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Electroencephalogram (EEG) signals contain valuable information about the different

physiological states of the brain, with a variety of linear and nonlinear features that

can be used to investigate brain activity. Monitoring the depth of anesthesia (DoA)

with EEG is an ongoing challenge in anesthesia research. In this paper, we propose

a novel method based on Long Short-Term Memory (LSTM) and a sparse denoising

autoencoder (SDAE) to combine the hybrid features of EEG to monitor the DoA. The EEG

signals were preprocessed using filtering, etc., and then more than ten features including

sample entropy, permutation entropy, spectra, and alpha-ratio were extracted from the

EEG signal. We then integrated the optional features such as permutation entropy and

alpha-ratio to extract the essential structure and learn the most efficient temporal model

for monitoring the DoA. Compared with using a single feature, the proposed model

could accurately estimate the depth of anesthesia with higher prediction probability (Pk ).

Experimental results evaluated on the datasets demonstrated that our proposed method

provided better performance than the methods using permutation entropy, alpha-ratio,

LSTM, and other traditional indices.

Keywords: autoencoder, LSTM, EEG, anesthesia, feature extraction

1. INTRODUCTION

Electroencephalogram (EEG) signals have been widely used in various clinical applications
including disease diagnosis and monitoring the depth of anesthesia (Zhang et al., 2001; Bruhn
et al., 2006; Jameson and Sloan, 2006). Usually, the anesthesiologist doctors ask the patients some
questions to monitor and estimate the DOA. This is inaccurate in clinical practice, and the accuracy
of anesthesia monitoring depends on the experience of anesthesiologists. During the operation,
misjudgment of the DoA of patients is serious and dangerous. If DoA is not deep enough, the
patient may be awake during the operation and suffer from great psychological trauma. However,
if too much anesthetic is used, the patient will be in deep anesthesia, which is not conducive to the
patient’s recovery and can even be life-threatening. Therefore, it is important to monitor the DoA
exactly. Hence, EEG-based methods have been adopted as efficient clinical monitoring techniques
due to the temporally varying and convenient features.

In recent years, many methods have been developed for monitoring the DoA index (Jiao et al.,
2018; Jin et al., 2018). The bispectral (BIS) index was proposed by Rampil (1998), defining the DoA
index in a range of 0–100. This algorithm has certain limitations in the burst suppression pattern
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(BSP), giving a high BIS index, while the patient is still in the
state of anesthesia (Kearse et al., 1994). The EEG signal is non-
stationary and exhibits non-linear or chaotic behaviors (Elbert
et al., 1994; Natarajan et al., 2004). Many studies have shown that
nonlinear analysis can be used for EEG in medical applications.
Therefore, feature extraction of EEG signals based on nonlinear
dynamics is widely used in the monitoring of anesthesia depth,
for example, the Hurst exponent (Alvarez-Ramirez et al., 2008),
detrended fluctuation analysis (Jospin et al., 2007), entropies
(Bruhn et al., 2000; Chen et al., 2007), and a frequency band
power ratio (Drummond et al., 1991).

