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Abstract
Background: Binding of a bacteria to a eukaryotic cell triggers a complex network of interactions
in and between both cells. P. aeruginosa is a pathogen that causes acute and chronic lung infections
by interacting with the pulmonary epithelial cells. We use this example for examining the ways of
triggering the response of the eukaryotic cell(s), leading us to a better understanding of the details
of the inflammatory process in general.

Results: Considering a set of genes co-expressed during the antibacterial response of human lung
epithelial cells, we constructed a promoter model for the search of additional target genes
potentially involved in the same cell response. The model construction is based on the
consideration of pair-wise combinations of transcription factor binding sites (TFBS).

It has been shown that the antibacterial response of human epithelial cells is triggered by at least
two distinct pathways. We therefore supposed that there are two subsets of promoters activated
by each of them. Optimally, they should be "complementary" in the sense of appearing in
complementary subsets of the (+)-training set. We developed the concept of complementary pairs,
i.e., two mutually exclusive pairs of TFBS, each of which should be found in one of the two
complementary subsets.

Conclusions: We suggest a simple, but exhaustive method for searching for TFBS pairs which
characterize the whole (+)-training set, as well as for complementary pairs. Applying this method,
we came up with a promoter model of antibacterial response genes that consists of one TFBS pair
which should be found in the whole training set and four complementary pairs.

We applied this model to screening of 13,000 upstream regions of human genes and identified 430 
new target genes which are potentially involved in antibacterial defense mechanisms.

Background
Promoter model construction is a way to utilize informa-
tion about coexpressed genes; this kind of information
becomes more and more available with the advent of gene
expression mass data, mainly from microarray experi-

ments. Having a promoter model at hand, one has (i) an
explanatory model that and how the coexpressed gene
may be coregulated, and (ii) a means to scan the whole
genome for additional genes that may belong to the same
"regulon". The field of searching for regulatory elements
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in silico and promoter modeling is already well-cultivated.
In spite of numerous sophisticated approaches devoted to
this subject [1-9], we still lack a standard method which
would enable us to produce promoter models. This may
indicate that the existing approaches have their distinct
shortcomings and that, thus, the field is still open for new
ideas.

The biological system we consider in this work is the tran-
scriptional regulation of the response of lung epithelial
cells to infection with Pseudomonas aeruginosa. Binding of
bacteria to a eukaryotic cell triggers a complex network of
interactions within and between both cells. P. aeruginosa
is a pathogen that causes acute and chronic lung infec-
tions affecting pulmonary epithelial cells [10,11]. We use
this example for examining the ways in which the
response of the eukaryotic cell(s) is triggered, leading us to
a better understanding of the details of the inflammatory
process in general.

After adhesion of P. aeruginosa to the epithelial cells, the
response of these cells is triggered by at least two distinct
agents: bacterial lipopolysaccharides [12] and/or bacterial
pilins or flaggelins [13]. Both pathways lead to the activa-
tion of the transcription factor NF-κB. It has also been
shown that transcription factors AP-1 and C/EBP partici-
pate in this response [14,15]; pronounced hints on the
participation of Elk-1 [16] have been reported as well.
However, it is a commonly accepted view that transcrip-
tion factors which are involved in a certain cellular
response cooperate and in most cases act in a synergistic
manner. Therefore, their binding sites are organized in a
non-random manner [2,3,8,9].

We use this consideration as a basis for constructing a pre-
dictive promoter model. We searched for combinations of
potential transcription factor binding sites (TFBS), consid-
ering those transcription factors (TFs) that are known to
be involved in antibacterial responses. Some of the found
combinations could be predicted from the fact that they
may constitute well-known composite elements, like
those containing NF-κB and C/EBP or NF-κB and Sp1
binding sites [TRANSCompel, [17]]. We start with a
search for pairwise combinations of TFBS in a set of
human genes published to be induced during antibacte-
rial response, considering that combinations of the higher
orders can be constructed from them later on.

We suggest a simple, but exhaustive method for searching
for TFBS pairs which characterize the whole training set,
and combinations of mutually exclusive pairs (comple-
mentary pairs). The idea of starting the analysis with a
"seed" of sequences allows a very biology-driven way of
initial filtering of information.To enhance the statistical
reliability and to get additional evidence in TFBS combi-

nation search, we applied the principal idea of phyloge-
netic footprinting (using orthologous mouse promoters),
yet proposing a different view on applicability of this
approach.

Finally we came up with a promoter model which we
applied to screening of 13,000 upstream regions human
genes. We identified 430 new target genes which are
potentially involved in antibacterial defense mechanisms.

Results
Development of the approach
In every step of our investigations we tried to combine
purely computational approaches with the preexisting
experiment-based knowledge, as it is represented in corre-
sponding databases and literature, and with our own bio-
logical expertise. To develop a promoter model, the first
task is to select those transcription factors, the binding
sites of which shall consitute the model. The overwhelm-
ing majority of methods and tools estimating the rele-
vance of predicted TF binding sites in promoter regions
are based on their over- and underrepresentation in a pos-
itive (+) training set in comparison with some negative (-
) training set. If, however, a binding site is ubiquitous, or
very degenerate, so that it can be found frequently in any
sequence, the comparison with basically any (-)-training
would not reveal any significance for its occurrence. That
tells nothing about their functionality in any specific case,
which may be dependent on some additional factors and/
or other conditions. Therefore, basing the decision about
the relevance of a transcription factor for a certain cellular
response solely on whether its predicted binding sites are
overrepresented in the responding promoters may lead to
a loss of important information. Thus, we did not rely on
this kind of evidence but rather chose the candidate tran-
scription factors according to available experimental data.
We found 5 factors reported in literature as taking part in
anti-bacterial or similar responses and selected them as
candidate TFs [11,12,15,18-29]. Not all of these candidate
TFs are overrepresented in the (+)-training set used in this
analysis (Table 1; see also Methods). For instance, no
overrepresentation has been found for important factors
such as NF-κB, AP-1 and C/EBP. Nevertheless, these fac-
tors were included in the model, because not the binding
sites themselves, but their combinations may be
overrepresented.

