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Deep learning enables reference-free isotropic
super-resolution for volumetric fluorescence
microscopy
Hyoungjun Park 1, Myeongsu Na2, Bumju Kim3, Soohyun Park4, Ki Hean Kim 3,4, Sunghoe Chang 2,5 &

Jong Chul Ye 1,6✉

Volumetric imaging by fluorescence microscopy is often limited by anisotropic spatial

resolution, in which the axial resolution is inferior to the lateral resolution. To address this

problem, we present a deep-learning-enabled unsupervised super-resolution technique that

enhances anisotropic images in volumetric fluorescence microscopy. In contrast to the

existing deep learning approaches that require matched high-resolution target images, our

method greatly reduces the effort to be put into practice as the training of a network requires

only a single 3D image stack, without a priori knowledge of the image formation process,

registration of training data, or separate acquisition of target data. This is achieved based on

the optimal transport-driven cycle-consistent generative adversarial network that learns from

an unpaired matching between high-resolution 2D images in the lateral image plane and low-

resolution 2D images in other planes. Using fluorescence confocal microscopy and light-sheet

microscopy, we demonstrate that the trained network not only enhances axial resolution but

also restores suppressed visual details between the imaging planes and removes imaging

artifacts.
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Three-dimensional (3D) fluorescence imaging reveals
important structural information about a biological sample
that is typically unobtainable from a two-dimensional (2D)

image. Recent advancements in tissue-clearing methods1–5 and
light-sheet fluorescence microscopy (LSFM)6–9 have enabled
streamlined 3D visualization of biological tissue at an unprece-
dented scale and speed, sometimes even in finer details. None-
theless, the spatial resolution in 3D fluorescence microscopy is
still far from perfection; an isotropic resolution remains difficult
to achieve.

Anisotropy in fluorescence microscopy typically refers to more
blurriness in the axial imaging plane. Such spatial imbalance in
resolutions can be attributed to many factors, including diffraction
of light, axial undersampling, and the degree of aberration cor-
rection. Even for super-resolution microscopy10, which in essence
surpasses the light diffraction limits, such as 3D-structural illu-
mination microscopy (3D-SIM)11,12 or stimulated emission
depletion (STED) microscopy13, matching the axial resolution to
the lateral resolution remains a challenge14. While LSFM, where
the fluorescence-excitation path does not necessarily align with the
detection path, provides a substantial enhancement to the axial
resolution9, a truly isotropic point spread function (PSF) is diffi-
cult to achieve for most contemporary light-sheet microscopy
techniques, and the axial resolution is usually 2 or 3 times worse
than the lateral resolution15–17.

In the recent years of image restoration in fluorescence
microscopy, deep learning emerged as an alternative, data-driven
approach to replace the classical deconvolution algorithms. Deep
learning has its advantage in capturing the statistical complexity
of an image mapping and enabling end-to-end image transfor-
mation without painstakingly fine-tuning the parameters by
hand. Some examples include improving the resolution across
different imaging modalities and numerical aperture sizes18,
towards isotropy19,20, or less noise19. While these methods pro-
vide some level of flexibility in the operation of microscopy, these
deep-learning-based methods must assume some knowledge of a
target data domain for the network training. For example, for
isotropic reconstruction, Weigert et al19,20. used a supervised-
learning strategy of pairing high-resolution lateral images with
low-resolution axial images that were blurred with an explicit
PSF model. Zhang et al21. implemented a GAN-based super-
resolution technique with an image degradation model taken
from the microscope. In both cases, the image degradation pro-
cess is not dynamically learnable, and such an assumption of a
fixed image degradation process requires the success of image
restoration to rely on the accuracy of priors and adds another
layer of operation to microscopists. Moreover, if the initial
assumption of the image degradation is not correct, the perfor-
mance in a real-world data set may be limited. Especially for
high-throughput volumetric fluorescence imaging, the imaging
conditions are often subject to fluctuation, and the visual char-
acteristics of samples are considered diverse. Consequently, uni-
form assumption of prior information throughout a large-scale
volume image could result in over-fitting of the trained model
and exacerbate the performance and the reliability of image
restoration.

In light of this challenge, the recent approach of unsupervised
learning using cycle-consistent generative adversarial network
(cycleGAN)22 is a promising direction for narrowing down the
solution space for ill-posed inverse problems in optics23,24. Spe-
cifically, it is advantageous in practice as it does not require
matched data pairs for training. When formulated as an optimal
transport problem between two probability distributions23,25,
unsupervised learning-based deconvolution microscopy can suc-
cessfully transport the distributions of blurred microscopy images
to high-resolution microscopy images by estimating the blurring

PSF and deconvolving with it24. Accordingly, it is less prone to
generating artificial features compared to GAN26 as theoretically
analyzed in a prior work23. Moreover, if the structure of the PSF
is partially or completely known, one of the generators could be
replaced by a simple operation, which significantly reduces
the complexity of the cycleGAN and makes the training more
stable24. Nonetheless, one of the remaining technical issues is the
difficulty of obtaining additional volumes of high-resolution
microscopy images under similar experimental conditions, such
as noise profiles and illumination conditions, so that they can be
used as an unmatched target distribution for the optimal trans-
port. In particular, obtaining such a reference training data set at
a 3D isotropic resolution remains challenging in practice.

To address this problem, here, we present an unsupervised
deep learning framework that blindly enhances the axial resolu-
tion in volumetric fluorescence microscopy, given a single 3D
input image. The network can be trained with one image stack
that has an anisotropic spatial resolution without requiring high-
resolution isotropic 3D reference volumes. Thereby, the need to
acquire additional training data sets under a similar experimental
condition is completely avoided. Our framework takes advantage
of forming abstract representations of objects that are imaged
coherently in lateral and axial views: for example, 2D snapshots of
neurons to reconstruct a generalized 3D neuron appearance.
Then, our unsupervised learning scheme uses the abstract
representations to decouple only the resolution-relevant infor-
mation from the images, as well as undersampled or blurred
details in axial images. This strategy translates to an advantage in
applications for large-scale volume images, such as the entire
cortical region of a brain. Figure 1a illustrates our approach. We
demonstrated the success of the framework in simulation, con-
focal fluorescence microscopy (CFM), and open-top light-sheet
microscopy (OT-LSM). In the CFM experiment, we addressed
anisotropy that is mainly driven by light diffraction and axial
under-sampling. We compared the results to a 3D image that was
separately imaged at a perpendicular angle. In the OT-LSM
experiment, our goal was to test whether our method can address
anisotropy that is governed by a mixture of multiple image
degrading factors, many of which are not simply modeled with a
PSF convolution: e.g., motion artifacts from sample vibration by
the stage drift. In all the cases, our reference-free deep-learning-
based super-resolution approach was effective at improving the
axial resolution, while preserving the information in the lateral
plane and also restoring the suppressed microstructures.

