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Abstract 

Objective:  Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases, 
often referred as prion diseases. TSEs result from the misfolding of the cellular prion protein (PrPC) into a pathogenic 
form (PrPSc) that accumulates in the brain and lymphatic tissue. Amplification based assays such as real-time quaking 
induced conversion allow us to assess the conversion of PrPC to PrPSc. Real-time quaking induced conversion (RT-
QuIC) can be used for the detection of PrPSc in a variety of biological tissues from humans and animals. However, RT-
QuIC requires a continuous supply of freshly purified prion protein and this necessity is not sustainable in a diagnostic 
laboratory setting.

Results:  In this study, we developed a method to dry and preserve the prion protein for long term storage allowing 
for production of the protein and storage for extended time prior to use and room temperature shipping to appropri‑
ate diagnostic laboratory destinations facilitating widespread use of RT-QuIC as a diagnostic method.
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Introduction
Prion diseases are a group of fatal neurologic diseases 
that result from the misfolding of the monomeric, cellular 
prion protein (PrPC) into an oligomeric, pathogenic form 
(PrPSc). These diseases are also referred to as transmis-
sible spongiform encephalopathies (TSEs) and include 
bovine spongiform encephalopathy (BSE) in cattle, scra-
pie in sheep and goat, chronic wasting disease (CWD) in 
deer and elk, and Creutzfeldt–Jakob disease (CJD), fatal 
familial insomnia, Gerstmann–Sträussler–Scheinker syn-
drome, and kuru in humans. PrPSc accumulates in the 
central nervous system in all TSEs, and in cases of scrapie 
in sheep and CWD in cervids, PrPSc also accumulates in 
the lymphoid tissues [1–3].

At present, approved TSE diagnostic tests are all based 
upon direct detection of PrPSc using the antibody based 
approaches immunoblot, enzyme immunoassay (EIA or 
ELISA), and immunohistochemistry [4, 5]. However, new 

prion detection tools such as protein misfolding cyclic 
amplification (PMCA) [6–8] and the real-time quaking-
induced conversion (RT-QuIC) assay have gained noto-
riety in TSE diagnostics based on the high sensitivity 
afforded by in vitro amplification of PrPSc [9–11]. While 
PMCA and RT-QuIC differ in the substrate utilized and 
the approach to enhance the in  vitro conversion, both 
report on the presence of PrPSc in a sample through con-
version where PrPSc present in the diagnostic sample acts 
as a seed to initiate conversion of the provided substrate 
from a monomeric prion protein to an oligomeric form. 
RT-QuIC uses bacterially expressed, purified recom-
binant prion protein (rPrP) and controlled shaking. A 
steady supply of high quality purified rPrP is required. 
This is generally accomplished by utilizing one of the 
proven methods of expression based on the expression 
of rPrP in inclusion bodies and purification using metal 
ion affinity column chromatography. Bank vole (BV) rPrP 
has been shown to be a universal substrate for the ampli-
fication of PrPSc from a variety of different TSEs and host 
species [12, 13]. Classical sheep scrapie, atypical Nor 98 
sheep scrapie, classical BSE, H-type BSE, CWD from elk 
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and deer, hamster, mouse and human samples includ-
ing sCJD type 1, sCJD type 2, vCJD and iCJD have been 
detected with BV rPrP in RT-QuIC [14].

Lyophilized protein powders offer advantages over 
aqueous preparations of protein with regard to stor-
age, shipping, and shelf-life. While there are purifica-
tion approaches for rPrP available in the literature that 
include a lyophilization step, the resolubilization step 
generally involves high concentrations of denaturation 
and subsequent refolding of the protein [15–18]. Here, 
we present an approach to prepare lyophilized rPrP suit-
able for RT-QuIC based detection of PrPSc.

