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The interaction between cancer-associated fibroblasts (CAFs) and the tumor

microenvironment (TME) is a key factor for promoting tumor progression. In

lung cancer, the crosstalk between CAFs and malignant and immune cells is

expected to provide new directions for the development of immunotherapy. In

this study, we have systematically analyzed a single-cell dataset and identified

interacting genes between CAFs and other cells. Subsequently, a robust

fibroblast-related score (FRS) was developed. Kaplan-Meier (KM) and ROC

analyses showed its good predictive power for patient prognoses in the

training set comprising of specimens from the cancer genome atlas (TCGA)

and in three external validation sets from the Gene Expression Omnibus (GEO).

Univariate and multivariate Cox regression analyses suggested that FRS was a

significant prognostic factor independent of multiple clinical characteristics.

Functional enrichment and ssGSEA analyses indicated that patients with a high

FRS developed “cold” tumors with active tumor proliferation and

immunosuppression capacities. In contrast, those with a low FRS developed

“hot” tumors with active immune function and cell killing abilities. Genomic

variation analysis showed that the patients with a high FRS possessed a higher

somatic mutation burden and copy number alterations and were more

sensitive to chemotherapy; patients with a low FRS were more sensitive to

immunotherapy, particularly anti-PD1 therapy. Overall, these findings advance

the understanding of CAFs in tumor progression and we generated a reliable

FRS-based model to assess patient prognoses and guide clinical

decision-making.
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Introduction

Lung cancer has the highest incidence among all cancer

types and is the leading cause of cancer-related deaths (1); lung

adenocarcinoma (LUAD) is its most common histological type.

Several epidemiological investigations and experimental studies

have attributed the onset and progression of LUAD primarily to

environmental factors and genetic alterations (2–4). Given a

large number of non-smokers with LUAD, previous theories

based solely on environmental factors have been disproven and

research attention has been re-focused on profound alterations

in the genetic content. To date, there are two main genetic

factor-related treatment strategies, namely, targeted therapy and

immunotherapy (5). However, most patients who receive

targeted therapy are prone to resistance, and only a minority

of them may benefit from immunotherapy. Therefore, it is

crucial to develop robust tools for prognostic prediction and

assessment of treatment responses to further facilitate accurate

diagnoses and devise individualized treatment strategies.

Tumor microenvironment (TME) is defined as the

environment surrounding the tumor, including the

extracellular matrix, immune cells, and stromal cells, all of

which are closely associated with tumor progression and

treatment outcomes (6). Accumulating evidence elucidate the

role of TME infiltration in immune therapeutic responses and

resistance against different cancer types; these studies have also

investigated their impact on patient prognoses (7, 8). Previous

studies have focused more on immune cells. However, several

findings have now highlighted the importance of stromal cells in

tumor progression (9, 10). Cancer-associated fibroblasts

(CAFs), a representative component of stromal cells, play

crucial roles in cancer genesis, progression, and invasion (11,

12). Recently, the interaction between CAFs and the tumor

immune microenvironment (TIME) has been identified as a key

factor in promoting tumor progression (13, 14). CAFs interact

with immune cells and other immune components within the

TIME through various secreted cytokines, growth factors, and

chemokines, resulting in an immunosuppressive TME that

allows cancer cells to evade the surveillance mechanisms of

the immune system (14, 15). Therefore, further investigation

into the crosstalk between CAFs and TME is expected to

provide new strategies for LUAD treatment, in particular

for immunotherapy.

In this study, we used the single-cell dataset, GSE131907, to

evaluate the crosstalk between CAFs and other cells. In addition,

receptor-ligand pairs were systematically identified for

interactions of CAFs with other cells. Based on these receptor-

ligand genes, we generated the fibroblast-associated score (FRS)

using the LASSO algorithm in the TCGA-LUAD cohort and the

GEO meta-cohort to predict patient prognoses and estimate

their sensitivity to chemotherapy and immunotherapy.

Additionally, the associations among FRS, biological functions,

TIME, and genomic alterations were systematically assessed. In
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summary, our findings are expected to advance the

understanding of CAF functions in cancer as we have

constructed and described here a robust scoring system to

accurately predict patient prognoses and guide clinical

decision-making.
Material and methods

Data extraction from online databases

The single-cell transcriptome dataset, GSE131907, was

extracted from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/), consisting of data of 58 sequences from 44 patients.

Next, these data were processed using the 10x Genomics

method. Of these, we selected 29 normal lung tissues and

early, advanced, and brain-metastasized lung tissues for

further analyses. Detailed data processing procedures and

ethical approval have been described previously (16).

The data of transcriptome RNA sequencing, Mutect2

mutation, HumanMethylation450 array, copy number

variations (CNVs), and the corresponding clinical information

were downloaded from TCGA database (https://cancergenome.

nih.gov/) using the GDC API. A total of 492 LUAD samples

were collected after the exclusion of patients with missed visits

and incomplete clinical information. The raw FPKM sequencing

data were normalized by TPM and used as the training cohort.