Results
CyleGAN architecture. The overall architecture of the framework
was inspired by the optimal transport-driven cycle-consistent
generative adversarial networks (OT-cycleGAN)23. Fig. 1b illus-
trates the learning scheme of the framework. We employ two 3D
generative networks (G and F in Fig. 1b) that learn to generate an
isotropic 3D image from an anisotropic 3D image (the forward or
super-resolving path) and vice versa (the backward or blurring
path), respectively. To curb the generative process of these net-
works, we employ two groups of 2D discriminative networks (DX

and DY in Fig. 1b). Our key innovation comes from an effective
orchestration of the networks’ learning based on how the dis-
criminative networks sample during the learning phase. In the
forward path, the discriminative networks of DX compare 2D axial
projection images from the generated 3D image to 2D lateral
images from the real 3D image, while preserving the lateral image
information. Projection images from the generated volume are
obtained as maximum intensity projections (MIP) with a rando-
mized depth within a pre-determined range and are designed to
emulate the lateral visual information projected from the adjacent
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slices. This pairing of samples to train the discriminative networks
encourages the 3D generative network G to enhance only the axial
resolution in the 3D volume output. On the other hand, the dis-
criminative networks of DY in the backward path compare 2D
images from the reconstructed 3D image to 2D images from the
real 3D image in each corresponding orthogonal plane; the 3D
generative network F learns to revert the image restoration pro-
cess. The cycle-consistency loss stabilizes the learning process and
guides G and F to being mutually inverse. By achieving the balance
of loss convergence in the form of a mini-max game26 by this
ensemble of the discriminative and generative networks, the net-
work G is trained to learn the transformation from the original
anisotropic resolution to the desired isotropic resolution.

Simulation studies. We initially simulated anisotropy in a
3D synthetic image and tested our framework for the task of blind

deconvolution. The synthetic volume, of 900 × 900 × 900 voxels,
contains 10,000 tubular objects that were randomly placed and
deformed by a 3D elastic grid-based deformation field. This
simulation model allows the tubes to intertwine with each other
in a non-linear manner and is ideal for simulating biological
samples with complex mesh tubular structures, such as micro-
tubules or neuronal networks. The image was then convolved
with a Gaussian kernel that blurs only axially with a standard
deviation of 4. Supplementary Fig. 1 visualizes this generation
process. The networks were trained using one image sample, and,
during training and inference, we used mini-batches with sub-
regions of 1203−1443 voxels. After inference, the sub-regions
were stacked back to the original image space (Fig. 1b).

Figure 1c–h shows the results of blind deconvolution by the
proposed method. After the blind deconvolution, the network
output resolved the intricate entangling of the tubes, which was
previously masked by the axial blurring, as visually illustrated in
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the regions of interest (ROIs) in Fig. 1c, e. To quantify the
resolution improvement on a large scale, we randomly selected a
region of 700 × 700 × 700 voxels and calculated the peak signal-
to-noise ratio (PSNR) and multi-scale structural similarity index
measure (MS-SSIM)27 as metrics. We noticed that the PSNR and
MS-SSIM metrics were higher in the 3D network output by
approximately 2 dB and 0.16, respectively (Fig. 1e): input PNSR
and MS-SSIM were 16.94 dB and 0.70, and output PSNR and MS-
SSIM were 19.03 dB and 0.86. To evaluate the effect of image
degradation on the network’s performance, we trained and tested
for different imaging conditions: the level of axial blurring
and axial under-sampling. The level of axial blurring was
controlled by the standard deviation of the Gaussian kernel,
and the axial under-sampling was done in addition to the
Gaussian blurring with a standard deviation of 4 and mimics the
under-sampling process in fluorescence microscopy by taking
slices with intervals: e.g., 4× means taking a slice every four slices
in the z-axis. After subsampling, the images were resized back to
the original dimensions by bi-linear interpolation. We noticed
that throughout different levels of degradation, the network
output was consistently higher in performance (Fig. 1f). As the
goal of the learning was to enhance axial volumes using MIPs of
the generated volumes, we also measured PSNR and structural
similarity index measure (SSIM) of 47 700 × 700-pixel axial MIP
images and compared the results with corresponding lateral
MIP images of the reference volume, which was imaged at a
perpendicular angle, as the lateral resolution reference. The
metrics of the network output were more closely approximated to
those of the lateral MIP images (Fig. 1g).

In order to assess the reconstruction capability, we randomly
selected 317 tubular objects and calculated the FWHM (full width
at half maximum) mismatches of the input and output image
with respect to the ground truth (Fig. 1h). The mean FWHM
mismatch of the network output was approximately five times
lower with a mismatch of 0.61 pixels compared to the 2.95-pixel
mismatch in the input. The network output also showed a lower
standard deviation of 0.60 pixels compared to 2.41 pixels in the
input. As an alternative method, we also segmented signals from
the background by using various histogram-based binarization
methods: Otsu’s method28, Iterative Self-Organizing Data Ana-
lysis Technique29 (ISODATA), and mean-thresholding30. Fig. 1d
shows an example of segmentation by Otsu’s method. For all the
segmentation methods, the PSNR and SSIM metrics were
consistently higher for the network output than the input

(Supplementary Fig. 2). To further assess the deconvolution
accuracy of the output image, we also performed Fourier
Spectrum analysis before and after deconvolution to better
visualize the restoration of the high-frequency information and
showed that in comparison to the input, the frequency
information of the output is approximated more closely to that
of the ground truth and its lateral counterpart (Supplementary
Fig. 3). Furthermore, we noticed that our framework can be seen
as interpretable during the training. We could approximate the
blurring PSF model by calculating the impulse response through
the generative network in the backward path, which was initially
modeled as a linear blur kernel that emulates the axial blurring
process (Supplementary Fig. 4).