Main text
Methods
Brain homogenate preparations
Brain homogenates (10% w/v) in 1X PBS (Dulbecco’s 
PBS, pH 7.4, lacking calcium and magnesium) were pre-
pared from archived tissue available from previously pub-
lished studies that have been stored at − 80 °C [19, 20].

Protein production
E. coli (BL21(λDE3)) was transformed with the pET28a 
vector containing the bank vole PRNP gene (amino 
acids 23–231; GenBank accession number AF367624) 
and the recombinant bank vole prion protein (BV rPrP) 
was expressed and purified as previously described for 
the bovine prion protein with slight modification [21]. 
Briefly, E. coli strains (BL21(λDE3)) containing the bank 
vole were grown and BV rPrP was expressed in the Over-
night Express Autoinduction system (EMD Biosciences). 
Then cultures were harvested, and the cell pellet (3–4 g) 
was suspended and lysed to isolate the inclusion bodies. 
BV rPrP was purified with Ni–NTA (Nickel) resin (Qia-
gen, #30210) and individual fractions were analyzed by 
SDS-PAGE. All eluted pooled fractions were dialyzed in 
10  mM potassium phosphate (pH 7.0) and lyophilized 
and stored at − 20 °C. Prior to use, BV rPrP was resolubi-
lized in the double distilled water and used immediately. 
The concentration of pooled protein eluent or resolubi-
lized lyophilized protein was measured by UV spectros-
copy and calculated from the absorbance at 280 nm using 
an extinction coefficient of 62005  M−1  cm−1 as calcu-
lated for BV protein (23–231) and the final products were 
compared.

RT‑QuIC
RT-QuIC reactions were performed as previously 
described [14, 22–27]. The reaction mix was composed 
of 10 mM phosphate buffer (pH 7.4), 100 mM to 500 mM 
NaCl, 0.1  mg/ml freshly prepared or lyophilized and 
resolubilized BV rPrP, 10  µM thioflavin T (ThT), and 
1  mM ethylenediaminetetraacetic acid tetrasodium salt. 

Aliquots of the reaction mix (98  µL) were loaded into 
each well of a black 96-well plate with a clear bottom 
(Nunc, Thermo Fisher Scientific) and seeded with 2 µL of 
clinical samples, either known scrapie positive or nega-
tive control brain homogenate dilutions. The plate was 
then sealed with plate sealer film and incubated at 42 °C 
in a BMG FLUOstar Omega plate reader with cycles of 
1  min shaking (700  rpm double orbital) and 1  min rest 
for 100  h. ThT fluorescence measurements (excitation, 
460  nm; emission 480  nm, bottom read, 20 flashes per 
well, manual gain 1400) were taken every 15  min. All 
reactions for each dilution and each sample were per-
formed in 2 repeats of 4 replicates for a total of 8 RT-
QuIC assays. ThT fluorescence data are displayed as the 
average ThT fluorescence of four technical replicates for 
each time point and, to be considered positive, the ThT 
fluorescence of at least two replicate reactions must be 
positive. As previously described for classification of 
positive samples by RT-QuIC, the positive threshold was 
calculated as the mean value of non-inoculated control 
sheep brain homogenates plus 10 standard deviations 
[22, 28, 29].

Secondary structure and stability evaluation by Far‑UV 
circular dichroism spectroscopy
Far UV circular dichroism (CD) spectra were recorded 
on a Jasco J-815 spectropolarimeter equipped with a 
temperature control. Spectra were recorded by averag-
ing three scans in the 200–260 nm range at a scan rate of 
10 nm/min. Spectra were acquired at a protein concen-
tration of 2–3 µM of freshly prepared or lyophilized and 
resolubilized BV protein using 1  cm path length cell to 
verify if lyophilized PrP is correctly folded compared to 
freshly prepared BV rPrP. Thermal denaturation curves 
were monitored by CD at 222 nm over the temperature 
range of 20–85  °C. The heating rate in all experiments 
was 1  °C/min. CD signals were plotted as a function of 
temperature and fit to determine the temperature of 
unfolding [30].