On the other hand, some of the factors, which have also
been mentioned in literature as potentially relevant (e.g.,
SRF [30]) or might be of a certain interest because of their
participation in relevant pathways (CREB, according to
the TRANSPATH database [31]) were not included in the
model because we could not adjust the thresholds for
their detection according to our requirements (see Meth-
ods). SRF were of special interest, because it is known that
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it tends to cooperate with Elk-1 [30], but to identify 80%
of TP we had to lower the matrix similarity threshold to
0.65, which is unacceptably low and would provide too
many false positives.

Finally, we constructed our promoter model of binding
sites of 5 TFs (NF-κB, C/EBP, AP-1, Elk-1, Sp1), consider-
ing their pairwise combinations and some combinations
of higher order (complementary pairs, see below).

In several steps of the model construction we had to esti-
mate overrepresentation of a feature in the (+)-training set
compared with the (-)-training set. We operated with the

number of sequences that possess the considered feature,
in our case a pair of TFBS, at least once. Otherwise, mere
enrichment of a feature in the (+)-training set may be due
to strong clustering in a few members of that set which
would not lead to a useful prediction model. At the first
step the T-test has been performed (the normality of dis-
tribution has been demonstrated before (data no
shown)), but it appeared to be a weak filter: for example,
we could find several pairs which showed, if estimated
with T-test, a remarkable overrepresentation (p < 0.001),
but with a difference of 97% in the (+)-training set versus
85% in the (-)-training set, which is of no practical use to
construct a predictive model, since it is also important to

Table 1: The genes of the (+)-training set (without orthologs). Marked with asterisks are those included in the "seed" set.

No Gene name Accessin no. And 
LocusLinkID

Experimental evidence Additional information Participation in 
anti-Pseudomonas 
response

1 Monocyte chemoattractant 
protein-1, MCP-1*

EMBL: D26087 Microarray [66], other 
experiments [20,21,38]

Is well know as expressed 
in antibacterial response

100%

2 β-defensin* LocusLinkID: 1673 [15,18,19,39,40] Is well known as expressed 
in antibacterial response; 
important target gene in 
innate immunity

100%

3 Interferon regulatory factor 
1, IRF-1*

LocusLinkID: 3659 Microarray [66] Known to be expressed in 
epithelial cells

probable

4 Equilibrate nucleoside 
transporter 1, SLC29a1

LocusLinkID: 2030 Microarray [66]

5 Proteinkinase C η type, 
PKCη*

LocusLinkID: 5583 Microarray [66] 
TRANSPATH®

Important link in Ca2+-
connected pathways

probable

6 Folypolyglutamate synthase, 
FPGS

Ensembl : 
ENSG00000136877

Microarray [66]

7 RhoB* LocusLinkID: 388 Microarray [66] is induced as part of the 
immediate early response 
in different systems

probable

8 Origin recognition complex 
subunit 2, hORC2L

LocusLinkID: 4999 Microarray [66]

9 Transcription factor TEL2* LocusLinkID: 51513 Microarray [66] Transcription factor probable
10 Interleukin 8, IL8* EPD: 

EP73083LocusLinkID: 
3576

[10,11,26,44,45] Is well know as expressed 
in antibacterial response

100%

11 Transcription factor ELF3* LocusLinkID: 1999 Microarray [66] Transcription factor probable
12 Mucin 1(mouse gene), 

MUC1*
RefSeq: NM_013605 [17,27,28,36,47] Different mucins are shown 

as expressed in 
antibacterial response

100%

13 NF-kappaB inhibitor alpha, 
IkBa*

LocusLinkID: 4792 EPD: 
EP73215

Microarray [66] NF-kB inhibitor, the main 
link in NF-kB-targeting 
pathways

Very high

14 Tissue Factor Pathway 
Inhibitor 2, TFPI

LocusLinkID: 7980 EPD: 
EP73430

Microarray [66]

15 Urokinase-type 
plasminogen activator 
precursor, PLAU

LocusLinkID: 5328 Microarray [66]

16 c-jun* Microarray [66] Transcription factor probable
17 Cytochrom P450 dioxin-

inducible*
LocusLinkID: 1545 Microarray [66] Stress-inducible probable

18 Dyphtheria toxin resistance 
protein, DPH2L2

EPD: EP74285 Microarray [66]
Page 3 of 19
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2005, 2:2 http://www.tbiomed.com/content/2/1/2
have minimal occurrence of a discriminating feature in
the (-)-training set. In the further work we considered all
pairs with p < 0.005, but as this did not reasonably restrict
the list of considered pairs, we had to apply an additional
filtering approach. For this purpose we used a simple char-
acteristic such as the percentage of sequences in (+)- and
(-)-training sets. By operating directly with percentages we
could easily filter out those pairs which would identify too
many false positive sequences, thus getting rid of a sub-
stantial part of useless information. This procedure allows
to estimate immediately the applicability of the model to
identify further candidate genes that may be involved in
the cellular response under consideration (see Methods).

The main problem of promoter model construction are
the numerous false positives. Developing our approaches
we applied some anti-false-positives measures :

• distance assumptions

• identification of "seed" sequences

• phylogenetic conservation

• subclassification into complementary sequence sets.

In the following, we will comment on each item in more
details.

Distance assumptions
The commonly accepted view that functionally cooperat-
ing transcription factors may physically interact with each
other triggered us to introduce certain assumptions con-
cerning the distances between the considered TFBS. Tran-
scription factors can interact either immediately with each
other or through some (often conjectural) mediator pro-
teins (co-factors). Principally there can be many ways of
taking this into account, since our knowledge about the
mechanisms of interaction is limited. In this work we used
two different approaches to consider distances in the pro-
moter model development.

In the first case we based our assumptions on the structure
of known composite elements. We assumed that the bind-
ing sites of interacting TFs should occur in a distance of
not more than 150 bp to each other (which is the case for
most of the reported composite elements [17]; 150 bp is
even an intended overestimation). To be on the safe side
and not to overlook some potentially interesting interac-
tions we allowed the upper threshold of 250 bp. Also by
analogy with composite elements, for which it is relevant
that the pair occurs not at a certain distance, but within a
certain distance range, we considered the pairs occurring
in segments of a certain length.

The second approach was based on more abstract consid-
erations. Thinking of TF interaction, we can imagine three
different situations:

(a) Directly interacting factors should have the binding
sites at a close distance.

(b) The factors interacting through some co-factor may
have binding sites on some medium distance, depending
on the size and other properties of the co-factor (and the
factors themselves).