Resolution enhancement in confocal fluorescence microscopy.
We demonstrated the resolution improvement in the axial plane
by imaging a cortical region of a Thy 1-eYFP mouse brain using
CFM. The sample was tissue-cleared and was imaged in 3D using
optical sectioning. The optical sectioning in CFM generated a
stark contrast between the lateral resolution and axial resolution,
with an estimated lateral resolution of 1.24 µm with a z-depth of
3 µm interval. The image volume, whose physical size spans
approximately 1270 × 930 × 800 µm3, was re-sampled for recon-
struction isotropically to a voxel size of 1 µm using bilinear
interpolation. In order to provide a reference that confirms the
authenticity of the resolution improvement, we additionally
imaged the sample after physically rotating it by 90 degrees, so
that its high-resolution lateral XY plane would match the axial XZ
plane of the original volume, while sharing the axial YZ plane.
The reference volume was then registered on a cell-to-cell level to
the input image space using the BigWarp Plugin31. While the
separately acquired reference is far from a perfect ground truth
image because of its independent imaging condition and potential
registration error, it still provides the best available reference as to
whether the details reconstructed by the framework match the
real physical measurements.

In our test on the CFM volume, the trained network restored
the previously highly anisotropic resolution to a near-perfect
isotropic resolution. We illustrated the resolution improvement by
comparing the distance on a resolved axial image and the
corresponding distance in the lateral image for a structure that is
symmetrical between the lateral and axial plane. One exam-
ple, shown in Fig. 2a, is a basal dendrite, which is primarily
cylindrical. In this example, the difference was nanoscale

Fig. 1 Framework schematics and simulation studies. a In fluorescence microscopy, 3D imaging is often subject to anisotropy that arises from light
diffraction and under-sampling in the scanning direction. Our approach for single-sample super-resolution is to learn two-way transformations, G and F,
between the high-resolution manifold and the low-resolution manifold, by sampling from lateral and axial slices or lateral and axial MIPs. b Schematic of the
framework. The generative networks, G and F, learn the data-specific transformation mapping between low-resolution images and high-resolution images
by learning to super-resolve axial images and revert the process, respectively. G and F use 3D convolution layers, and the discriminative networks, DX and
DY, drive the learning process for G and F and use 2D convolution layers. Inference on a large-scale volume is carried out iteratively on sub-volumes with
overlapping neighboring blocks. c Blind deconvolution results by our method, with zoomed-in ROIs (shown as yellow-dotted boxes) additionally for (d) and
(h). d Assessment of reconstruction accuracy in 2D. The signals were segmented from the background using Otsu’s method, shown with PSNR and SSIM
for quantification. e 3D visualization of large-scale inference. A random region of 7003 voxels was selected as a test volume to calculate PSNR and MS-
SSIM. The color bar represents the signal intensity normalized between 0 and 1. f Performance comparison using PSNR and MS-SSIM on the test volume
under different imaging conditions: axial blurring and z-axis undersampling. The undersampling is done after the axial Gaussian blurring with a standard
deviation of 4. g Performance comparison using SSIM and PSNR of MIP images. Cross sections (n= 47 non-overlapping independent samples) were taken
with 15 slice depths to generate MIP images. “Lateral” refers to lateral sections of the volume, which was rotated perpendicularly before the blurring to
provide a high-resolution reference. h Resolution improvement by FWHM mismatch with the ground truth, with cross-sectional intensity profiles from
marked lines in zoomed-in ROIs from c. We measured the FWHM mismatches of tubular objects (n = 317 non-overlapping independent samples) with
respect to the ground truth. The reconstruction by the network output exhibits a noticeable improvement in reconstruction accuracy. To calculate FWHMs,
the intensity profiles were fitted into Gaussian functions. For the box plots plotted in (g) and (h) panels, the box shows the inter-quartile range (IQR)
between the first quartile (Q1) and the third quartile (Q3) of the dataset, with the central mark (horizontal line) showing the median and the whiskers
indicating the minimum (Q1-1.5*IQR) and the maximum (Q3+1.5*IQR). Outliers are represented by diamond-shaped markers beyond the whiskers.
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(∼0.05 µm). As the textural differences between the lateral images
and the super-resolved axial images were imperceptible to human
eyes, we performed Fourier Spectrum analysis before and after
restoration and showed that the frequency information of the
output was restored to match that of the lateral imaging
(Supplementary Fig. 5).

We examined the anatomical accuracy of the resolved details
by comparing them to the reference image (labeled as 90°-rotated
in Fig. 2b, c), which provides a high-resolution match to the
original axial image on a micrometer scale. We noticed that
the network was successful not only in translating the axial image
texture to the high-resolution image domain, but also in

recovering previously suppressed details, which were verified by
the reference imaging. In accordance with the reference image,
the network output accurately enhanced anatomical features of
the nervous tissue, consistently throughout the image space
(Fig. 2a and Supplementary Fig. 6). As shown in Fig. 2b, c, the
network allowed for more advanced cytoarchitectonic investiga-
tion of the cortical region, as the network managed adaptive
recovery of important anatomical features that vary in morphol-
ogy, density and connectivity across the cortical region. For
example, in the upper cortical layers, the previously blurred apical
dendrites of pyramidal neurons were resolved (middle-left ROIs
in Fig. 2b). The network output also revealed previously unseen
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Fig. 2 Deep learning enables single-volume super-resolution for volumetric CFM. Cortical regions of a Thy 1-eYFP mouse brain were imaged. a Near
isotropic resolution was achieved by the proposed method in a CFM volume. Axial images were blindly enhanced by the generative neural network, which
is trained and tested on a single CFM volume that spans 1-2 gigabytes in memory. The resolution improvement in the axial planes was global and
consistent throughout the image space (also see Supplementary Fig. 6). The converging cross-sectional intensity profiles of a cylindrical dendrite in the XY
plane (yellow line) and XZ plane (blue line) indicate a near-perfect isotropic resolution in comparison to the input in XZ (dotted blue line), with XY FWHM
of 1.71 µm and XZ FWHM of 1.76 µm, greatly reduced from input XZ FWHM of 6.04 µm. Scale bars: 100 µm, 50 µm, 20 µm (2D), and 20 µm (3D) in the
progressively zooming order. b Image restoration results (“Network”) show the upper cortical regions of the mouse cortex, as MIP images of 150-µm
thickness. The results were compared to the original axial imaging (“Input”) and reference lateral imaging (“90°-rotated”). Zoomed-in ROIs are marked as
yellow boxes. Suppressed or blurred details were recovered in the network output images and matched the lateral imaging. Scale bars: 50 µm (top ROIs),
10 µm (middle ROIs), 20 µm (bottom ROIs). c 3D reconstruction of pyramidal neurons in the upper cortical layer before and after restoration, with neuronal
tracings. Resolution improvement in the axial plane allows a more precise and detailed reconstruction of 3D neuronal morphology. We verified the
additional neuronal tracings by substantiating in the corresponding locations from the lateral imaging. The under-sampling and the Z-blurring made it more
difficult to trace neurites that run perpendicularly to the scanning direction (arrows in 2D ROIs), whereas more accurate tracing was possible from
the network output. Scale bars: 50 µm (3D) and 10 µm (2D ROI). d PSNR distribution of MIP images as a distance metric to the reference image, with
pairwise improvements. MIP images (n= 31 independent images) were from 140 × 140 µm2 cross sections with depths of 150 µm. For the box plots, the
box shows the IQR between Q1 and Q3 of the dataset, with the central mark showing the median and the whiskers indicating the minimum (Q1-1.5*IQR)
and the maximum (Q3+1.5*IQR). e Cross-sectional intensity profiles from marked lines in zoomed-in ROIs from (b). The 90°-rotated line is registered to
the input. In (a) and (c) panels, the color bars represent the signal intensity normalized between 0 and 1.
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cortical micro-circuitry by pyramidal neurons and interneurons
(bottom ROIs in Fig. 2b). The cross-sectional intensity profile
(Fig. 2e) illustrates such recovery of suppressed details that
were previously blurred in the axial imaging. We noticed that
while the network improved the axial resolution, it introduced no
discernible distortions or artifacts to the lateral plane.

