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Alzheimer’s disease (AD) is the most common form of dementia, an eversible, progres-
sive disease that causes problems with memory, thinking, language, planning, and 
behavior. There are a number of risk factors associated with developing AD but the 
exact cause remains unknown. The predominant theory is that excessive build-up of 
amyloid protein leads to cell death, brain atrophy, and cognitive and functional decline. 
However, the amyloid hypothesis has not led to a single successful treatment. The 
recent failure of Solanezumab, a monoclonal antibody to amyloid, in a large phase III 
trial was emblematic of the repeated failure of anti-amyloid therapeutics. New disease 
targets are urgently needed. The innate immune system is increasingly being implicated 
in the pathology of number of chronic diseases. This focused review will summarize 
the role of transcription factor nuclear factor-kappa B (NF-κB), a key regulator of innate 
immunity, in the major genetic and environmental risk factors in cellular, invertebrate 
and vertebrate models of AD. The paper will also explore the relationship between 
NF-κB and emerging environmental risk factors in an attempt to assess the potential 
for this transcription factor to be targeted for disease prevention.
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inTRODUCTiOn

The global burden of dementia is devastating, with an estimated 35 million people affected and 
the annual cost estimated to exceed $1 trillion by 2018 (1, 2). Despite greater knowledge of the 
pathogenic sequelae of disease, repeated failure in drug trials has led to a switch in emphasis from 
disease treatment to disease prevention (3–5). Alzheimer’s disease (AD) is the most common 
dementia subtype yet no single theory has been able to account for the multiple risk factors leading 
to the pathological and clinical features (3). The deposition of excess extracellular beta amyloid 
(Aβ) protein and subsequent taupathy has long been felt to be a cause of the disease overshadowing 
alternative hypotheses including microglial dysfunction, vascular disease, mitochondrial insuf-
ficiency, and metabolic disease.

However, the recent failure of another promising anti-amyloid treatment in large phase III trials 
has dealt a significant blow to the credibility of the amyloid hypothesis (6). The pathognomonic 
role of Aβ is now also being questioned with the discovery that Aβ acts as an antimicrobial peptide 
(AMP) in cell lines, nematode, and rodent models. Aβ production following exposure to neurotoxic 
fungi and bacteria provided significant neuroprotection (7). Amyloid over-production may therefore 
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TABle 1 | Emerging genetic risk factors for Alzheimer’s disease (AD) and their associated with nuclear factor-kappa B (NF-κB) and amyloid (8).

Gene implicated  
in late onset AD

Function increased risk of AD interaction with nF-κB interaction with amyloid

TREM2 Immunity Reduced expression increases 
risk: slight–medium

NF-κB suppresses hippocampal TREM2 expression (9) TREM2 required for microglial  
amyloid clearance (9)

CD33 Immunity Mild CD33 activates NF-κB in myeloid cells CD33 inhibits microglial Aβ  
uptake and clearance (10)

CR1 Immunity Mild–medium Microglial CR1 activation associated with increase in NF-κB (11) Uncertain (11)

INPP5D Immunity Mild Negative regulator of NF-κB expression (12) Uncertain 
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be a downstream product of immune dysregulation rather than 
a disease process in itself. In support of this, several genes are 
involved in innate immunity are associated with an increase in 
AD (8) (see Table 1). More work is clearly needed to explore the 
interaction between amyloid and the innate immune system.

Aging is the most significant risk factor for developing AD 
and recent findings have shown tissue specific brain inflam-
mation, mediated by NF-κB is associated with aging (12–15). 
Hypothalamic NF-κB levels are negligible in young mice and 
Drosophila. Significant activation begins in middle age. The 
resulting downstream increase in AMPs leads to increased 
local microglial activity, subsequent decline in gonadotrophins 
and aging (12, 14). Interestingly, hypothalamic inflammation is 
relatively higher when compared to neurons and glial cells in 
other vulnerable brain regions such as the hippocampus (12). In 
support of this hypothalamic-specific regulation of aging, drugs 
known to extend lifespan in mice reduce hypothalamic inflam-
mation but have little anti-inflammatory effect on hippocampal 
neurons (14).