Results
Protein recovery after lyophilization and resolubilization
In order to investigate protein loss due to the lyophili-
zation and resolubilization, following purification and 
refolded BV rPrP in 10  mM potassium phosphate pH 
7.0 was lyophilized. Following lyophilization the pro-
tein was then resolubilized in a volume of distilled water 
equivalent to the total volume of protein solution prior 
to lyophilization. Based upon the absorbance at 280 nm 
and the extinction coefficient of 62005 M−1 cm−1 it was 
determined that protein recovery following lyophili-
zation and resolubilization was greater than 95%. As 
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expected, the apparent molecular weight as determined 
by SDS-PAGE was not affected by the lyophilization pro-
cess indicating that there was no fragmentation or degra-
dation (Fig. 1).

Secondary structure and thermal denaturation of BV rPrP 
with and without lyophilization
In order to investigate whether lyophilization influenced 
the folding or stability, BV rPrP was analyzed with regard 
to secondary structure and thermal denaturation. Char-
acteristic minima at 208 nm and 222 nm were observed 
in the far-UV CD spectra demonstrated with the spectra 
of the lyophilized BV rPrP essentially indistinguishable to 

that of the freshly prepared protein (Fig. 2a). In addition, 
thermal denaturation curves of lyophilized and freshly 
prepared BV protein were measured to establish any 
changes in the cooperative folding that resulted from the 
lyophilization and resolubilization. The thermal unfold-
ing was cooperative for both preparations and the mid-
point for BV rPrP was 65.3 ± 0.3 °C with and 64.4 ± 0.5 °C 
without the lyophilization and resolubilization steps 
(Fig. 2b).

Lyophilized BV rPrP is suitable for RT‑QuIC based detection 
of PrPSc

To evaluate whether lyophilized BV protein can be used 
as a substrate for RT-QuIC reactions, assays containing 
lyophilized or freshly prepared recombinant BV protein 
were seeded with dilutions of a 10% (w/v) brain homoge-
nate from 2 different scrapie positive sheep (Fig.  3a, b, 
d, e) or a confirmed negative control (Fig. 3c, d). Assays 
utilizing lyophilized BV substrate showed fibril formation 
with all brain dilutions 10−3, 10−4, and 10−5 as freshly 
prepared BV substrate showed similar seeding activity 
for a given animal regardless of whether the substrate 
was freshly prepared or lyophilized and resolubilized. 
Neither substrate produced fibril when seeded with brain 
homogenate from a non-inoculated control based on the 
absence of an increase in ThT fluorescence (Fig. 3c, f ).

Discussion and conclusions
With this study, we provide proof of concept that lyo-
philized BV rPrP can be utilized for RT-QuIC reactions 
based on detection of PrPSc with lyophilized and resolu-
bilized BV rPrP substrate. Overall, the lyophilization and 
resolubilization step results in minimal loss in protein, 
an absence of an appreciable change in secondary struc-
ture or temperature of unfolding, and RT-QuIC results of 
comparable sensitivity to freshly prepared protein.

Fig. 1  SDS-PAGE for purified BV rPrP. Lane 1: purified BV rPrP protein 
solution, Lane 2: Lyophilized and resolubilized BV rPrP

Fig. 2  Circular dichroism characterization of freshly prepared and resolubilized BV rPrP. a Far-UV circular dichroism spectra of freshly prepared 
(dotted line) and lyophilized and resolubilized (line) BV rPrP (23–231) and b thermal unfolding curves for lyophilized and resolubilized (red) and 
freshly prepared (blue) BV rPrP in 10 mM phosphate buffer, pH 7.0
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By no means is this the first use of lyophilization and 
resolubilization of rPrP. Lyophilized recombinant prion 
protein has been previously included as part of rPrP 
preparation protocols, although when included it is typi-
cally followed by a resolubilization step including either 
chemical or thermal unfolding and subsequent refolding 
prior to use [15–18]. However, this is the first study, to 
which the authors are aware, that has utilized lyophilized 
rPrP as a substrate for RT-QuIC.