Such recovery of suppressed details translated to noticeable
improvement in reconstructing the neuronal morphologies from
the enhanced output volume. We traced two pyramidal neurons
by using NeuroGPS-tree32, the current standard neuronal tracing
method for instance segmentation, which was followed by human
correction. The tracing was performed blindly without knowledge
of other image counterparts. Figure 2c shows the results. In visual
comparison, the tracings from the network output were not
limited in any direction, whereas in the input image, the
NeuroGPS-tree failed to trace neurites that were discontinued
by the z-axis under-sampling (2D ROI in Fig. 2c). Comparisons
of neuronal tracings from the input, network, and reference
imaging are shown in Supplementary Fig. 7. To quantify the
anatomical accuracy of the reconstructed details by the network,
we substantiated the reconstructions by the network via slice-by-
slice verification of the output tracings on images from the lateral
imaging. The verification was performed on the level of
examining the branching of reconstructed neurites by deletion
of false positives. For example, traced image regions with non-
matching neurites were set to zeros, and those with matching
neurites were set to ones in a verified binary image. The tracing
results and the verification process are further described in
Supplementary Movies 1 and 2. Then, we measured the biological
precision of the tracings by calculating the ratio between the
original tracings and the verified tracings. The precisions of the
neuron reconstruction from the two test neurons were 98.31%
and 98.26%.

To quantify the axial resolution enhancement on a signal level,
we identified 31 non-overlapping ROIs each of 140 × 140 µm2 in
the input axial images and the reference lateral images, where
identical neuronal structures were distinguishable and detected
similarly in visuals by fluorescence emission. Then, we measured
and compared the peak signal-to-noise ratio (PSNR) distance of
the input ROIs and the network output ROIs to the correspond-
ing reference ROIs. The network introduced a mean PSNR
improvement of 2.42 dB per pair of an input ROI versus an
output ROI (Fig. 2d). This analysis suggests that the textural
details recovered by the network include anatomically accurate
features that were more discernible in the lateral imaging. We
noticed that their metric differences were not entirely reflective of
the perceptual accuracy of recovered details and were attributed
to differences in fluorescence emission between the imaging
sessions by imaging at a different angle (refer to Supplementary
Fig. 8). We further tested for the generalization capability of the
framework by training and testing for other biological cell or
tissue types by imaging rat brain tissues with CFM: astrocytes
labeled with fluorescent GFAP markers and blood vessels labeled
with Lectin (refer to Supplementary Figs. 9 and 10). In our
assessments, the framework showed biologically meaningful
improvements in image quality and reconstruction.

PSF-deconvolution capability. Light-sheet microscopy (LSM) is
a specialized microscopic technique for high-throughput cellular
imaging of large tissue specimens including optically cleared
tissues. To further explore the image restoration capability of our
framework, we tested the deconvolution capability of an
experimentally measured PSF on an open-top LSM (OT-LSM)
system33. We imaged 0.5-µm fluorescent beads with OT-LSM,
in the image stack with an overall physical size of

360 × 360 × 160 µm3. The image was re-sampled for recon-
struction isotropically to a voxel size of 0.5 µm using bilinear
interpolation. The beads were spread arbitrarily, with some of the
beads spaced closer to each other. The results by our framework
are shown in Fig. 3. After the deconvolution, the 2D and 3D
reconstruction of the network output indicated an almost iso-
tropic resolution, resulting in a nearly spherical shape (Fig. 3a).
This deconvolution effect was consistent across individual
fluorescent beads. To quantify the performance of deconvolu-
tion, we calculated 2D FWHM values of more than 300 ran-
domly selected bright spots and compared the lateral FWHM
and the axial FWHM before versus after the image restoration.
As shown in Fig. 3b, the FWHM distributions of the bright spots
in the restored image show an almost identical match to those of
the input in the lateral plane. The network output corrected the
axial elongation of the PSF, with a mean axial FWHM of
∼3.91 ± 0.28 µm being reduced to ∼1.95 ± 0.12 µm, which is very
close to the mean FWHM of ∼1.98 ± 0.13 µm from the lateral
input. The network introduced very little deviation in the lateral
plane, with a mean FWHM mismatch of ∼0.13 ± 0.06 µm.

Resolution enhancement in light-sheet fluorescence micro-
scopy. Imaging a large-scale sample at a high resolution, such as
imaging a whole mouse brain at a sub-micrometer resolution,
may introduce an aggregate of unexpected image artifacts that are
not noticeable at a lower resolution. In LSM microscopy, these
artifacts are often by-products of a poorly calibrated or instal-
led microscope. In particular, standard OT-LSM systems34,35

require the excitation path and the imaging path to be perpen-
dicular to each other and may introduce distortions to the image
quality unevenly between the XZ plane and YZ plane, although
this anisotropy can be relaxed by tightly focused excitation33. To
blindly test our framework on a combination of unknown image
degradation processes, we trained and tested on a OT-LSM sys-
tem with multiple imaging artifacts, which include not only the
blurring artifacts by spherical aberration that is caused by the
refractive index mismatch between air and immersion medium,
but other artifacts that span non-uniformly across the image
space: for example, image doubling artifacts by missed synchro-
nization between the sweeping of the excitation laser and the
rolling shutter of the detection sensor, or motion blur artifacts
from physical sample drifts by the motorized stage. We tested our
framework to address these issues blindly, from a single session
imaging with no priors from any fiduciary markers or other
conventional methods to prevent these artifacts. As the aniso-
tropy problem for this OT-LSM system requires the network to
learn two distinct image transformations in each orthogonal
plane and is inconsistent across the image space, we implemented
a variation of the framework that employs separate discriminators
for the YZ plane and XZ plane and replaces the projection
sampling with slice sampling for the discriminative networks.