Known inducers of NF-κB activity are highly variable and 
include reactive oxygen species (ROS), interleukin 1-beta (IL-
1β), tumor necrosis factor alpha (TNF-α), bacterial lipopolysac-
charides (LPS), isoproterenol, and ionizing radiation (16, 17). In 
addition to stimuli that activate NF-κB in other tissues, NF-κB 
in the nervous system can be activated by growth factors and 
synaptic transmission such as glutamate (18). These activators of 
NF-κB in the nervous system all converge upon the inhibitor of 
kinase kinase (IKK) complex (Figure 1).

Nuclear factor-kappa B transcription factors include a col-
lection of proteins with functions conserved from the fruit fly 
Drosophila melanogaster to rodents and to humans (Figures  1 
and 2). They are present in all human and most animal cells 
and regulate the expression of more than 400 genes, including 
a multitude of inflammatory mediators associated with a variety 
of chronic inflammatory diseases including cancer, diabetes, and 
AD (19, 20). Lately, Rel/NF-κB homologs have also been found 
to occur even in organisms as simple as Cnidarians (e.g., sea 
anemones and corals), Porifera (sponges), and the single-celled 
eukaryote Capsaspora owczarzaki, but are notably absent in yeast 
and the nematode Caenorhabditis elegans (21). Activated NF-κB 
regulates the expression of specific genes, including isoforms 
of SET, directly implicated in the pathogenesis of AD (22). 
Conversely, expression of the mammalian family of Sirtuin dea-
cetylases, known to attenuate the effects of aging, down regulates 
NF-κB (23, 24).

Studies of aging populations have enabled the identification 
of a number of genetic and environmental risk factors that 
appear to influence susceptibility to developing AD (25, 26). This 
paper will review the interaction between these risk factors and 
NF-κB, first looking at the major known genetic risk factors in 
cell, invertebrate, and vertebrate models. It will then focus on the 
major known environmental risk factors in these models before 
reviewing emerging environmental risk factors. Finally, the paper 
will review protective mechanisms across various experimental 
models and whether their association with NF-κB.

The repeated failure of disease modifying trials in AD 
demands that new treatment targets are urgently identified. The 
recent findings that implicate the innate immune system in AD 
provides an opportunity to review the evidence for NF-κB as a 
key immune system regulator in the prodromal stage in the hope 
of identifying a target for treatment and prevention.

GeneTiCS

neuronal Cell lines/Human Autopsy 
Studies
Overexpression of the amyloid precursor protein (APP) gene is 
associated with familial aggregation of late onset AD and dramati-
cally increases susceptibility to early AD in Down’s syndrome. APP 
is cleaved by the beta-secreatase BACE1 into amyloid monomers 
that form oligomers that eventually become plaques in the brain 
and vasculature. Both BACE1 and NF-κB are increased in the 
brains of AD patients, with NF-κB directly upregulating BACE1 
and the APP gene (27, 28). Medications such as minocycline, that 
inhibit NF-κB but not BACE1 or APP, reverse this process (28, 29).