Three mature LUAD cohorts were collected from GEO,

including dataset GSE30219 from the Affymetrix HG-U133

Plus 2.0 Array platform, dataset GSE72094 from the

Rosetta/Merck Human RSTA Custom Affymetrix 2.0 platform,

and dataset GSE42127 from the Illumina HumanWG-6 v3.0

expression bead chip. To prevent batch effects on these chips, we

merged the three GEO datasets and normalized the data by the

log2 transformation using the combat function of the “sva”

package (17). Subsequently, LUAD meta-data containing the

complete clinical information of 615 individuals were used as the

validation cohort. Additionally, we collected the publicly

available immunotherapy cohorts with complete clinical

information and transcriptomic data. Finally, the information

of a cohort of advanced uroepithelial carcinoma treated with

anti-PD-L1 immunotherapy (Imvigor210) consisting of 298

patients (8) and a cohort of non-small cell lung cancer

(NSCLC) of 27 patients treated with PD1 (GSE135222)

was collected.
Single-cell data analysis

The R package, “Seurat”, was used to process the scRNA-seq

data. In addition, cells with “min.cells < 3” and “min.features <

200” were excluded. After filtering out the cells with > 60%

mitochondrial sequencing count and nFeature_RNA > 7000, a
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total of 47822 cells were retained for subsequent analyses. The

dataset was then normalized using the NormalizeData and

ScaleData functions in Seurat. Cell types were identified

according to the cell annotations provided in the original article.

To unravel the changes in the cell clusters during tumor

progression, we used the R package, ‘monocle’, for the analysis of

the single-cel l trajectory. Subsequently , s ingle-cel l

developmental trajectories were identified using the top 1500

variable genes (18). The Python package, “CellphoneDB”, was

used to identify receptor-ligand exchanges between cell clusters;

the receptor-ligand interactions between eight-cell clusters were

thus identified at the molecular level (19). Receptor-ligand pairs

with p-values < 0.05 were screened to assess the molecular

interact ion network among CAFs and other cel ls .

Corresponding interacting genes were identified as fibroblast-

related genes (FRGs). Finally, the GGplot2 package was used to

visualize these results.
Construction and validation of the
FRS model

LUAD-TCGA cohort was used to train the model.

Specifically, independent prognostic factors among FRGs were

first screened by univariate Cox regression, and genes with P <

0.05 were included for further analysis. Subsequently, a Cox

proportional risk model with LASSO penalties was used to

identify the best prognostic model. To prevent overfitting, a

five-fold cross-validation process was set up. Considering

random sampling for cross-validation, 300 iterations were

performed to identify the most stable prognostic model. The

model with the highest frequency of occurrence in the 300

iterations served as the final prognostic model. Finally, FRS

was calculated according to the following equation:

FRS =oi Coefficient mRNAið Þ � Expression mRNAið Þ

To assess the predictive power of the risk scores in the training

and validation sets, the consistency index (C-index) was

calculated using the “survcomp” R package, with a larger C-

index indicating a more accurate predictive power of model (20).

Patients were classified into high- and low-risk groups based on

the median FRS. Furthermore, the prognostic value of the risk

model was systematically assessed using the Kaplan Meir (KM)

survival curves, univariate and multivariate Cox regression

analyses, and time-dependent ROC curves.
Functional enrichment and immune
infiltration analyses

We performed a single-sample gene set enrichment analysis

(ssGSEA) based on the previously published molecular markers
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using the R package, “gsva”, to assess the activities of the biological

pathways for the samples, including angiogenesis, epithelial-

mesenchymal transition (EMT), myeloid inflammation, and

molecular markers for other immune-related pathways (21–24).

Molecular markers for hypoxia were collected from Msigdb (25).

Detailed pathway-related gene markers are shown in Table S1.

Additionally, GSEA was performed between high- and low-FRS

groups, and the significant KEGG pathways were screened using the

set threshold of P < 0.05. Moreover, functional enrichment of genes

was obtained using the Metascape (www.metascape.org/) database.

The abundances of immune cell infiltrate in tumor samples

were estimated using the R package, “CIBERSORT”, to evaluate

the degree of infiltration of 22 immune cell types (26). The

immune activity and tumor purity of the samples were assessed

using the Estimate algorithm (27). The immunophenoscores

(IPS) of the samples were calculated based on a previous study,

with a higher IPS indicating a stronger immune activity of the

sample (28). In short, IPS is calculated on a scale of 0-10 based

on the transcriptome of the representative genes of the

immunophenotype. Samplewise Z scores were positively

weighted according to effective immune cells, negatively

weighted according to inhibitive immune cells, and then

averaged. Z score ≥ 3 is defined as IPS10, and Z score ≤ 0 is

defined as IPS0.

Finally, homologous recombination deficiency (HRD)

scores, indel neoantigens, and SNV neoantigens of the samples

were obtained from Thorsson et al. (29).
Comparison of genomic variation
landscapes between two groups

To compare the differences in mutation burdens between the

two groups, the mutation data were processed using the ‘maftools’

package in R. The total number of mutations in the samples was

first calculated, and genes with a minimum number of mutations >

30 were identified. The differences in mutation frequencies between

the high- and low-FRS groups were then compared using a chi-

square test and visualized using maftools (30). CNV data were

processed using the GISTIC 2.0 webtool in Genepattern.

