Interaction Liquid Chromatography

The purified enzyme was further checked by hydrophilic interaction liquid chromatography
(HILIC). The analysis was performed on an Agilent1260 Infinity system (Agilent Technologies, Palo
Alto, CA, USA), equipped with a SeQuant® ZIC®-HILIC (Merck) column (ID 4.6 ˆ 250 mm, 5 µm, and
200 Å). Ten microliter of the purified enzyme solution of 0.5 mg¨mL´1 was loaded, and eluted with a
mixture of acetonitrile/20 mM ammonium acetate solution (80:20, v/v) as the mobile phase at a flow
rate of 1.0 mL¨min´1. The eluent was monitored with a diode array detector (DAD) (Agilent, G1315D)
at 280 nm. All samples were filtered through a 0.22 µm membrane before injection.

3.9. Determination of Milk-clotting Activity and Proteolytic Activity

MCA was determined using the method described by Arima [55]. Reconstituted skim milk
(100 g¨L´1) was freshly prepared, supplemented with 10 mM calcium chloride and stored overnight at
4 ˝C for complete hydration. The pH value of the milk was adjusted to 6.0 with 1 M HCl before
use. A test tube containing 10 mL skim milk was pre-incubated at 35 ˝C for 10 min and then
0.5 mL diluted enzyme solution was added. All enzyme samples were diluted with 20 mM, pH6.0 PB,
and coagulation time of the diluted enzyme was adjusted to between 1 and 3 min. The mixture was
thoroughly vortexed and the time from the addition of the enzyme to the formation of the first visible
clot was recorded. MCA was calculated with the following formula [35]:

SU “ p2400 ˆ 10 ˆ Dq{0.5T (1)
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where T is the milk-clotting time (s), and D is the dilution of the enzyme. One Soxhlet unit (SU) of
milk-clotting activity is defined as the amount of enzyme required to clot 1 mL of substrate within
40 min at 35 ˝C.

PA was determined according to the casein digestion method described by Shieh [28]. In brief,
2.5 mL 1.2% (w/v) of casein solution in 20 mM PB (pH 6.0) was added 0.5 mL enzyme solution, and the
mixture was incubated at 35 ˝C for 10 min. After incubation, 2.5 mL (0.44 M) trichloroacetic acid (TCA)
was added to quench the reaction, followed by centrifugation to remove sediments. One milliliter
of the supernatant was added with 2.5 mL NaOH (0.28 M) solution and 0.75 mL phenol reagent
(Folin-Ciocalteu phenol solution/water = 1:1). After the mixture was kept at 35 ˝C for 15 min, optical
density (OD) at 660 nm was measured with a Specord 205 spectrophotometer (Analytik Jena AG,
Jena, Germany). A calibration curve of tyrosine content was constructed by referring to absorbance at
660 nm obtained with standards containing 0, 20, 40, 60, 80 and 100 µg of tyrosine.

3.10. Evaluation of Protein Hydrolysis of the BD3526 Coagulant

Solutions of calf rennet, Chy-MAX®, Marzyme® 150 MG and the BD3526 coagulant were prepared
and adjusted to 160 SU mL´1. Milk curds clotted by different enzymes were observed and assayed at
intervals of 10, 20, 40, 60 and 90 min. After centrifugation at 10,000ˆ g for 5 min, whey was separated
from the curds. The degree of protein hydrolysis was determined and expressed by increment of
tyrosine concentration in whey.

3.11. Statistical Analysis

All of the data were expressed as means ˘ standard deviation (SD) from at least three replicates.
One-way and two-factor analysis of variance (ANOVA) were performed. One-way ANOVA was used
to compare the mean levels of various cultivation temperature and MCA. In evaluating the combined
effects of wheat bran concentration, rotation speed, liquid volume and cultivation time on MCA, a
two-factor ANOVA was used. All statistical analyses were performed using the Statistical Analysis
Software (SAS 9.2, SAS Institute Inc., Cary, NC, USA). The confidence level was set at p < 0.05 for
statistical significance.

4. Conclusions

Paenibacillus spp. BD3526, a strain newly isolated from raw yak milk sample expressed protease
with high MCA in wheat bran broth. Higher availability of dissolved oxygen favored a high cell
density of BD3526 and ultimately resulted in a high expression of MCA. The enzyme was a 35 kDa
metalloprotease and quite different from the reported bacterial coagulants in both molecular weight
and type, implying that it might be a novel enzyme. The milk-clotting mechanism of the enzyme was
the cleavage of the Met106–Ala107 bond in κ-CN. No excessive proteolysis during the procedure of
milk-clotting indicates the BD3526 enzyme could be served as a potential microbial coagulant. Further
research in enzyme characterization and application is thus necessary.
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