The e4 variant of the APOE gene, which codes for a cholesterol 
transporting protein, is the largest, single gene risk factor for AD 
(30). In APOE e4-positive Schwann cell lines, when compared to 
APOE e3-expressing cells, excess production of IL6, IL10, and 
nitrous oxide results from a failure to inhibit NF-κB (31). These 
findings are replicated in neural cells and fibroblasts from AD 
patients where APOE e4 acts as a transcription factor responsible 
for regulating NF-κB expression (32). Curiously, cells from the 
somatosensory cortex of AD patients, an area of the brain that is 
resistant to disease, display upregulation of NF-κB (33). However, 
this may reflect the earliest inflammatory hallmark of disease as 
previous autopsy studies have shown increased NF-κB activation 
in evolving Aβ deposits with a reduction in areas surrounding 
more mature plaques (19, 33).
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FiGURe 1 | The Toll pathway in fruit fly and the Toll-like receptor (TLR) 4 pathway in the mouse. (A) The Toll pathway in Drosophila melanogaster detects Gram-
positive bacteria and fungi is activated through an endogenous ligand, namely Nerve Growth Factor-related cytokine Spaetzle (SPZ) which is processed by Spaetzle-
processing enzyme (SPE). Toll receptor activation results in the recruitment of the adaptor proteins namely myeloid differentiation primary response 88 (dMyD88), 
Tube, and Pelle, which promotes signaling to Cactus and its ankyrin-repeat domains. Cactus is bound to the nuclear factor-kappa B (NF-κB) transcription factors 
dorsal-related immunity factor (DIF) and Dorsal and following activation of the pathway, it is phosphorylated and degraded. The above signaling events result in the 
nuclear translocation of DIF or Dorsal that stimulate the transcriptional upregulation of antimicrobial peptide (AMP) genes, such as Drosomycin. (B). TLR4 receptor in 
M. musculus detects lipopolysaccharides (LPS) from Gram-negative bacteria. Myeloid differentiation primary response 88 (MyD88) is recruited with Interleukin-1 
receptor-associated kinases 1 and 4 (IRAK1, IRAK4), receptor-interacting protein 1 (RIP1), and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6). 
TRAF6 is self-ubiquitinated in order to recruit transforming growth factor beta (TGF-β) activated kinase 1 (TAK1) and TAK1-associated binding proteins 1 and 2 
(TAB1 and TAB2). The latter leads to the activation of the IκB kinase (IKK) complex that in turns phosphorylates the inhibitor of NF-κB (IκB). This leads to the release 
of NF-κB that translocates to the nucleus and initiates the transcriptional induction of inflammatory and immune response related genes. This leads to the 
translocation of the NF-κB transcription factors p50 and p65 to the nucleus, which in turns initiates the transcriptional induction of inflammatory and immune 
response related genes.

3

Jones and Kounatidis NF-κB and Alzheimer Disease

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1805

invertebrate Models
A genetic screen for dominant suppressors and enhancers in a 
Drosophila model of Aβ-driven neurodegeneration revealed 
that Toll gene (receptor of Drosophila toll pathway) and key 
downstream components (dif, pelle, cactus), play a central role 
in mediating the neuropathological activities (34). Conversely, 
genetic overexpression results in accelerated deterioration of 
the phenotype suggesting that NF-κB significantly enhances the 
pathological potential of Aβ (35).

Genetic suppression of the immune deficiency (IMD) NF-κB 
pathway in glial cells in a Drosophila model of early onset neu-
rodegeneration dramatically rescues brain pathology, reduced 
activity, and short lifespan (13). Genetic overexpression of NF-κB 
pathways at neuronal or glial tissue level leads to phenotypes 
resembling AD models with locomotor disability, accelerated 
neurodegeneration, and premature mortality (13).

vertebrate Models
Age is the biggest risk factor for dementia and systemic 
inflammation increases as animal’s age, a process known as 

inflammaging (36). Microglia priming in mice induces a highly 
conserved transcriptional signature with aging characterized 
by NF-κB expression and neuronal death (37). In rats, NF-κB 
expression increases in normal aging leading to production of 
neurodegenerative pro-inflammatory enzymes COX-2 and iNOS 
(38). These changes are reversed by suppression of brain NF-κB 
activation using the anti-inflammatory Lactobacillus pentosus 
var. plantarum C29, restoring brain-derived neurotrophic factor 
(BDNF) levels and memory (39). In mice, the observed positive 
correlation between NF-κB activity and neuronal apoptosis 
suggests a role of NF-κB in hippocampal neuroapoptosis (40). 
Supporting this, NF-κB induces pro-apoptotic increases in TNF 
and iNOS in the hippocampus of rats exposed to neurotoxin (41).