(c) We can also expect direct interaction of another type,
when the two factors are not located in the nearest neigh-
borhood, but their interaction requires the DNA to bend
or even to loop. This means that the distance is no longer
a close one, although we cannot estimate the distance
range for this case; thus, we allowed different ranges of
distances, excluding only the closest ones.

We searched for pairs in three distance ranges, roughly
called "close", "middle" and "far", all with adjustable bor-
ders, so that moving them we could get the best propor-
tion of percentages in (+)- and (-)-training sets. We used
the search in the distance ranges as a starting point, but
some of the found pairs required optimization of the bor-
ders, so that they finally did not fit into any of the prede-
fined ranges. The initial "close" range was taken as 5–20
bp, to exclude the overlapping of the sites, but to allow
close interaction; however, the border had to be shifted in
many cases up to 50 bp. The initial "middle" range was
chosen from 21 to 140 bp (the number of nucleotides
wrapping around the core particle of the nucleosome); the
"long" range had its upper border at 250 bp.

"Seed" sequences
Initially the idea of "seed" sequences was exploited
because of the desire to make use of preexisting biological
knowledge about the expressed genes and also because of
doubts in the reliability of the available data set. Different
experimental approaches differ in their reliability. The
microarray analysis is not absolutely reliable [31,34-36],
so we could expect that not all of the reported genes may
be relevant for the antibacterial response. On the other
hand, some genes are already known to be relevant
according to additional published evidence. We thus
decided to search for distinguishing features first in these
"trustable" genes, and then to spread the obtained results
to the whole set.

Therefore, we started our analysis with a group of "seed"
sequences, which we considered for distinct reasons more
reliable and preferable. Choosing a seed group, we took
into consideration two kinds of evidence; the first was the
source of information, i. e. the methods with which the
Page 4 of 19
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2005, 2:2 http://www.tbiomed.com/content/2/1/2
gene has been shown to participate in the response. We
took the promoter sequences of those genes which have
been reported by other methods but microarray analysis
[11,13,15,18-22,27-29,38-47,47], and which have been
independently reported by at least two different groups.

The second kind of evidence was whether we could find
any additional biological reasoning for the gene to partic-
ipate in this kind of reply. For instance, a well-known par-
ticipant of the NF-κB-activating pathway such as IκBα, or
participants of different pathways which are likely to be
triggered here as well, like c-Jun or PKC, were estimated as
the first candidates for the "seed" group.

Finally, the "seed" contained 12 human sequences (Table
1). We could retrieve all mouse orthologs constituting a
separate mouse "seed". We then run our analysis in either
"seed" separately and in the combined human/mouse
"seed" and compared the results. First, we identified all
TFBS pairs that are present in all sequences of this "seed"
group (see Methods) (Fig. 1, step 2). Further on, we
searched for the found pairs in the whole (+)-training set
(Fig. 1, step 3). In the next step we made a search in the (-
)-training set for those pairs that were found in at least
80% of the (+)-training set (Fig. 1, step 4), choosing only
those which showed the lowest percentages in the (-)-
training set (Fig. 1, step 6).

Using this approach, we could avoid being drowned by a
flood of pairs, most of which would be of minor impor-
tance. The huge number of nearly 37,000 pairs in different
intervals which can be found in the whole (+)-training set
was reduced by at least two orders of magnitude: depend-
ing on the "seed" the number of considered pairs varied
from 50 to 400. In the next steps this number was reduced
by another order of magnitude (Table 2).

Each "seed" is characterized by its own set of pairs. To
ensure the robustness of the obtained results, we under-
took the "leave-one-out" test, removing consecutively one
sequence of the "seed" set (for the combined "seed" sets
which included human and mouse orthologs we excluded
simultaneously both orthologous sequences). This has
been repeated for each sequence (or ortholog pair). Only
the robust pairs have been taken into further
consideration.

Algorithm of of the search for common pairs using seed setsFigure 1
Algorithm of the search for common pairs using seed 
sets. Step 1. Selection of a "seed" set. Step 2. Identification of 
all pairs in the "seed" set; only those, which are found in 
100% of the "seed" sequences, are taken into further consid-
eration. Step 3. Search for the selected pairs in the whole 
(+)-training set. Step 4. Only those which are found in more 
than 80% of sequences of the (+)-training set are taken for 
into the further consideration. Step 5. Search for the "sur-
vived" pairs in the negative training set. Only those which are 
present in less than 40% of sequences are left. Step 6. The list 
of the common pairs is ready for the next analysis.

(+)-
Training

set

Step 1

Step 3

Step 2

(-)-
Training

set

Step 6

„Seed“
set

„seed“ pairs

Step 5

Step 4

Table 2: Stepwise filtering of pairs.

Pairs found on different steps of the search No of found pairs

Pairs found in the whole training set in all 
distance intervals

~37000

Pairs found in the "seed" set in all distance 
intervals (step 2 on the fig. 1)

~400

"Seed" pairs in more than 80% of the training 
set (step 4 on the fig. 1)

~180

"Seed" pairs in more than 80% of the training 
set and less than 40% of the negative training 
set (step 6 on the fig. 1)

4
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Phylogenetic conservation
Evolutionary conservation of a (potential) TFBS is gener-
ally accepted as an additional criterion for a predicted site
to be functional (phylogenetic footprinting; [49-52]).
However, some recent analysis of the human genome
reported by Levy and Hannenhalli [50,53] and our own
observations made for short promoter regions have
shown that only about 50% [50], 64 % [53] or 70 %
(Sauer et al., in preparation) of the experimentally proven
binding sites are conserved. Missing between 30 and 50 %
of all true positives may seem to be acceptable when ana-
lyzing single TFBS, but if one constituent of a relevant
combination of TFBS belongs to a non-conserved region,
we will loose the whole combination from all further
analyses.