Wavelet transform is an effective tool for extracting and
analyzing the essential structure of signal in the time-
frequency domain (Rezek and Roberts, 1998). As a method
for identifying the time-frequency spectrum, wavelet transform
can automatically adjust the size of the time window and
better match the frequency characteristics of the signal; it is an
ideal tool for signal analysis and processing. Therefore, many
researchers had developed various wavelet entropy algorithms
for DoA monitoring based on the wavelet transform, such as
ShannonWavelet entropy (SWE), Tsallis wavelet entropy (TWE),
and Renyi wavelet entropy (RWE) (Rosso et al., 2006; Särkelä
et al., 2007; Maszczyk and Duch, 2008). Wavelet entropy can
represent the relative energy associated with the frequency band
and detect similarities between signal segments (Puthankattil
and Joseph, 2012; Benzy and Jasmin, 2015). It can measure
the degree of signal order/disorder. Permutation entropy is a
complexity measure for time series analysis. It is simple and
has low computational complexity, which makes it useful for
monitoring dynamic changes in complex time series. It is robust
against artifacts in EEG in the awake state (Shalbaf et al., 2013).
However, due to its high-frequency waves during the suppression
period, permutation entropy is not effective in deep anesthesia
(Cao et al., 2004; Li et al., 2008, 2010; Olofsen et al., 2008). Sample
entropy was developed based on approximate entropy, which
estimates irregularities and complexity by reconstruction of time
series. Compared to the approximate entropy, the sample entropy
eliminates self-matching, has less dependence on the length of the
time series, and is more consistent when compared over a wide
range of conditions (Richman and Moorman, 2000; Yoo et al.,
2012). It can track the state of brain activity under high doses of
anesthetic drugs but requires noise-free data (Shalbaf et al., 2012).
Several different ratios of electrical activity in various frequency
bands have been proposed as indices of anesthesia depth in
previous studies (Drummond et al., 1991). Shah proved that
the ratio of alpha and beta frequency to delta frequency power
appears to be a useful tool for identifying stages of isoflurane
anesthesia (Shah et al., 1988).

As well as traditional signal processing methods, learning-
based methods have been widely used in EEG signal processing
and have achieved good results (Zhang et al., 2015, 2018; Wu
et al., 2019). In recent years, learning-based methods have also
achieved good performance for monitoring DoA. As stated in
Shalbaf et al. (2013), an artificial neural network was used to
classify the DoA index with extracted feature sample entropy
and permutation entropy. The various features extracted from
the EEG represented different aspects of the EEG, so using

multiple parameters to assess the depth of anesthesia was
effective. Saffar also integrated the Beta index, SWE, sample
entropy, and detrended fluctuation analysis as multiple features,
and an adaptive neuro-fuzzy inference system was used for
classifying the stages of DoA (Shalbaf et al., 2018). By applying
the five indices of middle frequency, spectral edge frequency,
approximate entropy, sample entropy, and permutation entropy
as the inputs of the artificial neural network, Liu obtained the
combination index and found that the combination of these
variables was more accurate than a single index for monitoring
DoA (Liu et al., 2016). Liu et al. (2019) extracted the EEG
spectrum information as the input of a CNN and trained the
CNN to classify the DoA, which achieved better results.

A Recurrent Neural Network (RNN) is a special neural
network with a memory function, and it can effectively
use temporal information to analyze time series. However,
the traditional RNN model has the problem of gradient
disappearance or gradient explosion, the long short-term
memory network (LSTM), an improvement of RNN, solves
this problem to a certain extent (Hochreiter and Schmidhuber,
1997). LSTM has been successfully applied in various fields such
as handwriting recognition (Graves and Schmidhuber, 2009),
machine translation (Sutskever et al., 2014), speech recognition
(Graves et al., 2013), and so on.

An autoencoder can learn a representation of the input data
efficiently through unsupervised learning (Vincent et al., 2008;
Baldi, 2012). Li et al. (2015) used the Lomb-Scargle periodogram
and a denoising autoencoder to estimate the spectral power from
incomplete EEG. The results showed that this method is suitable
for decoding incomplete EEG. It has been proved that a denoising
sparse autoencoder can extract the features of data and improve
the robustness of those features (Meng et al., 2017). Qiu et al.
(2018) proposed a novel method of seizure detection based on a
denoising sparse autoencoder, which achieved high classification
accuracy in seizure detection.