We imaged the cortical region of a tissue-cleared mouse brain
labeled with Thy 1-eYFP using OT-LSM, which has a physical
size of ∼930 × 930 × 8600 µm3. The image was re-sampled for
reconstruction isotropically to a voxel size of 0.5 µm using bilinear
interpolation. The microscopy system is estimated to have an
image resolution of ∼0.5 µm laterally and ∼4.6 µm axially, with a
z-depth scanning interval of 1 µm, and generated multiple imaging
artifacts as listed above. For the schematics of the OT-LSM system,
refer to Supplementary Fig. 11. As shown in Fig. 4a, we noticed
that the image quality degradation in axial images by the OT-LSM
system was non-identical between the XZ and YZ plane, as XZ and
YZ images were affected in different degrees by light propagation
that aligns with the Y-axis and vibration from the lateral
movement of the tissue-cleared sample while scanning.
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As shown in Fig. 4c, the network output showed an evenly
enhanced resolution between the XZ and YZ planes, while
enhancing the contrast between signals and the background. This
improvement enabled a more detailed reconstruction of 3D
neuronal morphologies (Fig. 4b). For a visual comparison of the
restored details, we de-convolved the image volume using
the Richardson-Lucy (RL) deconvolution algorithm36,37 based on
the PSF model that was experimentally acquired (Fig. 3). The RL
deconvolution was performed with Fiji-Plugin DeconvolutionLab38

with 10 iterations. In the RL-deconvolution image, we found
matching details that were previously suppressed by spherical
aberration in the input image (Fig. 4c). Resolution improvements in
both axial planes had imperceptible differences in texture and
accuracy. However, as the image degradation was irregular across
the image space, the RL-deconvolution image failed to address the
additional imaging artifacts that were not modeled by the given PSF.
In contrast, the network corrected many of these imaging artifacts.
For example, the image doubling artifacts from the asynchrony
between the excitation and detection were visibly reduced (XZ-plane

images of Fig. 4b and XZ-plane ROIs in Fig. 4c). The horizontal
ripple artifacts caused by the stage drift were also corrected, (YZ-
plane ROIs in Fig. 4c and Supplementary Fig. 12). We noticed that
the artifact correction was consistent throughout the image space.

For quantitative assessment of the framework in the LSM
system, we generated near-isotropic ground-truth images by
calibrating the microscope33, to a lateral resolution of ∼ 0.5 µm
and axial resolution of ∼1.9 µm, and greatly reducing most of the
previous imaging artifacts. Then, we simulated a depth-wise PSF
blurring process by applying an axial Gaussian kernel with
a standard deviation of 10. We trained and tested on an image
volume of ∼490 × 130 × 150 µm3. In our tests with the original
model, the network successfully recovered most of the blurred
axial blurred information. Supplementary Fig. 13 shows the results
of this experiment. In comparison to the RL-deconvolution
image, the network output images exhibit recovery of fine details
(zoomed-in ROIs in Supplementary Fig. 13a). Furthermore, we
noticed that in comparison to the ground truth, the network also
corrected the horizontal stripe artifacts, which were caused by the
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Fig. 3 PSF Deconvolution by the framework. The 0.5-µm fluorescent beads were imaged to model the PSF of the OT-LSM system experimentally. a An
example of PSF deconvolution visualized in 3D and 2D. The intensity profiles were fit into Gaussian functions. Axial elongation is a common issue in
fluorescence microscopy. Our framework resolves it to the originally spherical fluorescent bead. Slice images were visualized on the signal range of the
input image. The color bars represent the signal intensity normalized between 0 and 1. Scale bars: 10 µm (left), 1 µm (middle and right). b FWHMs of
experimentally measured PSFs in the lateral and axial planes before and after PSF deconvolution. We extracted bright spots from the same locations before
applying the method (n= 300 spots for the XY plane and 305 spots for the YZ plane from non-overlapping distinct regions). Each spot was fit into a 2D
Gaussian function, where FWHM was calculated. The PSFs in the axial plane were deconvolved to the almost identical resolution as those in the lateral
plane. For the box plot, the box shows the IQR between Q1 and Q3 of the dataset, with the central mark showing the median and the whiskers indicating
the minimum (Q1-1.5*IQR) and the maximum (Q3+1.5*IQR). Outliers are represented by asterisk-shaped markers beyond the whiskers.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30949-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3297 | https://doi.org/10.1038/s41467-022-30949-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


axial under-sampling and illustrated in the ground-truth ROIs in
Supplementary Fig. 13a. To quantify the axial resolution
improvement, we divided the test volume into eight non-
overlapping regions and calculated the image quality metrics on
their respective MIPs with 17.5 µm depths. PSNR and MS-SSIM
were used as the reference-aware metrics, and BRISQUE39 was
used as the no-reference image quality metric to assess the
perceptual naturalness of the output image, in comparison to the
input and the ground truth. We noticed improvements in all the
metrics (Supplementary Fig. 13b). The BRISQUE metric suggests
that the output images were perceptually more natural than the
blurred input, with little difference from the ground truth. We
also noticed an overall PSNR improvement of 1.98 dB in the 3D
output volume.

So far, we have demonstrated the effectiveness of our method in
simulation, CFM, and OT-LSM, which involve many dissimilarities
from one another in image formation. Accordingly, we expect the
framework to be widely applicable to other forms in the fluorescence
microscopy spectrum, as the essential component of the learning
does not rely on the conditions of an image formation process.