The observed fact is that functional features are not neces-
sarily bound to conserved regions, as long as we speak
about primary sequence conservation. Dealing with such
degenerate objects as TF binding sites, one should not
expect an absolute conservation of their binding
sequences. From the functional point of view, it seems to
be more reasonable to expect that not the sequences, but
the mere occurrence of binding sites and/or their combi-
nations as well as (perhaps) their spatial arrangement
would be preserved among evolutionarily related
genomes. That is the approach that we use in the present
work, completely refraining from sequence alignments.
We search for those pairs of TFBS which can be found in
human and corresponding mouse orthologous promoter
regions, considering the promoter as a metastring of TFBS.
We took a feature (the pair of TFBS) into account only if
we could identify it in both orthologous promoters, not
taking into consideration in what region of the promoter
it appeared; we also did not try to align metastrings of
TFBS symbols, since they may be interrupted by many
additional predicted TFBS (no matter whether they are
true or false positives). While this work was in progress,
we found a very similar approach in the work of Eisen and
coworkers [54,55], who searched for conserved "word
templates" in the transcription control regions of yeast.
We believe that switching from primary sequence preser-
vation to the conservation of higher-order features like
clusters of TFBS is the next step in development of the
approaches of comparative genomics.

Complementary pairs (pairs of pairs)
The idea that combinations or clusters of regulatory sites
in upstream regions provide specific transcriptional con-
trol is not new [1,8,56]. Nevertheless, the problem of
detecting such combinations is still under active develop-
ment. As mentioned before, due to the complexity of the
regulatory mechanisms in eukaryotes the computational
prediction of functional regulatory sites remains a difficult
task, and the spatial organization of the sites is the prob-

lem of the next level of complexity. To facilitate the search
for combinations we tried to exploit the concept that sub-
sets of principally co-regulated promoters may be subject
to differential regulation. If the response of the cell is
mediated through at least two distinct pathways, it is log-
ical to suppose that there are subsets of promoters acti-
vated by each of them. The subsets may not be obvious
from the expression data or from any other observations,
but in some cases (as in ours, when we have two different
pathways triggering the same response) one can presup-
pose the existence of two or more subsets, each of them
possessing an own combination of TFBS. These combina-
tions will be complementary in the sense of their occur-
rence in the set (Fig. 2). For simplicity we considered only
pairs of TFBS, but the search for combinations of higher
order would make the model more specific. Moreover,
detection of complementary pairs enables to identify cor-
responding complementary subsets of sequences, thus to
shed light on some features of the ascending regulatory
network.

Formalization of the approach
In the following, we will formalize our approach and
describe the logics of our investigation.

All procedures are described for the example of pairwise
combinations, but principally all of them can be applied
to combinations of higher orders. We restricted our
attempt to pairs for sake of computational feasibility.

Complementary pairsFigure 2
Complementary pairs A, B, C and D are transcription fac-
tor binding sites, which form two sorts of pairs (A-B and C-
D). These pairs are complementary in the sense of occurring 
in complementary subsets of the whole set.

C D

A B

DC

D

D

B A

A B

A B

C

C
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Identification of pairs
We consider all possible pairwise combinations of TFBS in
each sequence, as described in Methods. A pair is taken
into account if it has been found in a sequence at least
once.

Let us consider two TFBS m and n located in a distance
range from r1 to r2 (where r1 ≤ r2) on either strand of DNA
(+ or -). We can denote the sets of sequences containing
pairs in different relative orientation as,

.

To allow inversions of DNA segments containing pairs, we
consider three classes of combinations (Fig. 3):

In more general form for i = 1,...3  represents

the set of sequences with a pair of i-th class m, n(i) (r1, r2).

Let  be a fraction of the sequences

 in the (+)-training set, and 

the fraction of sequences  in the (-)-training

(control) set.

We have to solve now the optimization problem to maxi-

mize the difference 

by choosing appropriate values for m, n, i and r1, r2. Also,
we are interested only in pairs, which are present in at
least a minimum fraction of (+)training sequences (C1)
and in a defined maximum fraction of (-)-training
sequences (C2). They can be filtered in advance.

Thus, we search for such  for which

where 0 ≤ C1,2 ≤ 1 are adjustable parameters.

For single pairs we chose C1 = 0.8 and C2 = 0.4. We could
not find pairs which would satisfy more stringent param-
eters, i. e. either higher C1 or lower C2; on the other hand,
requirement (1) was found to be satisfied by a lot of dif-
ferent combinations which gave rise to the same Pt and Pc.

To make the analysis more specific, we can consider com-
binations of pairs instead of single pairs. For sake of sim-
plicity, we will omit furtheron (r1, r2) from the expression

 (but it should be kept in mind that  is

always a function of (r1, r2)). Each possible type of pair is
determined by values of m, n and i. We can list all types of
pairs and assign a number j to each pair in this list. Then
each type of pair is characterized by mj, nj, ij:

Pair classesFigure 3
Pair classes When grouping different combinations of tran-
scription factor binding sites according to mutual orientation, 
we allow inversions of the whole module. This gives rise to a 
total of three classes as shown.
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Then the sequences with the pair can be represented as

. For simplicity, let us call

For two different j1 and j2 (j1 ≠ j2) we can identify  and

, which appear in the (+)training set simultaneously:

A triple or a combination of a higher order can be repre-
sented in the same way.

Defining complementary pairs (pairs of pairs)
The antibacterial response of the cell is triggered by at least
two distinct pathways, and it may be therefore supposed
that there are subsets of promoters activated by each of
them. Optimally, they should be "complementary" in the
sense of appearing in complementary subsets of the (+)-
training set (Fig 2).

Complementary pairs were searched first in a "seed" sub-
set of the (+)-training set of sequences (Fig 4, step 1). It
comprises those 12 human genes for which the most reli-
able evidence is available that they are involved in the
antibacterial response (as discussed in the subsection Seed
sequences; Table 1). We considered all possible pairs which
could be found in this subset (Fig. 4, step 2). Further on,
we considered all pairwise combinations, calling pairs
complementary, if:

(a) they together cover the whole subset (C1 is therefore
always set to 1, );

(b) each of them can be found in not more and not less
than a certain number of sequences (defined by adjusta-
ble parameters C3 and C4, see below), with an allowed
overlap (defined by the parameter C5).

Thus, the requirement for complementary pairs is:

where 0 ≤ C3,4,5 ≤ 1 are adjustable parameters.

We chose C3 = 0.3, C4 = 0.7 and C5 = 0.2. As we had no
means to estimate the expected proportion of comple-
mentary pairs in the subsets, we started with these rather
unrestrictive parameter settings. Finally the chosen pairs
were found in the proportion 0.4/0.6 for C3/C4. In the
next step we repeated the search including the ortholo-
gous sequences to the "seed" set (Fig. 4, step 3). We
looked for those pair combinations which were found in
the first step (in the human "seed" sequences). (The sec-
ond and the third steps may be combined in one).