Subsequently, significantly amplified and missing chromosomal

segments were identified and differences in CNVs on the

chromosomal arms were assessed. Finally, these CNV results

were visualized using the R package, “ggplot2”.
Clinical significance of the risk model

The five most commonly used first-line drugs, including

cisplatin, docetaxel, gemcitabine, paclitaxel, and vinorelbine,

were selected for the treatment of LUAD. Ridge regression was

used to calculate the half-maximal inhibitory concentration

(IC50) for each sample, which was then used to assess the
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sensitivities of patients to chemotherapy in the high- and low-

risk groups. Moreover, the accuracy of these predictions was

assessed by a 10-fold cross-validation process (31). Furthermore,

differentially expressed genes between the two groups were

considered as potential therapeutic targets. The CMap

database (https://clue.io/) was used to obtain the potential

compounds targeting these genes. This database can not only

predict drugs based on the gene expression profiles but also

elucidate the mode of action (MoA) of these compounds

targeting the corresponding molecular pathways. To assess the

patient responses to immunotherapy, the TIDE online tool

(http://tide.dfci.harvard.edu) was used (32). In addition, the

unsupervised subclass mapping algorithm (https://cloud.

genepattern.org/gp/) was used to assess the patient responses

to anti-PD1 and anti-CTLA-4 immunotherapeutic regimens.

Finally, we validated the predictive efficacy of FRS in the

immunotherapy cohorts, Imvigor210 and GSE135222.
Clinical specimens

We obtained 50 tissue specimens from patients who received

surgical resection of primary LUAD in Shanghai Pulmonary

Hospital from September 2015 to April 2016, including 27 males

and 23 females, with a mean age of (66.24 ± 7.3) years. And all

patients were followed up every three months for five years.

Inclusion criteria: 1, all were diagnosed as lung adenocarcinoma

by postoperative pathological examination; 2, all did not receive

radiotherapy or chemotherapy before surgery; 3, clinical data

were complete. Exclusion criteria: 1, combined with chronic

systemic diseases; 2, combined with other malignant tumors.

Written informed consents of all patients were obtained before

the study. The study was approved by Shanghai Pulmonary

Hospital Ethics Committee (ethical lot number: K21-111Y).
Immunohistochemistry staining

After obtaining the tumor tissue, the tissue was routinely

paraffin-embedded and preserved. In the experiment, tissue

sections were dewaxed and rehydrated, and antigen repair was

performed by incubating the slides in 10 mmol/L sodium citrate

buffer and microwave treating the samples for 20 min. After

being closed with 3% H2O2 and 10% normal goat serum (NGS),

the slides were incubated with primary antibody at 4°C

overnight. The paraffin-embedded LUAD sections were

incubated with anti-TNFSF14 (ab115544, ABCAM), anti-

JAM2 (ab156586, ABCAM), anti- LIFR (ab202847,

ABCAM)、anti-SPN(ab101533, ABCAM)、anti- HGF

(ab118871, ABCAM). The slides were then incubated with

biotin-coupled anti-rabbit secondary antibody (1:1000,

ab205718, Abcam, UK) for 2h at 37°C using the ABC kit from

Vector Laboratories (Burlingame, CA, USA).
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The sections were then incubated with polymeric HRP

reagent and peroxidase activity was observed with

diaminobenzidine tetrahydroxyl chloride solution (Vector

Laboratories), and the sections were re-stained with

hematoxylin. Ouant center is the analysis software of

Pannoramic viewer. When the images of the tissue

microarrays are scanned, the TMA software in Ouant center

sets the numbers that correspond to the arrangement of the

tissue sections. Thereafter, the densito quantification software in

Quant center automatically identifies all dark brown dots in the

microarray tissue as strongly positive, tan dots as moderately

positive, light yellow dots as weakly positive, and blue cell nuclei

only as negative, and analyzes the percentage of each stained

(strong, moderate, weak, and negative) area in pixels, and finally

performs an H-Score score.
Bioinformatic and statistical analyses

All statistical analyses and graph plotting were performed

using the R software (version: 4.04). Comparisons between the

two groups were made using theWilcoxon test and differences in

proportions were compared using the chi-square test. The KM

plotter was used to generate the survival curves and statistically

significant differences were assessed using the log-rank test.

Time-dependent ROC curves (tROC) were plotted using the R

package ‘survivalROC’. Univariate and multivariate COX

regression analyses were performed using the R package,

“survival”. Additionally, ‘rms’ was used to plot nomograms

and calibration curves, and decision curve analysis (DCA) was

performed using the “DCA” package (33). Unless specified

otherwise, two-tailed P < 0.05 denoted statistical significance.
Results

CAF clustering and identification of FRGs

In order to explore the cross-talk between CAF and other

cells and identifying the FRGs. We first analyzed the dataset,

GSE131907, at single-cell resolution and identified a total of

eight-cell clusters according to their original annotation

(Figure 1A). The pseudo-time analysis suggested that CAFs

were mainly aligned at the beginning of the trajectory

(Figure 1B). Subsequently, the communication network

between the eight-cell clusters was analyzed (Figure 1C).