RT-QuIC has been used for an efficient tool to detect 
PrPSc from humans and animals [9–11, 31–34], even in 
the presymptomatic stage of disease [35–37]. RT-QuIC 
has also been shown to be potentially useful for studies 
such as drug prescreening, prion strain discrimination, 
and screening for prion contamination [38]. A variety 
of substrates have been applied for RT-QuIC reactions 
including hamster (23–231 and 90–231) [31], hamster-
sheep chimera [39], mouse (23–231) [25], sheep (25–234) 
[22], human (23–231) [32], deer (24–234) [31], and elk 
(24–234) [40, 41]. Of the studied PrP sequences, bank 
vole prion protein appears to be the most practical sub-
strate for diagnostic settings due to its reputation as a 
universal substrate for RT-QuIC [14]. Also, BV rPrP sup-
ports detection of different seeding activity and distinct 
products of RT-QuIC reactions for different types of 
human PrPSc [14].

RT-QuIC has been shown to be sensitive and specific 
for a number of applications in TSE diagnostics. How-
ever, the need for a continued source of freshly pre-
pared and purified rPrP is a limitation of the technique. 
To address this, researchers have aliquoted large prepa-
rations of protein and stored them at − 80  °C with a 
claimed storage life on the order of 6 months [23]. While 
the limit of storage lifetime was not established in this 
study, lyophilized rPrP should extend storage lifetime at 
temperatures below and above freezing relative to storage 
in aqueous solution.

In this study, we show that lyophilized BV rPrP can be 
applied for RT-QuIC reactions to detect PrPSc in scrapie-
infected clinical samples by amplification of fibril con-
tent present in a scrapie positive brain homogenate. The 
effect of lyophilization on BV rPrP was determined to 
be negligible by comparison to freshly prepared protein 
solution with regard to secondary protein structure from 
CD spectra, melting temperature from thermal denatura-
tion curves, and seeding activity from RT-QuIC Across 
these 3 features we found no significant change as a result 
of lyophilization. Therefore, lyophilization is a suitable 
means to preserve BV rPrP for shipping and storage with 
the ultimate goal of efficient use of RT-QuIC for labora-
tory research and diagnostic applications.

Fig. 3  Comparison of seeding activity of RT-QuIC reactions using a–c resolubilized after lyophilization and d–f freshly prepared BV rPrP as 
substrates. RT-QuIC reactions were seeded with 10−3 (blue), 10−4 (red), and 10−5 (green) dilutions of two scrapie-infected sheep brains from 2 
different scrapie positive sheep a and d are the same infected sheep, b and e are the same infected sheep and a negative control (uninfected 
sheep, c and f) brain homogenates with the addition of 0.001% of SDS. Shown are the average ThT fluorescence readings (thick lines) with standard 
deviations (thin lines) determined from all replicates (four replicate reactions per brain dilution). The results of a, b, d and e all meet the criteria to be 
determined positive by RT-QuIC as defined in the methods
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Limitations
The data presented here shows that the use of lyophi-
lized BV rPrP is feasible with little or no change to the 
results found for freshly prepared BV rPrP. However, 
there are limitations to this study. Namely we did not 
fully determine the storage shelf life of lyophilized BV 
rPrP nor did we assess the storage of BV rPrP over a 
variety of temperatures, rather we limited our evalua-
tion to 4 °C to approximate cold room storage or ship-
ping on wet ice and a time limit consistent with storage 
of freshly prepared BV rPrP to facilitate direct compari-
son. While determining the time and temperature lim-
its would undoubtedly be important for development 
of a distributable test kit this study provides an impor-
tant proof of principle assessment of the applicability of 
including lyophilization in the preparation of BV rPrP 
for the purposes of RT-QuIC, an important step toward 
development of a distributable test kit.
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