In the last step we repeated the search in the whole (+)-
training set of 33 sequences, looking only for the combi-
nations found in the second step (i.e., in the 12 "seed"
and their orthologous sequences) (Fig. 4, step 4).

The percentage of the pair occurrence in the (-)-training
set has been counted on the first step with the subsequent
filtering of pairs.

Results of the pair search
A rather large number of combinations satisfied the
requirements described in the previous section. However,
when we selected those that were robust in a "leave-one-
out" test for the "seed" sets, the final list of potential
model constituents was shortened down to only 2 ubiqui-
tous and 12 complementary pairs.

We found one satisfactory pair which should be found in
all promoters of target genes:

AP - 1, NF - κB(1)(10,93)
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Algorithm of the search for complementary pairs using "seed" setsFigure 4
Algorithm of the search for complementary pairs using "seed" sets Step 1. Selection of a "seed" set; Step 2. Selection 
of complementary pairs in the human "seed"; every combination is checked in the (-) training set and only those, which are 
found in less than 40% of sequences, are taken into further consideration. Step 3. Selection of complementary pairs in the 
"seed" of orthologs or in the joint "human + orthologs" "seed". (Step 2 may be omitted and substituted by Step 3) Step 4. 
Search for the selected pairs in the whole (+)-training set. After that the final choice is made.

Step 2

(+)-
Training

set

„Seed“
set

Step 1 

„seed“
set

Pair 3 Pair 4 

Pair 5 Pair 6 

 „seed“
  + orthologs

  set 

Pair 1 Pair 2 

Pair 3 Pair 4 

 whole (+)-
training set 

Pair 1 Pair 2 

Step 4

Step 3 

Pair 2 Pair 1 

Pairs 1 and 2 are chosen as 
complementary for the model 
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(AP-1, NF - κB, class 1, distance from 10 to 93 bp; see Fig.
3 for pair classes).

The search for the combination of two or more pairs,
which should be found in the whole set simultaneously,
did not give any significant improvement of the results.

Among the complementary pairs we found, several of
them appeared to be interchangeable: each pair of pairs or
any combination of them resulted in the selection of the
same subsets from the (+)-training set (52%) (Fig. 5). Fig.
5 shows only those pairs which have been chosen for the
final model, but there were several more which identified
the same subset of the (+)-training set. The large number

of complementary pairs may indicate that they are parts of
more complex TFBS combinations, consisting of 4, 5 or
more TFBS.

The false positive rate depended on the number of applied
pairs; when we used all of them together, they gave only
1.7% of FP (i. e., only 1.7% of the sequences in the (-)-
training set revealed the presence of all pairs under con-
sideration). But the simultaneous usage of all the pairs
could overfit the model, so we did not apply them all, sac-
rificing a bit of specificity for sake of a higher sensitivity.

Finally, we came up with 4 complementary pairs (Fig. 5)
composed of 7 different TFBS pairs. Four of these TFBS

Seven pairs, which are combined in four complementary combinations, and the results of their simultaneous applicationFigure 5
Seven pairs, which are combined in four complementary combinations, and the results of their simultaneous 
application Each of the complementary pairs searches for nearly the same portion of the training set, while in the negative 
training set their intersection appears to be very small. Here, only those pairs are shown that have been chosen for the final 
model, but there were several more, which searched for the same subset of the training set and gave altogether 1,7% in the 
negative training set. Note that the circles are not exactly drawn to scale.

Compl.pairs
1

Compl.pairs
4

Compl.pairs
3

Compl.pairs
2

(-)-Training
set

Seed set 

(+)-Training
set

Compl.pairs
1+2+3+4

52%
3,4%

Compl.pair #1: C/EBP,Sp1(2)(22,87)  - C/EBP,NF-kB(1)(4,97)
Compl.pair #2: Elk-1,Sp1(1)(14,96)  - AP-1,Elk-1(3)(28,39)
Compl.pair #3: AP-1,C/EBP(3)(67,112)  -NF-kB,Sp1(2)(86,219)
Compl.pair#4: NF-kB,Elk-1 (2)(11,124)  - AP-1,Elk-1(3)(28,39)
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pairs together are indicative for one subset of sequences,
the remaining three for the other. As it has been men-
tioned before, the discovery of complementary pairs
entails automatically the discovery of the corresponding
subsets of sequences. We analyzed the distribution of the
constituents of the found complementary pairs across the
(+)-training set, which enabled us to assign the genes
either to one or to the other subset, or to both (Table 3).
Note that one of the subsets (subset 1) is in good agree-
ment with the experimental data: MCP1, IL-8, β-defensin
and MUC1 are known to be regulated by LPS, whereas
IκBa is an important participant of this pathway; thus,
these genes could be expected to belong to one pathway
and, therefore, to one subset. Here, they all belong to the
subset 1. This observation provides good support for the
concept of complementary pairs which we applied here.

In order to avoid the overfitting of the model and to dem-
onstrate the significance of our results, we performed a
permutation test. For that, we conducted 2000 iterations
of random permutation of (+) and (-) labels in the
training sets and tried to rebuild the model using the pro-
cedure described above. The rate of correct classification
on this random selection was estimated. The cases of com-
mon and complementary pairs were considered sepa-
rately. The analysis was made for different C1, C2
(0.7<C1<0.8, 0.4<C2<0.5) for common pairs; for comple-
mentary pairs we considered the case with C3 = 0.3 C4 =
0.7 C5 = 0.2. The probability to find by chance a "seed" of
12 sequences which would produce at least one pair com-
mon for the random selection of 33 sequences (including
the "seed") depends on the chosen C1, C2 and is found to
vary between p < 0.0005 (C1 = 0.8, C2 = 0.4, the parame-
ters used for our model construction) and p = 0.02 (C1 =
0.7, C2 = 0.4). We failed to find any complementary pairs

after 1000 iterations of the permutation test with the
parameters used for the "real" (not permuted) model con-
struction. These results suggest that the success of the
model construction based on the search for combinations
of TFBS is strictly dependent on the selected training set
(thus, on our prior biological knowledge) and that the sig-
nificance of the findings, depending on the correct choice
of the adjustable parameters, is high enough to claim their
non-randomness. Thus, we can say that in the described
case the pairs found in the given (+)-training set with the
given parameters are the real characteristics of this set.