In this paper, an anesthesia depth monitoring method
based on a sparse denoising autoencoder (SDAE) and LSTM
is investigated with a combination of hybrid features. We
preprocessed an EEG signal containing noise through a sixth-
order Butterworth filter. The permutation entropy, sample
entropy, wavelet entropy, frequency band power, and frequency
spectrum were then extracted as features and input into the
SDAE-LSTM (Sparse Denoising Autoencoder and Long Short-
Term Memory) network to estimate the DoA. The combination
of these features compensates for the shortcomings of individual
features and is the optimal combination, having been proven
to be effective. An SDAE combined with LSTM can take
advantage of the temporal information in EEG, increase
the robustness of the system, and remove noise-containing
information. The final experimental results demonstrated that
our proposed hybrid method can achieve higher prediction
probability (Pk) and provide better prediction performance than
the traditional approaches.

The remainder of this paper is organized as follows. In
section 2, we introduce the dataset and the baseline methods
commonly used for DoA monitoring and our designed SDAE-
LSTM network. Section 3 presents the experimental results of the
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SDAE-LSTM performance and compare it with other methods.
Finally, Sections 4 and 5 provide discussion and conclusions.

2. MATERIALS AND METHODS

2.1. Data
The dataset used for evaluation was from a previous study
(McKay et al., 2006) and collected at the Waikato Hospital in
Hamilton, New Zealand, which contains 20 patients aged 18–
63 years old. These patients were scheduled for elective general,
orthopedic, or gynecological surgery. The experiment was
reviewed and approved by Waikato Hospital ethics committee
and all subjects provided their written informed consent (McKay
et al., 2006).

All trials were performed under the conditions specified
by the American Society of Anesthesiologists. The raw EEG,
unprocessed sevoflurane concentration, processed end-tidal
sevoflurane concentration, RE, and SE of each patient were
recorded in detail in the dataset. The commercial GE electrode
system, which consisted of a self-adhering flexible band
holding three electrodes, was applied to the forehead of each
patient to record EEG data (100/s). The end-tidal sevoflurane
concentration recorded from the mouth was sampled at 100/s
(McKay et al., 2006). A plug-in M-Entropy module was used to
measure the response entropy (RE) (0.2/s) and state entropy (SE)
(0.2/s); its sampling rate is 1,600 Hz, the frequency bandwidth is
0.5–118 Hz, and the amplifier noise level is <0.5uV. Patients first
inhaled fresh gas at 4L/min and where then given 3% sevoflurane
for 2 min, followed immediately by a 7% inspired concentration.
When RE had decreased to 20, 7% sevoflurane was continued for
a further 2 min. Finally, sevoflurane was turned off.

The dataset we used records the raw EEG, unprocessed
sevoflurane concentration, processed end-tidal sevoflurane
concentration, RE, and SE of each patient. We did not segment
the EEG signal and used a continuous signal throughout the
whole process.

2.2. Feature Extraction
2.2.1. Sample Entropy
Sample entropy (SampEn) was developed by Richman and
Moorman (2000) to represent the complexity of finite time series.
Larger values of SampEn reflect a more irregular signal. Given a
time series x(i), 1 ≤ i ≤ N, it can be reconstituted as N −m+ 1
vectors Xm (i), defined as:

Xm (i) = {x (i) , x (i+ 1) , . . . , x (i+m− 1)} , i = 1, 2, . . . ,N−m

Let d be the distance between the vectorsXm (i) andXm

(

j
)

, which
is given by:

dmij = d
[

Xm
i ,X

m
j

]

= max
(
∣

∣x
(

i+ k
)

− x
(

j+ k
)
∣

∣

)

,

k = 0, 1, . . . ,m− 1

Cm
i (r) is the probability that Xm

(

j
)

is within distance r of Xm (i),
calculated as:

Cm
i (r) =

ni (m, r)

N −m+ 1
, i = 1,N −m

where ni (m, r) is the number of vectors Xj that were similar to Xi

subject to d
(

Xi,Xj

)

≤ r. When the embedding dimension equals
m, the total number of template matches is:

A (m, r) =

∑N−m
i=1 Cm

i (r)

N −m

Settingm = m+ 1 and repeating the above steps, the SampEn of
the time series is estimated by:

SampEn (r,m,N) = −Ln
A (m+ 1, r)

A (m, r)

where Ln is the natural logarithm. The SampEn index is
influenced by three parametersN, r, andm. N is the length of the
time series, r is the threshold that determines the similarity of the
patterns, and m is the length of the compared sequences. In this
paper, we set N = 500, r = 0.2, and m = 2. The parameters are
selected according to Bruhn et al. (2000) and Liang et al. (2015).