Specifically, CAFs were found to communicate the most with

endothelial cells, followed by myeloid cells (Figure 1D).

Significant receptor-ligand pairs were obtained as FRGs for

subsequent analysis based on a set threshold of P < 0.05. The

Dot plot was used to visualize the top five receptor-ligand pairs

between CAFs and other cells (Figure 1E). Detailed results were

shown in Table S2.
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We then focused on FRGs with independent prognostic

values. Univariate Cox analysis showed 33 independent

prognostic factors in 127 FRGs. The loop graph in Figure 2A

shows the correlation network and hazard ratios (HRs) for these

33 FRGs. Figure 2B displays the mutational landscape of the 37

FRGs. EGFR and COL5A2 were the top two genes with the

highest mutation frequencies. The most common mutation was

the missense mutation, whereas single nucleotide point

mutation was the most common type of mutation, with the
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most frequently occurring change being from cytosine to

adenine. The waterfall plot in Figure 2C shows the mutational

landscape of 16 FRGs in patients. The bar chart displays the

CNV profile of the 37 FRGs in TCGA-LUAD. Furthermore,

FRGs underwent extensive CNV events. LAMC1 and TNFSF14

were the genes that experienced the most amplification and

deletion events, respectively (Figure 2D). The loop graph was

plotted to visualize the overall CNV profile of the 37 FRGs on the

chromosomes (Figure 2E).
B

C

D

E

A

FIGURE 1

The single-cell profile of CAFs. (A) Eight cell clusters identified by cell clustering; (B) Pseudo-time analysis of the eight-cell clusters. Upper panel:
cell cluster distribution, lower panel: pseudo-time distribution; (C) Communication network of the eight-cell clusters; (D) Communication network
of CAFs with other cells, wherein the numbers represent the number of receptor-ligand pairs; (E) The top 5 receptor-ligand pairs of CAFs
communicating with other cell types.
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Construction of an FRG-related
risk model

An FRG-related risk model was constructed using the 37

FRGs with a prognostic value, on which 300 iterations of LASSO

regression were performed. Of all the five combinations, the

model containing seven genes was found to be the most stable

and showed good accuracy in both the training and validation

cohorts (TCGA: 0.715; GEO: 0.667) (Figure 3A). This LASSO

model was constructed based on the optimal l value of 0.01608,

and FRS was calculated based on the following equation:
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FRS =oi Coefficient mRNAið Þ � Expression mRNAið Þ

Figure 3B shows the LASSO coefficients for the model genes,

detailed coefficients of 27 FRGs can be found in Table S3.

Patients at high- and low-risk were distinguished based on the

median FRS. Survival analysis suggested that patients in the

high-risk group had significantly lower survival rates relative to

those in the low-risk group (Figure 3C; P < 0.0001). Figure 3D

shows the distribution of FRS in TCGA cohort and the

transcriptional profiles of the model genes. 1, 3, 5, and 8-year

AUC values for the model were 0.66, 0.67, 0.68, and 0.70
B

C

D

E

A

FIGURE 2

Genomic profile of FRGs in LUAD. (A) Correlation network of FRGs; (B) Summary of mutational events for FRGs in TCGA-LUAD; (C) Oncoplot
showing the mutational mapping of FRGs; (D) Summary of CNV events for FRGs in TCGA-LUAD; (E) A loop graph showing CNV events for FRGs
on chromosomes.
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respectively (Figure 3E). The tROC analysis suggested that FRS

and TNM staging were the best predictors (Figure 3F).

Subsequently, the predictive efficacy of the model was also

assessed in the validation set. The survival analysis suggested

that patients in the high-FRS group showed significantly worse

survival (Figure S1A; P < 0.0001). The ROC analysis suggested

that the model had satisfactory predictive power in the external

validation set, with 1, 3, 5, and 8-year AUC values of 0.68, 0.69,

0.69, and 0.71 respectively (Figure S1B). Figure S1C shows the

distribution of FRS and model gene expression in the

GEO cohort.
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Predictive independence of the
risk model

We then validate the prognosis value of the FRS model in the

TCGA cohort and GEO meta cohort. The relationship between

the risk scores and the clinical characteristics of the patients and

their prognoses were analyzed using the univariate and

multivariate Cox regression analyses. The results of the

univariate Cox regression analysis suggested that FRS was an

independent prognostic indicator in both the training and

validation cohorts (P < 0.0001) (Figure 4A). The results of the
B

C D
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A

FIGURE 3

Construction of the FRG-related risk model. (A) Screening for the best LASSO model. Left panel: frequency of different gene combinations in
the LASSO Cox regression model; Right panel: C-index of the best model in both TCGA and GEO cohorts; (B) LASSO coefficients for the 27
model genes; (C) KM survival curves for the high-FRS and low-FRS groups in the TCGA cohort; (D) Survival status and FRS of patients in TCGA
cohort; (E) 1-, 3-, 5-, and 8-year ROC curves for FRS in TCGA cohort; (F) tROC curves for FRS and clinical characteristics in TCGA cohort.
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multivariate Cox regression analysis showed that FRS remained

an independent prognostic factor for overall survival (OS) in

both the training and validation cohorts after correcting for

other clinical characteristics (P < 0.0001) (Figure 4B).