Inactivating specific Sirtuin anti-aging genes in mice results in 
chronic NF-κB overexpression leading to accelerated aging and 
dramatically reduced lifespan (23). In Sirtuin replete models, 
overexpression via biofeedback dysregulation results in prema-
ture aging through chronic production of excessive ROS, leading 
to telomere dysfunction, cellular senescence, and premature 
death (42). Age-related NF-κB activation feeds into a positive 
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FiGURe 2 | The immune deficiency (IMD) pathway in fruit fly and the TNF pathway in the mouse. (A) The IMD pathway in Drosophila melanogaster is activated by 
Gram-negative bacteria and certain Gram-positive bacilli. The intracellular adaptor protein immune deficiency (Imd) interacts with the Drosophila Fas-associated 
death domain (dFADD) and the death-related ced-3/Nedd2-like caspase (DREDD) that cleaves Imd, which is then activated by K63 ubiquitination. This leads to the 
activation of the transforming growth factor beta activated kinase 1 (TAK1) that in turn activates the D. melanogaster inhibitor of kinase kinase ß and γ complex 
(dmIKKßγ). Activation results in the translocation of the nuclear factor-kappa B (NF-κB) transcription factor Relish (Rel) Dorsal to the nucleus which induces the 
transcription of antimicrobial peptide (AMP) genes, such as Diptericin. (B) The tumor necrosis factor (TNF) pathway in M. musculus is activated by TNF alpha 
(TNF-α) which binds and activates the transmembrane receptors R1 (TNFR1) and recruits the receptor-interacting protein (RIP) and TNF receptor-associated factor 2 
(TRAF2). TRAF2 employs mitogen-activated protein kinase kinase kinase 3 (MEKK3) which in turn activates the inhibitor of kinase kinase ß and γ complex (IKKßγ), 
which results to the translocation of NF-κB transcription factors p50 and Rel A. The latter translocation induces expression of several genes that are involved to 
immunity and inflammation.
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feedback loop in microglial cells causing perpetual inflammation 
and multiple brain responses including epigenetic suppression 
of GnRH genes in the hypothalamus (14). Microglial-derived 
NF-κB-TNF-α axis plays a key role in homeostatic synaptic 
scaling, a form of synaptic plasticity. However, overexpression 
results in disrupted neuronal networks and behavior mimicking 
obsessive–compulsive disorder (OCD) (43, 44). Suppressing this 
pathway mediates some of the OCD-like behavioral problems 
in mouse models of frontotemporal dementia (44). Specifically, 
under-expression of NF-κB in the mouse brain results in delayed 
onset of age-related pathology across all organ systems via pres-
ervation of the hypothalamic–pituitary–adrenal axis and GnRH 
levels (14).

enviROnMenT

neuronal Cell lines/Human Autopsy 
Studies
Type 2 diabetes mellitus (T2DM), a metabolic condition charac-
terized by a decrease in sensitivity to endogenous insulin, is the 
best established environmental risk factor for the development 

of AD, increasing relative risk by 50% (45). Diabetes induces Aβ 
pathology via NF-κB upregulation and independent overexpres-
sion of BACE1 (46, 47). Inflammatory mediators are known to 
contribute to insulin resistance creating a pro-inflammatory 
feedback loop in diabetes (48). Administering advanced glyca-
tion end products that mimic diabetic driven pathology results 
in elevated BACE1 and consequent NF-κB overexpression in 
both rat brains in vivo and neuroblastoma cells lines (49). NF-κB 
suppression using Adiponectin rescues Aβ pathology in human 
T2DM neuroblastoma cells (50). Similarly, leukotriene D4, an 
inflammatory signaling molecule elevated in metabolic disorders, 
induces Aβ synthesis in primary neurons at 24 h with increases in 
NF-κB seen after just 1 h (51, 52). Treatment of the culture with 
NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) inhibited 
Aβ generation with down regulation of Aβ generating beta- and 
gamma-secretase activity suggesting NF-κB regulates Aβ synthe-
sis in metabolic disease (52).

In human neuroblastoma cells, the metabolic enzyme protein 
arginine methyltransferase 5 (PRMT5) regulates cellular metabo-
lism, protecting the cell in times of stress. Aβ downregulates this 
process leading to NF-κB overexpression, metabolic dysfunc-
tion, and premature cell death (53). Inhibiting NF-κB reduces 
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apoptosis and Aβ deposits even in a metabolically dysfunctional 
organism or human cell lines suggesting a gatekeeper role for 
NF-κB in maintaining metabolic homeostasis and subsequent 
neuroprotection independent of PRMT5 activity (53).

invertebrate Models
In Drosophila models of chronic diseases including AD, the 
innate immune system has been identified as a key mediator of 
neurodegeneration (13, 34, 54, 55). NF-κB overexpression in the 
fat body cells, analogous to the metabolic syndrome in humans, 
results in more severe neurodegeneration (56).