Discussion
In this work, we developed a deep-learning-based super-
resolution technique that enhances axial resolution of conven-
tional fluorescence microscopy by learning from high-resolution
lateral images. The strength of our framework comes from taking
advantage of unsupervised learning from unmatched data pairs: it
allows the learning of image transformation to be localized to a

user-defined 3D unit space and thus to be decoupled from
regional variations in image characteristics, such as aberrations or
artifacts that arise naturally from a fluorescence imaging process.
In our experiments with simulation, CFM, and OT-LSM, we
showed that this feature translated to a distinct advantage for
isotropic reconstruction of suppressed details in large-scale
volumetric fluorescence microscopy, where the level of image
degradation varies across the image space.

Deep-learning models based on a GAN architecture, which is
of unsupervised learning, excel at generating very plausible high-
level details and are known for tasks such as transferring art
styles22,40 or even tweaking high-level details41. However, when it
comes to enhancing microscopy images in biology research, well-
generated details are a double-edged sword. The high plausibility
of the details makes it difficult to validate the authenticity of
restored images, especially without referring to real biological
evidence. In this paper, we provided both theoretical evidence
from the simulation studies and experimental evidence from
the orthogonal imaging and artificial blurring to substantiate the
validity of such reconstructed high-frequency information. The
results supported that our OT-cycleGAN network design
addressed the issue of deviation from authenticity by strictly
confining the solution space by the formulation of optimal
transport and the physics-inspired design of the degradation
model in the backward path, while harnessing this excellent
generative power for reconstructing high-frequency information.
Additionally, our ablation studies provide a deeper look into the
essential components of our framework (Supplementary Note 1
and Supplementary Fig. 14).
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Fig. 4 Image restoration by the proposed framework in large-throughput imaging using OT-LSM. a Comparison of image qualities between
the orthogonal image planes in an uncalibrated OT-LSM, using MIP images of a selected 3D ROI. Scale bar: 100 µm and 25 µm (zoomed-in ROIs). b 3D
reconstructions of somata and basal dendrites of pyramidal neurons, with axial MIP images of selected 3D ROIs. The network corrected the doubling effect
in the XZ plane and also enhanced the contrast between the signals and the background. The resolution enhancement was consistent across the XZ plane
and YZ plane. The input and output images were visualized on the same intensity spectrum. The color bar represents the signal intensity normalized between
0 and 1. Scale bars: 25 µm. c YZ and XZ MIP images from the input, the deconvolution result by the Richardson-Lucy algorithm, and the network output.
Deconvolution and artifact correction in the network output was consistent throughout 8600 slice images of the OT-LSM volume. The MIP images are in
depths of 150 µm. Experiments were repeated with six independent image volumes, achieving similar results. Scale bars: 50 µm and 10 µm (zoomed-in ROIs).
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In practice, our method is not to be mistaken for a one-size-
fits-all solution to every anisotropy problem in microscopy. If
necessary, users can include additional steps for visualization in
post-processing. For example, some visual artifacts may emerge
depending on how images are visualized: 2D versus 3D or the
intensity range for visualization. Supplementary Fig. 15 displays
an example of such cases. As the discriminative networks are
trained with 2D MIP images, such visual artifacts may appear
more discernible when visualized solely as 2D MIP images.
However, these artifacts do not arise from false reconstructions,
as shown in Supplementary Fig. 15; there is no spurious structure
when fully visualized in 3D. In cases of the image volumes where
the local contrast changes noticeably between sub-volumes during
training iterations, while most artifacts are set within very low-
intensity ranges and remain barely visible, they may seem more
visible when visualized on a highly saturated intensity range. In
such cases, users can normalize the output image locally
according to the histogram of the input image, using histogram-
matching42. Supplementary Fig. 16 shows our test with the image
volume from the PSF deconvolution experiment; the post-
processing alone increased the local signal-to-noise ratio (SNR).

Finally, the main benefit of our method lies in its ease of
deployment. As shown in Supplementary Figs. 9 and 10, the fra-
mework is not necessarily limited by the type of imaged tissues or
fluorescent labeling markers. Accordingly, our method should be
applicable to a variety of imaging scenarios in volumetric fluor-
escence microscopy. It also greatly reduces the effort to be put into
practice as training a network requires only a single 3D image
stack, without a priori knowledge of the image formation process,
registration of training data, or separate acquisition of target data.
Some combination of those factors is generally considered
necessary43 for most conventional deep-learning-based super-
resolution methods. For this reason, we expect our method to
significantly lessen the pre-existing difficulty of applying super-
resolution to volumetric microscopy data.

Methods
Simulation setup. To simulate a randomized mesh structure with tubular objects,
we first randomly selected 20,000 points in a 3D image space of 900 × 900 × 900
voxels to draw 10,000 linear lines of two-pixel thickness. Then, we applied a 3D
elastic grid-based deformation field with 70 grid locations with a sigma value of 3.
The deformed volume was then normalized and treated as the ground-truth
volume. To obtain a blurred volume, we applied a Z-blurring Gaussian kernel with
a standard deviation of 4. Supplementary Fig. 1 visualizes this process.

Sample preparation and image acquisition. Tg(Thy1-eYFP)MJrs/J mice were
identified by genotyping after heterozygous mutant mice were bred, and the mice
were backcrossed onto the C57BL/6 WT background for 10 generations and then
maintained at the same animal facility at the Korea Brain Research Institute
(KBRI). Mice were housed in groups of 2–5 animals per cage with ad libitum access
to standard chow and water in a 12/12 light/dark cycle with “lights-on” at 07:00, at
an ambient temperature of 20-22 °C and humidity (about 55%) through a constant
airflow. The well-being of the animals was monitored on a regular basis. All animal
procedures followed the animal care guidelines approved by the Institutional
Animal Care Use Committee (IACUC) of KBRI (IACUC-18-00018). In prepara-
tion for mouse brain slices, the mice were anesthetized by injection with a zoletil
(30 mg/kg) and xylazine (10 mg/kg body weight) mixture. Mice were perfused with
20 ml of fresh cold phosphate buffered saline (PBS) and 20 ml of 4% paraf-
ormaldehyde (PFA) solution using a peristaltic pump and whole mouse brains
were extracted and fixed in 4% PFA for 1–2 days at 4 ◦C. The fixed mouse brains
were sliced coronally in 500 µm thickness. Then, the brain slices were incubated in
a refractive index (RI) matching solution (C match, 1.46 RI, Crayon Technologies,
Korea) at 37 °C for one hour for the optical clearing. The proposed method was
applied to the images of the optically cleared tissue samples. For the sample pre-
paration for Supplementary Figs. 9 and 10, refer to Supplementary Note 2.