Furthermore, subgroup analysis indicated that FRS remained a

reliable prognostic factor in different clinical groups (Figure S2).

Therefore, risk scores could serve as a reliable prognostic marker

for predicting OS in patients with LUAD. Subsequently, the

nomogram was constructed to better assess the risk of patients

with LUAD (Figure 4C). The correction curves for the

nomogram showed a good 1-, 3-, and 5-year stability and

accuracy of the nomogram model (Figure 4D). tROC analysis

suggested that the nomogram model was a better predictor

relative to the clinical characteristics (Figure 4E). Additionally,

a DCA was conducted to assess the decision benefit of the
Frontiers in Oncology 08
nomogram model. The results showed that this nomogram

model was suitable for 1-, 3-, and 5-year risk assessments of

patients with LUAD (Figure 4F).
Functional enrichment analysis of FRS

We tried to explain the potential biological logic of the

differences in clinical outcomes among high- and low-FRS

groups. Therefore, we assessed the correlation between FRS

and some typical biological pathways. The heat map was

plotted to illustrate the relationship among FRS, biological

pathway activities, and clinical characteristics (Figure 5A), and

the correlational analysis between FRS and biological pathways

is shown on the right panel (Figure 5B). Angiogenesis, myeloid
B

C D

E

F

A

FIGURE 4

Validation of the FRG-related risk model. (A) Univariate Cox regression analysis of OS in TCGA and GEO cohorts; (B) Multivariate Cox regression
analysis of OS in TCGA and GEO cohorts. (C) FRS-based nomogram; (D) Calibration curves for the nomogram; (E) tROC curves for the
nomogram and clinical characteristics; (F) 1-, 3-, and 5-year DCA curves for the nomogram.
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inflammation, and hypoxia were significantly positively

correlated with FRS and their levels were markedly higher in

the high-FRS group. GO analysis showed that the upregulated

genes in the high-FRS group were mainly associated with the cell

cycle, mitosis, and cytoskeleton (Figure 5C), whereas those in the

low-FRS group were mainly related to antigen presentation and

the complement system (Figure 5E). Further, GSEA showed that

the cell cycle-related pathways such as the P53 signaling cascade,

spliceosome, and DNA repair were significantly enriched in the

high-risk group (Figure 5D), whereas antigen presentation,

hematopoietic cell lineage, and the JAK-STAT signaling

cascade were significantly enriched in the low-risk group

(Figure 5F). Thus, these results suggested that tumor
Frontiers in Oncology 09
angiogenesis and DNA replication were active in the high-FRS

group, whereas immune activity and immune cell differentiation

were active in the low-FRS group.
Immune landscape in the risk model

TME plays a dual role in the tumorigenesis and progression

of tumor and anti-tumor response. The correlation between FRS

and the immune landscape was assessed in further detail. The

heat map in Figure 6A demonstrates the relationship of FRS with

the Estimate scores, abundances of immune-infiltrating cells,

typical immune checkpoints (including CD274, CTLA4,
B
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A

FIGURE 5

Functional analysis for FRS. (A) Heat map showing the correlation between FRS, biological pathway activities, and clinical characteristics; (B)
Correlational analysis of FRS and biological pathways; (C) Functional enrichment analysis of the upregulated genes in the high group; (D) GSEA
enrichment plot showing the five pathways of interest in the high group; (E) Functional enrichment analysis of the upregulated genes in the low
group; (F) GSEA enrichment plot showing the five pathways of interest in the low group.
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HAVCR2, IDO1, LAG3, and PDCD1), immune active features

(including CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG,

PRF1, TBX2, and TNF), and clinical characteristics of the

patients. The corresponding correlational analysis is shown on

the right side of the heat map (Figure 6B). Tumor purity, M0

macrophages, and T regs were significantly positively correlated

with FRS and these levels were significantly elevated in the high-

FRS groups. In contrast, the Estimate score, immune score, DC

cells, B cells, and monocytes were negatively correlated with FRS

and these levels were significantly lowered in the low-FRS

groups. Furthermore, the activities of CXCL9, GZMA, IFNG,

PRF1, CD8A, CTLA4, TNF, and HAVCR2 were negatively

correlated with FRS and enhanced in the low-FRS group.

Subsequently, we focused on the four indicators related to

tumor-specific antigens, including HRD score (Figure 6C),

indel neoantigens (Figure 6D), IP S(Figure 6E), and SNV

neoantigens (Figure 6F). The results showed that FRS was

negatively correlated with the HRD score, IPS, and SNV

neoantigens, and their levels were significantly elevated in the

low-FRS group. These results suggested that patients in the low-

FRS group experienced more chromosomal instability and had

more tumor neoantigens, thereby contributing to a stronger
Frontiers in Oncology 10
immune system activity. Thus, we inferred that the patients with

a low FRS may stand to gain more benefits from immunotherapy

(34–36).
Correlation between FRS and
somatic variations

Several recent studies indicate that TMB is associated with

patient responses to immunotherapy, whereby more somatic

mutations may generate more potential mutation-derived

antigens that can be recognized by the immune system.