Supporting the role of NF-κB in connecting whole-body 
metabolism with brain health, NF-κB overexpression in the 
hypothalamus-like pars intercerebralis neurons in Drosophila 
results in overnutrition, impaired metabolic learning, poor 
memory consolidation, and metabolic disorder characterized 
by increased lipid levels and shortened lifespan (57). Conversely, 
genetic knockdown of NF-κB signaling in glial cells leads to 
elevated adipokinetic and glucagon-like hormone levels, reduced 
glucose and lipid levels, and extension of “healthspan” (13).

vertebrate Models
In rodent and primate models, diabetes and obesity drive over-
expression of NF-κB in the hypothalamus creating a destructive 
feedback loop where further NF-κB expression promotes hyper-
tension, overnutrition, and decreased insulin sensitivity (58–61). 
Injecting Aβ into the brains of mice and macaques results in an 
increase in NF-κB in the cell nuclei of the hypothalamus and 
subsequent induction of peripheral glucose intolerance (62). In 
this model, pharmacological inhibition of NF-κB maintained 
peripheral metabolic homeostasis. Inducing diabetes in rats 
results in hippocampal NF-κB-dependent neurodegeneration via 
disruption of CREB phosphorylation, reducing levels of protec-
tive downstream proteins including BDNF (63).

The tetracycline derivative Minocycline inhibits NF-κB and 
prevents further Aβ deposition in a mouse model of diabetes-
driven AD. BACE1 activity remained elevated demonstrating 
an NF-κB-dependent protective mechanism (29). Mice fed on 
high-fat diets demonstrate elevated brain BACE1 expression as 
do transgenic diabetic mice. Administration of the anti-inflam-
matory agent all-trans-retinoic acid reduces BACE1 expression in 
both WT and mutant but this effect is abolished when the NF-κB-
binding site at the promoter region of BACE1 is mutated (64).

eMeRGinG RiSK FACTORS

Alcohol intake
In Drosophila, alcohol consumption activates Toll-NF-κB sign-
aling increasing ethanol resistance and gene products known 
to be outputs of innate immune signaling are rapidly induced 
following ethanol exposure (65). Ethanol treatment of cultured 
hippocampal rat neurons causes a dose- and time-dependent 
increase in NF-κB-DNA-binding activity, resulting in sig-
nificant upregulation of inflammatory markers and increased 
susceptibility to neurotoxins; reversible by applying NF-κB 
inhibitors (66, 67).

Opposing, the consumption of moderate amounts of alcohol, 
particularly red wine, is associated with a reduced risk of AD. 
Anthocyanin, a polyphenol found in wines, protects rat hip-
pocampal neurons against oxidative stress via NF-κB suppression 
(41, 68).

Sleep
Sleep quality and well-being are symbiotic and reduced sleep 
quality is increasingly being associated with increased risk of 
dementia. Sleep–wake cycle homeostasis is important in the 
processing and removal of Aβ plaques which, in turn, are known 
to dysregulate this reparative process (69). Sleep disruption and 
deprivation are known to cause over expression of the NF-κB 
pathway in hippocampal cell cultures, fruit flies, rodents, and 
humans (70–73). Improvement in sleep quality in older adults is 
correlated with a reduction in circulating NF-κB (74).

Traumatic Brain injury (TBi)
Traumatic brain injury activates both microglia and astrocytes 
and induces self-sustaining inflammatory responses in the brain 
via NF-κB activation (75, 76). In Drosophila, flies with TBI 
exhibited temporary incapacitation, ataxia, activation of the 
innate immune response, neurodegeneration, and death similar 
to humans with TBI (77, 78). Rat models have demonstrated the 
acute onset and prolonged overexpression of NF-κB in brain 
regions most commonly associated with post-injury atrophy (79, 
80). Recent studies have shown NF-κB to be significantly elevated 
in the ipsi-lateral cortex of both adult and old TBI mice in a time-
dependent manner (81). These interactions started immediately 
post-injury in the old mice compared to the adult mice suggesting 
an age-related failure of NF-κB suppression.