For the CFM imaging, the optically cleared tissue specimens were mounted on a
35-mm coverslip bottom dish and were immersed in the RI matching solution
during image acquisition using an upright confocal microscope (Nikon C2Si,
Japan) with a Plan-Apochromat 10× lens (NA= 0.5, WD= 5.5 mm). The Z-stacks
of optical sections were taken at 3 or 4 µm intervals.

For the OT-LSM imaging, we used a recently developed microscopy system33,
whose design is based on the water-prism open-top light-sheet microscopy34,35. To

induce anisotropy, we excluded the tight focusing of the excitation light sheet
across the imaging field of view. The system includes an ETL (EL-16- 40-TC-VIS-
5D-M27, Optotune) as part of the illumination arm for the axial sweeping of the
excitation light sheet and an sCMOS camera (ORCA-Flash4.0 V3 Digital CMOS
camera, Hamamatsu) in the rolling shutter mode to collect the emission light from
the sample. The system uses a 10× air objective lens (MY10X-803, NA 0.28,
Mitutoyo) in both the illumination and imaging arms, pointing toward the sample
surface at +45° and -45°. The custom liquid prism was filed with the RI matching
solution for the normal light incidence onto the clearing solution. The excitation
light source was either 488 nm or 532 nm CW lasers (Sapphire 488 LP-100,
Coherent; LSR532NL-PS-II, JOLOOYO).

Image pre-processing. For the OT-LSM brain images, a median filter of a 2-pixel
radius was applied to remove the salt-and-pepper noise that arises from fluores-
cence imaging. All images were normalized to scale affinely between 0 and 1 using
percentile-based saturation with the bottom and top 0.25% for the synthetic
images, 0.03% for the CFM images, and 3% for the OT-LSM images. In both OT-
LSM experiments, since the OT-LSM system images a sample at 45°or −45°, we
applied shearing in the YZ plane as an affine transformation to reconstruct the
correct sample space. Image visualization was performed using the Fiji software44

and Paraview45.

Neuron tracing and verification. Two pyramidal neurons were chosen for the
visibility of their connecting neurites. They were first automatically traced using the
NeuroGPS-Tree software. The soma locations were manually selected using the
V3D software46. The NeuroGPS-tree software used these soma locations for tra-
cing, with the parameters of binary threshold and trace threshold, which were
chosen empirically via manual observation and correction. After the initial tracing,
the tracings were converted to a binary image volume and corrected manually
based on its slice-by-slice comparison with the source image volume, setting
the matching neurites to ones and the rest to zeros. In the verification step, the
tracings were then translated to the corresponding locations in the registered
reference volume, which was separately imaged after a 90-degree physical rotation
of the sample. The verification was done slice-by-slice by verifying the tracings on
the reference image slices (Supplementary Movies 1 and 2). For example, the image
regions with non-matching neurites were set to zero, and the image regions with
matching neurites were set to one. The precision was then calculated as below:

precision ¼
∑W

i¼1∑
H
j¼1∑

D
k¼1Vði; j; kÞ

∑W
i¼1∑

H
j¼1∑

D
k¼1Cði; j; kÞ

ð1Þ

Here, W, H, and D represent the width, height, and depth of the traced volume. V
and C represent the binary verified volume after the referential verification and the
binary corrected volume before the referential verification, respectively.

Cycle-consistent generative adversarial network structure. To derive our
algorithm, we assume that the high-resolution target space X consists of imaginary
3D image volumes with an isotropic resolution according to a probability measure
µ, while the input space Y consists of measured 3D volumes with an anisotropic
resolution with a poorer axial resolution that follows a probability measure ν.
According to the optimal transport-driven cycleGAN23, if we were to transform
one image volume in Y to X , we can solve this problem by transporting the
probability distribution ν to µ and vice versa in terms of the statistical distance
minimization in X and Y simultaneously23, which can be implemented using a
cycleGAN. In our implementation, it is the role of the discriminative networks to
estimate such statistical distances and guide the generative networks to minimize
the distances. Unfortunately, as X consists of imaginary isotropic high-resolution
volumes, we cannot directly measure the statistical distance to X from the gen-
erated volumes. This technical difficulty can be resolved by the following obser-
vation: since isotropic resolution is assumed for every 3D volume x 2X , the XY,
YZ, and XZ planes should have the same resolution as the lateral resolution of the
input volume (i.e., the XY plane of the input volume y2Y). Accordingly, we can
measure the statistical distance to the imaginary volumes in X by defining the
statistical distance as the sum of the statistical distances in the XY, YZ, and XZ
planes using the following least square adversarial loss:47

LY!X G;DX

� � ¼ LY!X G;D 1ð Þ
X

� �
þ LY!X G;D 2ð Þ

X

� �
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X

� �
ð2Þ
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X
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where the subscripts xy, yz and xz refer to slice information on the xy, yz and xz
plane, and the subscripts xyproj, yzproj and xzproj refer to maximum intensity
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projections on the XY, YZ, and XZ plane. The projection takes into account
z-blurred projections on the lateral plane from adjacent slices. Here, yxy, a XY 2D
slice image from the image volume y, is used as the XY, YZ, and XZ plane refer-
ences from the imaginary isotropic volume distribution X and compared with the
corresponding planes of the restored volume G(y).

On the other hand, the backward path discriminator group DY is trained to
minimize the following loss:

LX!Y F;DY

� � ¼ LX!Y F;D 1ð Þ
Y

� �
þ LX!Y F;D 2ð Þ

Y

� �
þ LX!Y F;D 3ð Þ

Y

� �
ð6Þ

where

LX!Y F;D 1ð Þ
Y

� �
¼ E

y�ν
D 1ð Þ
Y ðyxyÞ � 1

� �2
� �

þ E
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D 1ð Þ
Y F xð Þ½ �xy
� �� �2

� �
ð7Þ
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so that XY, YZ, and XZ plane images of the blurred volume FðxÞ follow the
distribution of XY, YZ, and XZ plane images of the input volume y 2Y.

Note that G is a 3D generator that performs 3D deblurring or upsampling on an
input image volume. During this 3D restoration process, there are chances that
original XY slice images can be distorted. Therefore, the generator G should be
trained to improve the resolution in both XZ and YZ slices, but also not to degrade
the performance in the XY plane. This issue also concerns the generator F in the
backward path. Therefore, we need discriminators for both axial sampling and
lateral sampling during the 3D restoration step in the forward path and the 3D
degradation step in the backward path. Furthermore, if there is no discrepancy in
the image quality between the two axial planes, only one discriminative network
can be used to learn from both axial planes (i.e., D 2ð Þ

X ¼ D 3ð Þ
X and D 2ð Þ

Y ¼ D 3ð Þ
Y ). For

example, the simulation studies and the CFM experiment were examples
of this case.