Promoter model
The model consists of two kinds of combinations of pairs:
ubiquitous pairs (which should be found in all promoters
of the target genes), and complementary pairs. We can
divide the model into two modules, one for each kind of
combination.

Let M1 and M2 be modules comprising ubiquitous pairs
and complementary pairs, respectively.

Module M1 comprises the pair AP-1, NF-κB(1)(10,93).

Module M2 comprises all complementary combinations
listed in the Fig. 5. Each complementary pair can be taken
as a submodule (m) in M2.

To apply the model means to search for sequences con-
taining all these combinations. Let us call S(M) the set of
sequences which possess the whole model M; then we can
also consider S(M1) and S(M2) (the sets possesing the
modules M1 and M2, respectively), and S(m) – the set
with a submodule m.

Table 3: Assignment of training sequences to two subsets. Genes marked with asterisk are known to be activated through LPS-
dependent pathway; note that they all belong to one subset.

Subset 1(LPS-dependent pathway) Subset 2

Complementary pairs Elk-1, NF-κB(2) (11–124)
Elk-1, Sp1(1) (14–96)
C/EBP, Sp1(2) (22–87)
C/EBP, NF-κB(1) (4–97)

AP-1, Elk-1(3) (28–39)
NF-κB, Sp1(2) (86–219)

Regulated genes (in the training set) MCP1*
IL8*
β-Defensin*
MUC1*
ELF3
cytochrome p450
IkBa*

PKC, proteinkinase C
TEL2
c-jun(?)
TFPI-2

RhoB, PLAU, IRF-1, hORC2L
Not assigned SLC29, DPH2L2, FPGS,
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Then

Module M2 consists of submodules (m); in this case we
consider four submodules, so the sequences containing
M2 can be found as:

S(M2) = S(m1) ∩ S(m2) ∩ S(m3) ∩ S(m4),

where the set with each submodule we must consider as a
union of sequence sets containing the complementary
pairs:

The final result of application of the model M can be pre-
sented as

S(M) = S(M1) ∩ S(M2)

The model gives 3.4% of false positives and re-identifies
52% of the whole (+)-training set, but these 52%
comprise all most reliable sequences of the set (remember

that we must allow for some reduction because the set is
not absolutely reliable).

Identification of potential target genes
Applying our promoter model to screening of 13000
upstream regions from a collection of human 5'-flanking
sequences [57], we identified about 580 genes as harbor-
ing this combination of TFBS. After erasing all those that
encode hypothetical products, we came up with a list of
430 potential target genes, which can be checked for plau-
sibility. More than 60% of these genes encode different
representatives of the immune system, which can be
expected to participate in the cells' response, as well as
transcription factors and other regulatory proteins. Some
of the most interesting potential target genes are shown
on the Table 4. The whole data set one can find in the
Additional files.

Discussion
We have proposed some approaches to promoter model
construction and show how these approaches work in the
particular case of antibacterial response of a eukaryotic
cell, namely the reaction of human lung epithelial cell to
P. aeruginosa binding. One of the results of our work is a
list of potential target genes, enriched with different regu-
latory proteins, including transcription factors and known
participants of the ascending pathways. This theoretical
result must have two practical consequences: first, it
allows to restrict further experimental research to a man-
ageable number of candidate genes; second, it enables to

Table 4: Selection of candidate genes identified by the promoter model. The whole list one can find in Additional files.

TNFRSF14 tumor necrosis factor receptor superfamily
TNFAIP6 tumor necrosis factor, alpha-induced protein 6
PPP3CA protein phosphatase 3 (calcineurin A)
NLI-IF nuclear LIM interactor-interacting factor
WISP1 WNT1 inducible signaling pathway protein 1
IL8 interleukin 8
TFPI2 tissue factor pathway inhibitor 2
DEFB2 defensin, beta 2
POU2F1 POU domain, class 2, transcription factor 1
MAP2K1IP1 mitogen-activated protein kinase kinase 1 interacting 
protein 1
CSF2 colony stimulating factor 2 (granulocyte-macrophage)
TAF2F TATA box binding protein (TBP)-associated factor
RNA polymerase II, F, 55 kD
ABT1 TATA-binding protein-binding protein
CALN1 calneuron 1
TRAF1 TNF receptor-associated factor 1
FPGS folylpolyglutamate synthase
RENT2 regulator of nonsense transcripts 2
CYP26A1 cytochrome P450, subfamily XXVIA
EHF ets homologous factor,
MAP3K11 mitogen-activated prot. kinase kinase kinase 11
IRAK-M interleukin-1 receptor-associated kinase M
ARHGDIA Rho GDP dissociation inhibitor (GDI) alpha
HSY11339 GalNAc alpha-2, 6-sialyltransferase I, long form

HCNGP transcriptional regulator protein
CYP4F11 cytochrome P450, subfamily IVF
IRF3 interferonregulatory factor 3
ICAM3 intercellular adhesion molecule 3
PPARA peroxisome proliferative activated receptor, alpha
IKBKG inhibitor of kappa light polypeptide gene enhancer in B-cells, 
kinase gamma
ELK1 ELK1, member of ETS oncogene family
STK31 serine/threonine kinase 31
SERPING1 serine (or cysteine) proteinase inhibitor
GPR4 G protein-coupled receptor 4
RAB5B RAB5B, member RAS oncogene family
RAB7 RAB7, member RAS oncogene family
NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-
cells
NFKBIB nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, beta
CEBPE CCAAT/enhancer binding protein (C/EBP), ε
ELK1 ELK1, member of ETS oncogene family
EHF ets homologous factor
15 Zinc finger proteins
small inducible cytokine subfamily A (Cys-Cys), members 5,11, 20 and 23
Interleukins: IL1, IL1delta, IL8, IL12A, IL12B, IL13, IL23,
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understand or to clarify some uncertain details concerning
the triggering pathways, and thus to make some new pre-
dictions based on this information. There is a number of
published tools for searching for regulatory modules (i.e.,
"sequence elements that modulate transcription", follow-
ing the definition given by Bailey and Noble [1] following
[7,58]) [7,53,59-63]. The used algorithms may be devided
in three classes (sliding window approach, hidden
Markov models, discriminative technique), as briefly
reviewed in [1]. Any of the approaches, independent of
which algorithm it is based on, encounters the same prob-
lems arising from the biological nature (and extreme com-
plexity) of the object: (i) scarcity of knowledge about exact
location of promoters and enhancers and of experimen-
tally proven binding sites (information used for construct-
ing (+)-training sets); (ii) the fact that statistical
significance of a feature (TFBS or a cluster of them) does
not necessarily tell anything about the biological func-
tionality of this feature; analogously, the insignificance
can not be taken as a proof of the lack of function; (iii)
usually weak reasoning for grouping genes (their promot-
ers) in sets according to their function, co-regulation,
functional occurrence in the same cell types, etc. The latter
has some lucky exceptions, like sets of muscle genes [58]
or cell-cycle regulated genes [64], and the situation will
obviously improve with further development of microar-
ray technique.