Further, the recognition of these antigens with mutant

peptides by the immune system can activate immune

functions and enhance anti-tumor immunity (37–39).

Considering the clinical significance of TMB, we examined the

correlation between TMB and FRS. The forest plot showed that

the mutational frequencies of ZFHX4, ADAMTS12, TP53,

KRAS, TTN, XIRP2, LRP1B, and CSMD3 were significantly

greater in the high FRS-group (Figure 7A). The results of the

mutation co-occurrence analysis suggested that the mutations in

all the eight genes were highly co-occurring (Figure 7B).
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FIGURE 6

Immune infiltration analysis for FRS. (A) Heat map showing the correlation of FRS with the Estimate score, immune cell infiltration abundances, immune
checkpoint expression, and clinical characteristics; (B) From top to bottom: correlational analysis of FRS with the Estimate score, immune cell infiltration
abundances, and immune checkpoint expression. Scatter plot and box plot show the correlation of FRS with (C) HRD score; (D) Indel neoantigens; (E)
IPS, and (F) SNV neoantigens.”Red name with * represents upregulated in high-risk score group, and blue name with * represents upregulated in low-
risk score group; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.905212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


D

G

H

between the high- and low-FRS groups; (B) Co-occurrence analysis of differentially
mous mutation burden; (E) Oncoplot of high-frequency mutated genes between the
d low-FRS groups; (G) Box plot showing the differences in the number of
mber of chromosomal deletions high- and low-FRS groups. *p < 0.05; **p < 0.01.

W
e
ie

t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
2
.9
0
5
2
12

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

11
B C

E
F

A

FIGURE 7

Genomic variation landscape of FRS. (A) Forest plots showing statistically significant differentially mutated genes
mutated genes; (C) Correlation of FRS and all types of mutation burdens; (D) Correlation of FRS with non-synony
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Correlation analysis showed that all mutation burdens and the

non-synonymous mutation burden were significantly positively

correlated with FRS and markedly increased in the high-FRS

group (Figures 7C, D). Figure 7E details the mutational

landscape of the high-frequency mutated genes in patients

with LUAD. CNVs cause chromosomal variations differently.

Thus, we further evaluated the correlation between FRS and

CNV and found an increased frequency of amplifications and

deletions in the low-FRS group at the level of the chromosome

arm (Figure 7F). The box plots in Figures 7G, H show a

significant increase in the chromosomal deletion events and an

upward trend in amplification events in the high-FRS group.
FRS-related guidance for clinical
decision-making

Previous results suggested that patients in different FRS

groups have interesting differences in biological function,

TME, and genomic variation, which may lead to different

responses to chemotherapy and immunotherapy. Differences

in patient sensitivities towards chemotherapeutic agents for

LUAD were assessed and the results showed that patients in

the high-FRS group in TCGA cohort were more sensitive to the

commonly used five first-line agents (Figure 8A). The same

results were observed in the validation cohort (Figure S1D).

Overall, patients in the high-FRS group were more sensitive to

chemotherapy. Based on the value of |log2 FC|, the top 300

differential expression genes between the high and low FRS

groups were uploaded to the CMap database to search the

underlying small molecular drugs. As shown in Figure S3, a

total of 47 potential small molecular drugs were identified to

target 35 biological process. Differences in the immune

landscape and genomic alterations between the two groups

suggested that FRS may be associated with immunotherapeutic

efficacy. Therefore, we assessed the patient response rates to

immunotherapy using the TIDE algorithm. The results showed a

higher response rate to immunotherapy in the low-FRS group in

TCGA cohort (Figure 8B; P = < 0.001). In the validation cohort,

patients in the low-FRS group also responded substantially more

to immunotherapy (Figure S1E; P < 0.001). The results of

subclass mapping suggested that the patients in the low-FRS

group were more sensitive to anti-PD1 therapy in both TCGA

and GEO cohorts (TCGA: FDR = 0.011; GEO: FDR = 0.027)

(Figure 8C; Figure S1F). Subsequently, we evaluated the

prognostic performances of FRS in an immunotherapy cohort

of NSCLC. The results showed that patients in the high-FRS

group had a worse survival (Figure 8D; P = 0.078). Finally, we

evaluated the utility of FRS in a large immunotherapy cohort,

which also suggested that the patients in the high-FRS group had

a significantly worse survival (Figure 8E; P = 0.00038),. Overall,

these results demonstrated that the risk model constructed in
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this study was a powerful tool to guide decisions related to

chemotherapy and immunotherapy for the treatment of LUAD.
Validation of key FRGs in the
clinical samples

We extracted the most representative top 5 genes according

to lasso coefficient for external validation. The staining intensity

of TNFSF14, JAM2, HGF, SPN, and LIFR in the tumors of 50

lung adenocarcinoma patients was first analyzed by

immunohistochemistry and quantified according to H-scores.