Then, the full objective for the neural network training is given by:

L G; F;DX ;DY

� � ¼ LX!Y F;DY

� �þ LY!X G;DX

� �þ λLcyc G; Fð Þ ð10Þ
where Lcyc G; Fð Þ refers to the cycle-consistency loss and is calculated as the sum of
absolute differences, also known as the L1 loss, between F (G(y)) and y. λ, as the
weight of the cycle-consistency loss, is set at 10 in our experiments. The objective
function of the cycle-consistency-preserving architecture aims to achieve the
balance between the generative ability and the discriminative ability of the model as
it transforms the image data to the estimated target domain as closely as possible,
while also preserving the reversibility of the mappings between the domains. The
generative versus discriminative balance is achieved by the convergence of the
adversarial loss in both paths of the image transformation, as the generative
networks learn to maximize the loss and the discriminative networks, as their
adversary, learn to minimize the loss.

The resulting architecture consists of two deep-layered generative networks,
each in the forward path and the backward path, and four or six discriminative
networks, in two groups each in the forward path and the backward path. The
schematic is illustrated in Fig. 1b, and the detailed descriptions of the network
designs are shown in Supplementary Fig. 17 and Supplementary Notes 3 and 4.

The generative network G in the forward path is based on the 3D U-Net
architecture48, which consists of the downsampling path, the bottom layer, the
upsampling path, and the output layer. On the other hand, the generative network
F in the backward path is adjustable and replaceable based on how well the generative
network can emulate the blurring or downsampling process. We empirically searched
for an optimal choice between the 3D U-net architecture and the deep linear
generator49 without the downsampling step (refer to Supplementary Fig. 17b). We
chose the deep linear generator as F for simulations, the CFM brain images, and the
OT-LSM fluorescent bead images, and we chose the 3D U-Net as F for the OT-LSM
brain images. The kernel sizes in the deep linear generator vary depending on
the depths of the convolution layers (refer to Supplementary Fig. 17b).

Algorithm implementation and training. Before the training phase for the OT-
LSM images, we diced the entire volume into sub-regions of 2003−2503 voxels with
overlapping adjacent regions of 20-50 voxels in depth. The number of sub-regions
is ∼3000 for the brain image data and ∼580 for the fluorescent bead image data.
Then, we randomly cropped a region for batch training per iteration and flipped it
on a randomly chosen axis as a data augmentation technique. The crop size was
132 × 132 × 132 voxels for the brain images and 100 × 100 × 100 voxels for the
fluorescent bead images.

While the axial resolution in OT-LSM differs between the XZ and YZ planes
because of the illumination path aligning with the YZ axis, the axial resolution in
the CFM imaging is consistent across the XY plane. For this reason, for the CFM
images, we loaded the whole image volume (1-2 gigabytes) in memory and
randomly rotated along the Z-axis as a data augmentation technique. Then, we
randomly cropped a region and flipped on a randomly chosen axis per iteration.
For this reason, the networks were trained with one whole image volume with its

training progress marked in iterations instead of epochs. The crop size is set as
144 × 144 × 144 voxels. During the inference phase in all experiments, the crop size
is set as 120 × 120 × 120 voxels with overlapping regions of 30 voxels in depth, and
we cropped out the borders by a depth of 20 voxels from each output sub-region to
remove weak signals near the borders before assembling back to the original image
space. In all experiments, the batch size per iteration is set as 1.

In the 3D U-net generative networks, all 3D convolution layers have the kernel
size of 3, the stride of 1 with the padding size of 1, and all transposed convolution
layers have the kernel size of 2, the stride of 2, and no padding. In the deep linear
generative networks, the six convolution layers have the kernel sizes of [7,5,3,1,1,1]
in turn with the stride of 1 and the padding sizes of [3,2,1,0,0,0]. In the
discriminative networks, the convolution layers have the kernel size of 4, the stride
of 2, and the padding size of 1. For the axial projection depth, we set it to a
randomized depth at each iteration confined between 2 slices to 15 slices for the
CFM imaging of the brain and between 2 slices to 10 slices for the simulation
studies, the fluorescent bead imaging, the CFM imaging of astrocytes, and the
synthetically blurred OT-LSM imaging.

In all experiments, all learning networks were initialized using Kaiming
initialization50 and optimized using the adaptive moment estimation (Adam)
optimizer51 with a starting learning rate of 1 × 10−4. For the CFM images and the
OT-LSM brain images, the training was carried out on a desktop computer with
a GeForce RTX 3090 graphics card (Nvidia) and Intel(R) Core(TM) i7-8700K CPU
@ 3.70 GHz. The training time of a model differed depending on the nature of the
image and hyper-parameters such as the size of the ROI per training iteration. For
example, training for a baseline model of the simulation was selected at
the 11,000th iteration and took approximately 19 hours using a 16-bit image
volume of 1483 voxels per iteration. The GPU memory consumption was at
approximately 24 GB in this case. Inference took 3–5 min on a test volume of 7003

voxels. In our implementation, the U-Net model includes 7.077 million training
parameters, the deep linear generator includes 0.647 million training parameters,
and each discriminative network contains 2.763 million training parameters. The
performance of the trained networks was measured using PSNR, SSIM, MS-
SSIM27, BRISQUE39, and SNR. The definitions of PSNR, SSIM, and SNR in this
study are described in Supplementary Notes 5, 6, and 7, respectively.

Statistics and reproducibility. Unless otherwise specified, all neural networks were
trained once per set of hyper-parameters and input data. In terms of inference, all
experiments were independently repeated at least three times per image volume,
achieving similar results. Here, the proposed framework is reference-free and applied
to large-scale images where biological features may vary across the image space. In all
experiments, the entire image space was assessed and exhibited similar results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Training and test data for the simulation, the CFM experiment, the OT-LSM experiment
for PSF deconvolution, and the OT-LSM experiment with artificial blurring and test data
for the OT-LSM experiment for artifact correction have been deposited in the Zenodo
database under https://doi.org/10.5281/zenodo.635294852. Training data for the OT-LSM
experiment for artifact correction is available from the corresponding author upon
reasonable request, due to size limitations. Source data are provided with this paper.

Code availability
The code for network training and prediction (in Python/PyTorch) is publicly available
at the Github repository53.
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