In the present work we tried to address the listed prob-
lems. We could not, of course, improve the situation with
the paucity of experimental data, only endeavored to
make our data searches as accurate and exhaustive as pos-
sible. In principle we developed our approaches basing
them, whenever possible, on biological reasoning. We
find it extremely important to use as much experimental
evidence as it is available at the moment. In our approach
we alternated two different kinds of steps – expanding the
data and restricting it: exhaustive data search – "seed" and
distance constraints – exhaustive enumeration of all pos-
sible pairs – complementary pair constraints.

To avoid the problem of low confidence in the (+)-train-
ing set (which may occur not only in our specific case), we
developed the approach of "seed" sequences. The differ-
ence from the "seeds" used in cluster analysis is that in our
approach the choice of the "seed" is biologically based.
Although the "seed" approach is, obviously, a restrictive
measure, moreover, a pre-process restriction, which may
result in missing potentially relevant additional sequence
features, we find it useful and appropriate when the
choice of the "seed" is made on a solid biological basis.
After having applied the restrictive "seed" technique and
distance assumptions, we undertake an exhaustive, com-
plete enumeration of all possible pairs of potential TF
binding sites that can be found in the (+)-training set,

which in turn reveals a large number of combinations.
This list of all found pairs is processed under a new kind
of constraints imposed by the search for complementary
pairs.

The search for complementary pairs is a completely new
approach, which supplies us with a new kind of informa-
tion. It enables to identify subsets of the (+)-training set
which possess different regulatory modules, thus suggest-
ing their triggering by different regulatory pathways. This
kind of information becomes extremely important in two
cases: (i) when two or more pathways are presupposed to
be triggered in the cellular response, like in the case con-
sidered in this work; (ii) when the (+)-training set consists
of not really co-regulated, but of co-expressed genes, with-
out precise information about which of them are regu-
lated by the same mechanism. The identification of
complementary pairs and, consequently, groups of
sequences enables to better define the co-regulated genes
thus providing a partial, although only predicted, confir-
mation of the co-regulation, and at the same time to better
understand the ascending pathways.

The final result of our search supported the idea of com-
plementary pairs. There is a lot of evidence in literature
that interleukin 8, β-defensin, monocyte chemoattractant
protein and different mucins are regulated through LPS-
triggered pathway(s) [12,15,38]. On the other hand, it is
also well-known that LPS is one of the "gates" through
which the antibacterial response is triggered [24,65]. We
know, that in the particular case of interaction with P. aer-
uginosa this pathway is not the only one [13], but we do
not know in advance which of the genes in the (+)-train-
ing set belongs to which pathway (except for several genes
as listed above). We had no means to include our pre-
knowledge in the search. With the complementary pair
approach we could re-identify the LPS subset in good
agreement with our expectations (Table 3), confirming
the efficiency of the method.

Our approach, as any other, has its limits. It has been
shown for the genuine composite elements of certain
types (for instance, NF-AT and AP-1) [66] that one of the
two constituents of a composite element could be rather
degenerate, as compared with its canonical consensus
sequence or when scored with a positional weight matri-
ces (PWM). This means, that our requirement for all bind-
ing sites to be found with rather high PWM thresholds
may be too restrictive. We are running risk to overlook
those constituents of pairs which possess weak consensi.
We could not find a solution to this problem. We have no
information about which of the TFs could be represented
by such low-threshold consensus, and if we take from the
very beginning the lower thresholds for all considered
matrices, we will be drowned in potential binding sites,
Page 13 of 19
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2005, 2:2 http://www.tbiomed.com/content/2/1/2
nearly all of them probably being false positives. Never-
theless, we find that the PWM approach is better than
string identification, which even with allowed mis-
matches can not provide the same flexibility as PWMs.

The next source of limitations we see in the preselection of
factors according to published data. Obviously, we can
not expect that the experimental data is exhaustive; some
of the transcription factors may be not reported just
because their participance in a certain process has not yet
been investigated. On the other hand, statistical overrep-
resentation, as it has already been mentioned before, can
not be taken by itself as proof of biological functionality
or its lack; some TFBS cannot be overrepresented due to
their degenerate nature. We had no other idea of how to
take into account those TFBS which are not overrepre-
sented, but to rely on published experimental data. We
find that the usual methods based on statistical overrepre-
sentaion are even more restrictive, but maybe the best
solution could be found in merging both approaches –
i.e., using the experimental evidence along with statistical
ones, for instance using Bayesian techniques.

We see the perspectives of this work in two different fields:
further investigation of regulatory networks triggered by
P. aeruginosa binding, and further development of the
methodological approaches, making them more flexible
and applicable to any similar task. The list of predicted tar-
get genes has to be evaluated experimentally, but may
have its value for further research already on the present
step. The future work on reconstructing the intracellular
pathways triggering the genetic program of the antibacte-
rial cell response will be well supported with the informa-
tion picked up from this list. It may give some hints for the
next steps of experimental research, for instance providing
information about the first candidates to be checked. The
information about the complementary subsets of regu-
lated genes helps to better understand the triggering path-
ways, and the complementarity of their function is a
subject for further consideration.

The methodological approaches presented in this paper
can be, of course, applied to other objects. In this work we
focused on the experimentally proven basis for the initial
choice of transcription factors. This kind of evidence is
stronger than any prediction, but it can work only when
this information is available, which may be not the case
for some other sets of genes or cellular situations. In the
next step of development we would like to allow also an
exhaustive computational search through the whole list of
known TFs for potential constituents of the models. The
usage of Bayesian techniques, as mentioned in the previ-
ous paragraph, would be also appropriate for this kind of
predictions.