Subsequently, they were defined as the high expression group (H

scores > median value) and low expression group (H scores <

median value) according to the median value of H-scores,

respectively. Subsequently, we performed a prognostic analysis

of their Kaplan-Meier according to staining intensity, and we

found that patients with higher staining intensity in TNFSF14

had a significantly worse prognosis and had shorter survival

cycles (Figure 9A). However, patients with higher staining

intensity for JAM2, HGF, and LIFR had significantly higher

survival cycles than those with lower staining intensity for lung

adenocarcinoma (Figures 9B, D, E), but for SPN, there was no

significant correlation between their staining intensity and

patients’ survival cycles (Figure 9C).
Discussion

Considering the complexity of TME in LUAD patients,

previous research attention was focused more on the immune

cells, however, the crosstalk between CAFs and other cells

remains far less understood. In this study, we used single-cell

RNA sequencing data to assess the communication between

CAFs and other cells and identified the interacting molecules.

Subsequently, FRS was constructed from bulk sequencing data

based on interacting genes and its significance in prognostic and

therapeutic decision-making was determined. Functional

enrichment analysis was employed to understand FRS-related

biological functions. Additionally, CIBERSORT, ssGSEA, and

ESTIMATE algorithms were used to map the TIME landscape

and assess the associations between FRS and TIME by analyzing

the LUAD-related genomic information. Finally, the intrinsic

associations between FRS and genomic alterations were assessed

in terms of tumor mutation burden and CNV effects.

CAF is a pro-tumor stromal cell component in most solid

tumors. The interaction between CAFs and various cellular

components in TME regulates tumor progression and invasion

(13, 14, 40) . In this study, we first examined the

intercommunication between CAFs and other cells. The

pseudotime analysis showed that the distribution of CAFs was

mainly at the beginning of cell sorting trajectories, thus

suggesting that CAFs were involved in the formation of
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stromal components in the early stages of cancer progression.

Cellular communication analysis revealed additional

interactions of CAFs with endothelial, malignant, and myeloid

cells. These findings demonstrated that CAFs were not only

involved in stromal formation and regulation of tumor

progression but also interacted extensively with immune cells.

Receptor-ligand analysis suggested that the CAFs could regulate

immune cells mainly through the TNF signaling pathway.

Subsequently, the significant receptor-ligand pairs were

identified as FRGs and an FRG-based FRS model was

generated using the LASSO algorithm. This model showed

excellent predictive performances in both the training and the

external validation cohorts and suggested a significant

deterioration in survival among the high-risk patients.

Patients with LUAD have a high tumor mutation burden

and show strong immunogenicity. Therefore, LUAD is an ideal

indication for immunotherapy (41). However, the overall

response rate of patients towards immunotherapy is low and

only a certain proportion of patients benefit from it (42).

Therefore, identifying “hot” tumors in LUAD is expected to

enhance the decision and selection of those who would benefit
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from immunotherapy. In the present study, functional

enrichment analysis suggested that a high FRS was associated

with hypoxia, angiogenesis, and myeloid immunity; among

them, hypoxia is often considered a limiting factor for TME

and can lead to treatment resistance (43). Angiogenesis is

essential for tumor growth and metastases, and both

angiogenesis and myeloid immunity are inhibitors of the

immune system functions (44–47). The activities of most anti-

tumor immune and antigen-presentation pathways were

markedly increased in patients with a low FRS. The interaction

between TIME and immune cells is closely related to

immunotherapy and patient prognoses (48–50). We further

analyzed the abundances of immune infiltrates in TME and

the findings suggested that a high FRS was associated with a

higher tumor purity and an elevated Treg level, ultimately

leading to immunosuppression (51). In contrast, patients in

the low FRS group had higher immune scores, an increased

proportion of DC cells, and enhanced immune checkpoint

activities. Further, the immunophenotype scores were found to

be negatively correlated with FRS and were markedly high in the

low-FRS group. These results suggested a low FRS-activated
B
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A

FIGURE 8

Role of the FRS-related risk model in guiding clinical treatment decisions. (A) Box plots showing the predicted IC50 values for the five most
commonly used drugs in high- and low-FRS groups; (B) Predicted responses to immunotherapy for patients in the high- and low-FRS groups
using the TIDE algorithm; (C) Sensitivity of patients in the high- and low-FRS groups to PD1 and CTLA4 treatment regimens predicted by
subclass mapping; (D) KM survival curves for patients in the high- and low-FRS groups in GSE135222 cohort; (E) KM survival curves for patients
in the high- and low-FRS groups in IMvigor210 cohort.
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immunophenotype (29, 52), consistent with the better survival

of the patients in the low-FRS group and the resultant

deve lopmen t o f “ho t ” t umors s ens i t i v e towards

immunotherapy. Additionally, HRD scores, indel neoantigens,

and SNV neoantigens were elevated in the low-FRS group. These
Frontiers in Oncology 14
findings suggested that more tumor-specific neoantigens may be

present in patients in the low-FRS group and they may be more

likely to benefit from immunotherapy (53–55).