2.2.2. Permutation Entropy
Permutation entropy (PeEn) provides a simple and robust
DoA estimation method with low computational complexity. It
quantifies the amount of regularity in the EEG signal, and takes
the temporal order of the values into account (Li et al., 2008).
Given a time series XN = [x1, x2, . . . , xN] with N points, XN can
be reconstructed as:

Xi = {x (i) , x (i+ τ) , . . . , x (i+ (m− 1) τ )} ,

i = 1, 2, . . . ,N − (m− 1) τ

where τ is the time delay, and m denotes the embedding
dimension. Then, Xi can be rearranged in an increasing order:

{

x
(

i+
(

j1 − 1
)

τ
)

≤ x
(

i+
(

j2 − 1
)

τ
)

≤ . . .

≤ x
(

i+
(

jm − 1
)

τ
)}

There are J = m! permutations for m dimensions. The vectors
Xi can be represented by a symbol sequence in which each
permutation is considered a symbol. For the time series XN , the
probabilities of the dissimilar symbols for the time series XN

are named P1, . . . , Pj. Based on Shannon entropy, permutation
entropy can be defined as:

PE =

∑J
j=1 PjLnPj

LnJ

The calculation of PermEn is dependent on the length of the time
series N, the length of the pattern m, and the time lag τ , which
are N = 500, m = 4, and τ = 1. The parameters are selected as
proposed in Su et al. (2016).

2.2.3. Wavelet Entropy
Wavelet entropy is based on wavelet transform with multiple
scales and orientations (Särkelä et al., 2007). A suitable wavelet
base is selected, and the original signal is developed at different
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scales, where Cj

(

k
)

is the decomposition coefficients at each
scale j. The wavelet energy Ej of a signal is defined as follows:

Ej =

Lj
∑

k=1

∣

∣Cj

(

k
) ∣

∣

2

where Lj denotes the number of coefficients at each
decomposition scale. Therefore, the total energy of the signal can
be expressed as:

Etotal =
∑

j

Ej =
∑

j

Lj
∑
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∣

∣Cj

(

k
)

∣

∣

2

Then, wavelet energy is divided by total energy to obtain the
relative wavelet energy at each scale j:

pj =
Ej

Etotal
=

∑Lj
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∣
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∣
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Finally, the wavelet entropy is calculated by:

S = −
∑

j

pjlog
(

pj
)

2.2.4. Alpha-Ratio
The alpha-ratio is the logarithmic relative power of two distinct
frequency bands and can be calculated as follows:

alpha− ratio = log
E30−42.5Hz

E6−12Hz

where E30−42.5 and E6−12 represent spectral energy in the 30–42.5
and 6–12 Hz bands, respectively (Drummond et al., 1991; Jensen
et al., 2006).

2.3. Our Work
2.3.1. Long Short-Term Memory (LSTM)
A recurrent Neural Network is an efficient tool for sequential
data analysis, such as EEG signal processing. The emergence of
LSTM, as an improvement of the RNN network model, plays a
significant role in solving the problem of gradient disappearance
during RNN training. LSTM is a kind of special RNN model,
and, in order to make the gradient flow for long durations,
LSTM introduces self-loops and propose the concept of a gate.
Compared with an ordinary recurrent network, each cell has
the same inputs and outputs but more parameters (Goodfellow
et al., 2016). The structure is shown in Figure 1 (Hochreiter and
Schmidhuber, 1997):

The cell state update formula is as follows:

Ct = ftCt−1 + itCt
′

Ct
′ is the candidate values created by a tanh layer:

Ct
′ = tanh(WxcXt +WhcHt−1 + bc)

FIGURE 1 | Structure of Long Short-Term Memory. The green line above the

graph represents the cell state. The green box represents the gate, which

controls the updating of the cell state.