PROTeCTive FACTORS

exercise
Under expressing NF-κB in mice results in greater endurance, 
cognitive performance, and resistance to obesity (82). An aerobic 
exercise protocol in wild-type rats attenuated age-related memory 
decline and decreased hippocampal NF-κB levels and atrophy 
(83). In rats fed a pro-inflammatory diet and subjected to either 
strength training, aerobic exercise or a combination of both, all 
protocols reduced liver and muscle NF-κB levels to pre-diet levels 
(84). These findings are supported by studies demonstrating the 
indirect suppression of NF-κB via cytokine IL-10, a potent NF-κB 
inhibitor, induced by exercise (85).

Diet
Curcumin, a constituent of turmeric, has gained much attention 
in recent years for its potential as a neuroprotective compound. In 
a Drosophila model of neurodegeneration, the curcumin analog 
C150 significantly reduced neuronal cell death, increased healthy 
lifespan, and reduced DNA mutation in brain tissue by suppress-
ing NF-κB (86).

The neuroprotective effects resulting from the Mediterranean 
diet or those rich in oily fish may be mediated via the anti-inflam-
matory properties of key nutrients (87). Aβ induced increases in 
the translocation NF-κB subunits is attenuated in the presence of 
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tyrosol (Tyr) and hydroxytyrosol (OH-Tyr) found abundantly in 
olive oil (88). Transgenic increases in omega-3 polyunsaturated 
fatty acid in the brain of mice reduces the inflammatory response 
to LPS challenge via NF-κB pathways (89).

The omega 3 fatty acid eicosapentaenoic acid indirectly 
downregulates NF-κB expression acting as a ligand at peroxisome 
proliferator-activated receptor gamma, a regulator of fatty acid 
storage and glucose metabolism, and reduces symptoms of depres-
sion (87, 90). In AD-mouse hippocampal slices, food-derived 
anti-oxidants provide neuroprotection and reduce Aβ via the anti-
inflammatory properties of the polyphenolic compounds within 
them (91). Specifically, the phenolic compound resveratrol reduces 
Aβ-induced migroglial activity and neuroinflammation via NF-κB 
suppression in murine microglial and macrophage cells (92).

Anti-inflammatory Drugs
The prolonged use of non-steroidal anti-inflammatory drugs 
(NSAIDs) is associated with a reduction in the AD risk (93). In 
primary rat, neurons and human neuronal cell lines NSAIDs 
strongly inhibit NF-κB-driven expression of BACE1 activity 
preventing the cleavage of Aβ from APP (28, 94). Long-term 
administration of potent NSAID indomethacin blocks activation 
of NF-κB and significantly reduced the amyloid pathology in 
transgenic AD mice (95).

Aspirin, an NSAID derived from salicylic acid, completely 
inhibits Aβ activation of the NF-κB pathway, reducing levels 
of pro-inflammatory cytokines and chemokines, and increas-
ing levels of anti-inflammatory IL-10 in rodent microglia and 
neurons resulting in recruitment of Aβ phagocytic microglia and 
improved cognitive and synaptic functioning (28, 96).

COnClUSiOn

Epidemiological studies are beginning to converge of common 
risk factors for the development of AD with strong signals also 
emerging for certain protective factors. The emergence of NF-κB 
as a regulator of aging and proliferation of studies implicating 
NF-κB over-activation in a number of neurodegenerative dis-
eases suggests that it may be important in modulating the risk 
of disease. This review has highlighted the intimate relationship 
between all known and emerging risk and protective factors for 
Alzheimer’s and NF-κB activity, implicating over-activation with 
an increased risk of the disease and suppression being associated 
with risk reduction. Future work, both in models of disease and 
trials in man, should focus on therapies that directly target NF-κB 
overexpression to explore whether early risk identification and 
targeted anti-inflammatory treatment can significantly increase 
the time of disease onset and, consequently, reduce the incidence 
of this devastating disease.
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