A recent study shows that genomic alterations are closely

related to neoantigen formation and immunotherapeutic
C
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FIGURE 9

Immunohistochemical analysis of the key FRGs in the FRS model. High TNFSF14 expression, low JAM2, HGF, and SPN expression were
associated with poor prognosis in patients with LUAD. (A) Immunohistochemical analysis of the intensity of TNFSF14 staining in tumors from 50
patients with lung adenocarcinoma and Kaplan-Meier analysis of the correlation between H-scores of immunohistochemistry for TNFSF14 and
the survival cycle of patients with LUAD; (B) Immunohistochemical analysis of the intensity of HGF staining in tumors from 50 patients with lung
adenocarcinoma and Kaplan-Meier analysis of the correlation between H-scores of immunohistochemistry for HGF and the survival cycle of
patients with LUAD. (C) Immunohistochemical analysis of LFR staining intensity in tumors from 50 lung adenocarcinoma patients, Kaplan-Meier
analysis of H-scores of immunohistochemistry for LFR correlated with the survival cycle of LUAD patients; (D) Immunohistochemical analysis of
JAM2 staining intensity in tumors from 50 lung adenocarcinoma patients, Kaplan-Meier analysis of JAM2 H-scores of immunohistochemistry
correlated with the survival cycle of LUAD patients; (E) immunohistochemistry analyzed the intensity of SPN staining in the tumors of 50 lung
adenocarcinoma patients, and Kaplan-Meier analyzed the correlation of H-scores of immunohistochemistry of SPN with the survival cycle of
LUAD patients.
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responses (56). However, the results of this study suggest that

patients in the low-FRS group experience less TMB and that the

high-frequency mutated genes were mutated more frequently in

the high-FRS group. To elucidate this phenomenon, the

mutational co-occurrence of the high-frequency mutated genes

was examined. As these were all highly co-mutated genes, patients

in the high-FRS group showed a higher TMB frequency.

Furthermore, patients in the low-FRS group experienced a

higher frequency of CNVs in the chromosomal arms but fewer

CNV events in total. These results suggested that FRS could better

reflect the immune status of the tumor and predict the patient

responses to immunotherapy relative to TMB and CNV.

In summary, low FRS resulted in “hot” tumors with an

immune-activating phenotype and possibly the production of

more tumor neoantigenic peptides. We then systematically

evaluated the patient responses to chemotherapy and

immunotherapy. Patients with a high FRS were more sensitive

to chemotherapy. Previous functional enrichment results

suggested that the cell cycle-related pathways, as targets for

chemotherapy, were active in patients with a high FRS, thereby

leading to better chemotherapeutic benefits. Subsequently, the

TIDE and subclass mapping algorithms predicted a higher

patient sensitivity towards anti-PD1 therapy in those with a

low FRS, consistent with our previous findings. Moreover, we

observed better survival in patients with a low FRS in both the

external NSCLC immunotherapy and the large immunotherapy

cohorts. Overall, these results demonstrated that the FRS model

is a powerful tool that can guide the treatment-decision making

for patients with LUAD. Patients with a high FRS are better

suited for chemotherapy, whereas those with a low FRS are more

likely to benefit from immunotherapy.

However, the present study has some limitations. First, the

similarity of expression profiles of CAFs and vascular cells may

confound our analysis due to the lack of finer cell classification.

Second, bulk sequencing only reflects inter-patient heterogeneity

and not intra-tumoral heterogeneity. Third, although we have

employed several algorithms to assess the accuracy of this FRS

model for predicting patient sensitivity towards chemotherapy

and immunotherapy, further validation of these findings by

prospective cohort studies and clinical data is required. Finally,

additional in vivo and in vitro experiments should be performed

to confirm the specific mechanisms underlying the crosstalk of

FRGs with other cells in CAFs, which are expected to contribute

to the further understanding of the functions of these CAFs.

In summary, this study contributed towards the

understanding of cellular interactions in CAFs and TME, and

we developed a novel, FRS-based model. This model allowed for

the systematic quantification of “cold” and “hot” tumor patterns

from multiple perspectives, including function, immune

infiltration, and genomic alterations. Moreover, it can also

facilitate the quantitative estimation of patient prognoses and

guide the clinical decision-making for chemotherapy

and immunotherapy.
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SUPPLEMENTARY FIGURE 1

External validation of FRS (A) KM survival curves for patients in the high-

and low-FRS groups in the GEO cohort; (B) 1-, 3-, 5-, and 8-year ROC
curves for FRS in the GEO cohort; (C) Survival status and FRS of patients in

the GEO cohort; (D) Box plots showing the predicted IC50 values of the
Frontiers in Oncology 16
five most commonly used drugs in high- and low- FRS groups in the GEO
cohort; (E) Immunotherapeutic responses of patients in the high- and

low-FRS groups in the GEO cohort predicted using the TIDE algorithm; (F)
Sensitivity of the patients in the high- and low-FRS groups to PD1 and

CTLA4 treatment regimens in the GEO cohort predicted using the
subclass mapping algorithm.

SUPPLEMENTARY FIGURE 2

Subgroup Cox analysis of FRS Subgroup Cox regression analysis of FRS in

TCGA (A) and GEO (B) cohorts.

SUPPLEMENTARY FIGURE 3

Prediction of FRS-related small molecule compounds.
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Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinf (Oxford England)
(2011) 27(12):1739–40. doi: 10.1093/bioinformatics/btr260

26. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

27. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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