In the above equation, Wxc and Whc are the weights of the input
layer Xt at the current moment and the hidden layer Ht−1 at the
previous moment. bc is the bias, and ft and it are the forgetting
gate unit and the input gate unit, respectively. The formulas for
these two parameters are as follows:

ft = f1
(

WxfXt +WhfHt−1 + bf
)

it = f2
(

WxiXt +WhiHt−1 + bi
)

where f1 and f2 are sigmoid functions that can map the value of
the control coefficient between 0 and 1. And, the hidden layer Ht

at the current moment can be written as:

Ht = ot ∗ f5 (Ct)

ot is the output gate unit, and its expression is:

ot = f4
(

WxoXt +WhoHt−1 + bo
)

f4 is also a sigmoid function.Wxo andWho represent the weights
of the input layerXt and the hidden layerHt−1 to the output gate,
and bo is the bias of the network. f5 is an activation function, such
as tanh.

The LSTM must be trained to regulate the weights and biases.
One of the most commonly used training algorithms is Bayesian
regularization back-propagation.

2.3.2. Autoencoder
An autoencoder (AE) can be understood as a system that
attempts to restore its original input, as shown in Figure 2, and
it is a kind of neural network. The dotted blue box is an AE
model that consists of two parts, an encoder and a decoder. The
encoder converts the input signal x into a hidden representation
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FIGURE 2 | Structure of an autoencoder. The network consists of two parts:

an encoder represented by the function f and a decoder, g. The encoder

compresses the input into a hidden layer representation, and the decoder

reconstructs the input from the hidden layer.

y, and the decoder recovers y into an output signal x′, which is a
reconstructed x.

y = f (x)

x′ = g
(

y
)

= g
(

f (x)
)

The purpose of an autoencoder is to recover the input x as much
as possible. In fact, we usually focus on the encoding of themiddle
layer, or the mapping from input to encoding. In other words,
in the case where we force the encoding y and the input x to be
different, the system can also restore the original signal x, and
then the encoding y already carries all the information of the
original data, which is a effective representation of the automatic
learning of the original data.

A denoising autoencoder (DAE) is an extension of an
autoencoder and was proposed by Vincent et al. (2008). To
prevent over-fitting problems, noise is added to the input data
(the input layer of the network), which makes the learned
encoder W more robust and enhances the generalization ability
of the model. A schematic diagram of a denoising autoencoder is
shown in Figure 3. In Figure 3, x is the original input data, and
DAE sets the value of the input layer node to 0 with a certain
probability to get the input x containing noise (Vincent et al.,
2010).

2.3.3. Our Proposed Method:SDAE-LSTM
In this paper, we propose a novel framework combining a sparse
denoising autoencoder with the LSTM to predict anesthesia
depth. Figure 4 shows the structure of SDAE-LSTM.

First, we used the notching filter to filter out power-frequency
interference and the sixth-order Butterworth filter to filter out
frequencies <0.8 Hz and >50 Hz. Next, the entropies, spectrum,
etc., were extracted as features, and we used the wavelet threshold
to smooth the features. Then, the features from the EEG
data were used to train the SDAE-LSTM network, using the
sevoflurane effect concentration calculated by the PK model
based on end-tidal concentration as the label. SDAEswere trained
one by one, after training the first SDAE; its encoder output
was used as the input of the second SDAE, and the output of
the second SDAE’s encoder was used as the input characteristic
of the LSTM for the anesthesia depth prediction training. The
whole neural network was fine-tuned after the training of
LSTM. The anesthesia depth index was finally obtained from

the output of the SDAE-LSTM. Figure 5 illustrates the entire
proposed framework.

The features we extracted represent the different patterns of
EEG. Permutation entropy is robust against artifacts in EEG in
the awake state (Shalbaf et al., 2013), while sample entropy can
track the state of brain activity under high doses of anesthetic
drugs (Shalbaf et al., 2012). Wavelet entropy can measure the
degree of order/disorder of the signal and provide underlying
dynamic process information associated with the signal (Rosso
et al., 2001). Frequency spectrum and alpha-ratio can also be
used to detect EEG activity and have been proposed as indices
of anesthesia depth in previous studies (Shah et al., 1988;
Drummond et al., 1991). We finally chose 46 features, including
40 frequency spectra (30–50 Hz, the spectrum every 0.5 Hz
is a feature point), 2 average spectra (the average spectra 30–
47 and 47–50 Hz), 3 entropies (permutation entropy, sample
entropy, and wavelet entropy) and the alpha-ratio. We combined
the 46 features using a 46*N feature matrix as the input to the
neural network.

2.4. PK/PD Model
The PK/PD model describes the relationship between anesthetic
drug concentration and the EEG index. It consists of two parts:
pharmacodynamics and pharmacokinetics. The pharmacokinetic
side of the model describes how the blood concentration of
the drug changes with time, and the pharmacodynamics side
represents the relationship between the drug concentration at the
effect site and the measured index (McKay et al., 2006).

McKay et al. claim that the effect-site concentration of
sevoflurane is related to the partial pressure of the effect site,
and the partial pressure of the effect site can be calculated by the
classical first-order effect site model:

dCeff /dt = Keo[Cet − Ceff ]

where Cet is end-tidal concentration, Ceff is the effect-site
concentration, and keo denotes the first-order rate constant for
efflux from the effect compartment.

We used a nonlinear inhibitory sigmoid Emax curve to
describe the relationship between Ceff and the measured index.

Effect = Emax − (Emax − Emin) ∗
Ceff

γ

EC50
γ + Ceff

γ

where Effect is the EEG index, Emax and Emin are the maximum
and minimum Effect respectively, EC50 describes the drug
concentration that causes 50% of the maximum Effect, and γ is
the slope of the concentration-response relationship.

2.5. Prediction Probability
To evaluate the performance of the DoA methods, the
prediction probability (Pk) statistics are used to calculate the
correlation between the measured EEG index and drug effect-site
concentration. The prediction probability was first proposed by
Smith et al. (1996). Smith proposed using a constant to indicate
the predictive performance of the anesthesia depth index.

Given two random data points x, y with different Ceff , Pk
describes the probability that the measured EEG index correctly
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FIGURE 3 | Structure of a denoising autoencoder. x represents the input data, x′ is the corrupted input, and L is the loss function.

FIGURE 4 | Structure of an SDAE-LSTM network. The green circles represent the layers of SDAEs and the yellow circles are LSTM layers. f ′ represents the corrupted

input features, y represents the encoded data, and L is a squared loss function.

predicts the Ceff of the two points. Let Pc, Pd, and Ptx be the
respective probabilities that two data points drawn at random,
independently and with replacement, from the population are
a concordance, a discordance, or an x-only tie. The only other
possibility is that the two data points are tied in observed depth
y; therefore, the sum of Pc, Pd, and Ptx is the probability that the
two data points have distinct values of observed anesthetic depth;
that is, that they are not tied in y. Pk is defined as:

Pk =
Pc + Ptx/2

Pc + Pd + Ptx

A value of 1 means that the predicted index can completely
measure the depth of anesthesia, and a value of 0.5 indicates that

the predicted index is completely random. Because the predictive
index has a negative correlation, when the Pk value is <0.5, it is
replaced by 1− Pk.

3. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the DoA
index estimation using the SDAE-LSTM network and compare
it with permutation entropy, sample entropy, wavelet entropy,
alpha-ratio, and our proposed network without SDAE. The
sevoflurane effect concentration calculated by the PK model
based on end-tidal concentration was used as the label for
network training.
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FIGURE 5 | Depiction of our proposed framework. The structure of SDAE-LSTM is a contracted form, which means that 46 features are input in the SDAE-LSTM

network, and there is output one index with which to monitor the DoA. The details of the SDAE-LSTM structure can be seen in Figure 4.

0 100 200 300 400 500 600 700

Time(s)

-200

0

200

E
E

G
(u

V
)

0 100 200 300 400 500 600 700

Time(s)

0

2

4

6

C
e

t(
%

)

0 100 200 300 400 500 600 700

Time(s)

0

2

4

C
e

ff
(%

)

FIGURE 6 | EEG data from a patient and the end-tidal concentration and effect-site concentration of sevoflurane.

The performance of the SDAE-LSTM network was tested on
the dataset we introduced in section 2. This dataset consists of
EEG data during anesthesia from 20 subjects, from awake to
deep anesthesia. Figure 6 shows the preprocessed EEG signal,
the end-tidal concentration, and the effect-site concentration of
a patient during the sevoflurane induction process, from awake
to anesthesia and to recovery. We input 19 training samples into
the SDAE-LSTM algorithm and the regression procedure for a
new test sample. The experimental result was calculated by cross-
validation; each time, one subject’s EEG data were selected as
the test set, the order of the remaining 19 subjects’ data was
shuffled, and the remaining 19 subjects’ data were used as the
training set for SDAE-LSTMnetwork training. The final accuracy
was the average of 20 experiments. We repeated the above steps

100 times and calculated the average as the final accuracy, which
shows that our method is effective and reproducible. For the
baseline methods, the results were calculated by the average of
the accuracy of 20 experiments. The comparison was performed
on a desktop computer with an Intel Xeon CPU at 2.6 GHz and 64
GB DDR4 memory under the Windows Server 2008 OS, Matlab
R2017a, and Python 3.5.

The current structure we used consists of five layers: one input
layer with 46 nodes, three hidden layers with 92, 12, and 18 nodes,
respectively, and one output layer with one node. The first three
layers are SDAE, and the last two layers are LSTM.

Figure 7 shows the calculated permutation entropy, sample
entropy, and alpha-ratio and the index calculated during the
process. It indicates that with an increase in drug effect-site
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FIGURE 7 | The indices calculated by wavelet entropy, sample entropy, alpha-ratio, the average spectra of 30–47 and 47–50 Hz, permutation entropy, and our

method during anesthesia.

concentration, the entropies decreased, and the index calculated
by our method increased.

In addition, we used the Kolmogorov-Smirnov test to
determine whether the Pk values of 20 subjects were normally
distributed, and t-tests were used to assess whether our proposed
method is more effective than other methods.

We compare the results of our proposed network with
other methods including permutation entropy, sample entropy,
wavelet entropy, alpha-ratio, and the network without SDAE. The
Pk values of these methods are presented in Table 1 and Figure 8.
We can see that the Pk value of the permutation entropy, 0.8373,

is the highest of all baseline systems and that the Pk value of
the LSTM structure can reach 0.8479, while, using our proposed
SDAE-LSTM network, the Pk value was highest of all methods,
reaching 0.8556. Therefore, based on our results, this kind of
combination has the highest Pk value in anesthesia monitoring.
The paired t-tests also confirmed that the proposed method
provided significantly higher accuracy than traditional methods
(SDAE-LSTM>PeEn: p < 0 : 1222, SDAE-LSTM>SampEn:p <

0 : 00013, SDAE-LSTM>SWE: p < 0 : 0202, SDAE-LSTM>30–
47 Hz: p < 0 : 0201, SDAE-LSTM>47–50 Hz: p < 0 : 0431,
SDAE-LSTM>alpha-ratio: p < 0 : 0477).
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TABLE 1 | Pk values of wavelet entropy, sample entropy, alpha-ratio, the average

spectra of 30–47 and 47–50 Hz, permutation entropy, LSTM, and SDAE-LSTM.

Method Pk

Wavelet entropy 0.8201 ± 0.1006

Sample entropy 0.7182 ± 0.1363

Alpha-ratio 0.8354 ± 0.0867

30–47 Hz 0.8285 ± 0.0842

47–50 Hz 0.8282 ± 0.09

Permutation entropy 0.8373 ± 0.0739

LSTM 0.8479 ± 0.0748

SDAE-LSTM 0.8556 ± 0.0762

SWE SampEn 30-47hz 47-50hz PeEn LSTM SDAE-LSTM
0.5

0.55

0.6

0.65

0.7

0.75
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1

FIGURE 8 | The average and standard deviation of the Pk values of wavelet

entropy, sample entropy, alpha-ratio, the average spectra of 30–47 and 47–50

Hz, permutation entropy, LSTM, and SDAE-LSTM, respectively. The blue lines

in the figure represent the variance, and the blue rectangles represent the

average values.

4. DISCUSSION

In this study, we propose a new method for monitoring the
depth of anesthesia using EEG signals. We used wavelet entropy,
permutation entropy, sample entropy, alpha-ratio, and frequency
spectrum to extract features from EEG signals. However, EEG
is a complex dynamic signal with multiple linear and nonlinear
features and it is very sensitive to noise. Using only one linear
method or nonlinear method cannot analyze all aspects of
brain activity. These traditional methods may vary from patient
to patient and type of surgery. Moreover, muscle relaxants,
anesthetics, and other similar drugs used during surgery affect the
EEG, thus making the analysis of clinical symptoms unreliable
(Shalbaf et al., 2015).

Therefore, a new method based on LSTM and an SDAE is
proposed. LSTM is a neural network for processing sequence
data. Compared with the general neural network, it is more
suitable for processing and predicting important events with
relatively long intervals and delays in the time series. Therefore,
it can analyze the temporal information present in EEG. An
SDAE is an improved unsupervised deep neural network.
The sparseness constraint applied in the hidden layer of the

network makes the representation of data sparse. Applying
the denoising autoencoder to destroy the input data helps
enhance the robustness of the system, making it suitable
for the analysis of EEG signals that have a lower signal-to-
noise ratio.

Pharmacokinetic/Pharmacodynamic (PK/PD) modeling and
prediction probability were used to evaluate the effectiveness
of the SDAE-LSTM model for monitoring DoA. PK/PD
modeling can be sued to establish the relationship between the
concentration of the anesthetic at the effect site and the EEG
index. This method has been used to assess the proposed EEG
index successfully (McKay et al., 2006). The PK side we used
describes the changes in drug concentration in blood over time.
The prediction probability was first proposed by Smith et al.
(1996), proposing a constant to express the predictive accuracy
of DoA (Smith et al., 1996).

We used a dataset collected by a New Zealand hospital
containing 20 sets of patient data from the use of sevoflurane
anesthesia methods, which recorded the entire process from the
beginning to the end of anesthesia. Cross-validation was used
to assess whether our method is effective. We compared the
proposed method with the traditional methods. The results show
that our method can achieve a Pk value of 0.8556 for predicting
the depth of anesthesia, which is about 2% higher than the
baseline methods and is increased by 0.77% compared with using
a LSTM network only.

5. CONCLUSION

This paper provides a method for monitoring the DoA using
EEG, which helps to provide a safer, reliable, and effective
clinical environment for anesthetized patients. In this study,
permutation entropy, wavelet entropy, sample entropy, alpha-
ratio, and frequency spectrum are used to extract the features of
EEG signals. These extracted features are applied to an SDAE-
LSTM network. The method was compared with the traditional
methods and achieved good results. Therefore, this method of
combining the hybrid features in an SDAE-LSTM network can
be used in future studies on anesthesia depth monitoring.
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