Conclusions
We suggest a methodology for promoter model construc-
tion based on the search of TFBS pairs and show how it
works in the particular case of antibacterial response of
human lung epithelial cells. We show that the method
allows to identify and predict subsets of target genes
potentially triggered by different regulatory pathways and
thus possessing different regulatory modules. The meth-
odology is easily applicable to any similar task and does
not depend on the number of included TFs and/or
number of investigated sequences, which only should not
be too low for statistical reasons.

Methods
Databases
Eukaryotic Promoter Database http://www.epd.isb-sib.ch,
release 77-1.

DBTSS, the database of transcription start sites http://
dbtss.hgc.jp/index.html, release 3.0

TRANSCompel® Professional release 7.1 http://www.bio
base.de

TRANSFAC® Professional release 7.1 http://www.bio
base.de

TRANSPATH® Professional release 4.1 http://www.bio
base.de

Training sets
The positive (+) training set comprises:

1. Promoters of human genes shown to be expressed in
epithelial cells after interaction with P. aeruginosa by
means of:

a. microarray analysis [67],

b. other methods [11,13,15,27,28,37,38]. (Table 1)

2. Orthologous mouse promoters.

The sequences were derived either from Eukaryotic Pro-
moter Database http://www.epd.isb-sib.ch, or from
DBTSS, the database of proven transcription start sites
http://dbtss.hgc.jp/index.html. The length of the
sequences was 600 bp (-500/+100). This region comprises
most of then known upstream elements and corresponds
to the upstream region used by Davuluri et al. as "proxi-
mal promoters" for promoter recognition [69], plus a 100
bp proximal downstream region which also contains
many known regulatory elements documented in the
TRANSFAC database [70].
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The "seed" set is a subset of the positive training set
selected for highest experimental reliability (see Table 1).

The negative (-) training set was composed of randomly
chosen 5'-upstream sequences derived from the TRANSG-
ENOME information resource of annotated human
genome features [57]. The set was manually cleaned from
all genes which potentially could be involved in the same
or similar cellular responses. The set comprised 2040
sequences.

Defining the set of transcription factors (potential 
constituents of the model)
We based our selection of TFs on experimental evidence.
For that we undertook an extended literature search, look-
ing for the TFs which have been shown to take part either
directly in the response of epithelial cells to P. aeruginosa
binding or in the pathways triggered during similar
responses. The search revealed 5 candidate factors: NF-κB
[11,12,15,18,21,23,24,26], C/EBP [21,24,25,27], AP-1
[24,25], Elk-1 [16,24] and Sp1 [28,29,48].

Including C/EBP and Sp1 in the list was additionally rea-
soned by the fact that these factors are known to be second
constituents in the most frequent NF-κB-containing com-
posite elements as they are compiled in the TRANSCom-
pel® database [17]. Moreover, these are the types of
composite elements known to participate in different
kinds of immune response.

Search for the potential transcription factor binding sites
We made this search with the weight matrix approach
using the Match™ tool [68]; the matrices were chosen
from the library collected in TRANSFAC® [70]. For the
model construction, the thresholds for the matrix search
have been defined individually for each matrix and in
such a way that (i) it should yield not less than 80% TP
(true positive set, here the set of experimentally proven
TFBS from TRANSFAC®); (ii) at least one hit for every
searched transcription factor could be found in every
sequence of the (+)-training set. The lower border for the
thresholds was predefined as 0.80/0.79 (core similarity/
matrix similarity).

Identification of pairs
We considered all the coordinates (with strand informa-
tion) of all potential TF binding sites found by Match™ for
each transcription factor. Further on, we examined all pos-
sible combinations of the coordinates, thus revealing all
possible pairs in the sequence.

We worked under two different kinds of distance assump-
tions as described in Formalization of the approach, choos-
ing the most promising results achieved with either of
them. We considered all pairs of TFs within these seg-

ments. All the pairs of one type found within one distance
range were merged. We considered a pair only if it
appeared in the sequence at least once (within a certain
distance), not taking in account the number of pairs in
each sequence.
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Appendix 1
Estimation of the validity of model construction algorithm
The question is, if we choose by chance a subset of
sequences, will our algorithm be able to define a model,
specific to such a random subset? In other words, will this
algorithm allow to make a model of anything, without
dependence on the preselection of the sets ((+)-training
set and/or the "seed" set)? We tried to prove the validity of
the algorithm theoretically.

Our algorithm is based on the definition of biologically
relevant "seed" sets, in which we search for the candidate
pairs (normal and complementary ones). Therefore, in
order to answer the question, it is reasonable to estimate
the probability to come across a "seed" set of k sequences,
100% of which possess the required common feature: a
pair, a combination of pairs or complementary pairs, just
by chance. Note that this estimation is written not for the
whole model construction process, but only for the first
step of it, where we consider only the "seed" sequences.

Let us consider the frequencies of predicted single sites (f)
of the TFs included in the model and the frequencies of all
possible pairs (F), constructed of these sites. If the fre-
quencies of single sites and the pairs of them satisfy the
equation

Fij = fi fj,  (1)

we can interpret Fij as the probabilities of independent
events, which is a prerequisite for the following
formalism.

We measured the frequencies of predicted single sites and
the frequencies of all possible pairs in the (-)-training set
(see Methods). We did not take into consideration dis-
tances and orientations; the probability estimated for the
general case will decrease further with the addition of new
constraints.

The frequencies fi and Fij of single sites and pairs, respec-
tively, were measured directly as
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fi = mi / N

Fij = Mij / N

where N is the number of all sequences of the (-)-training
set, mi is the number of sequences possessing the i-th site,
and Mij is the number of sequences possessing pairs of the
i-th and j-th sites. Fij was then calculated as (1) and com-
pared with the measured value.

For all cases investigated in this work, the difference
between the calculated and measured values did not
exceed standard deviation (σ), only in one case getting to
1,5 σ (data not shown). This confirms the correctness of
using pair frequencies as probabilities in this case.

Let us estimate the probability Ppair to find a set of k
sequences in N with any (at least one) pair, same in all k.
We can enumerate all possible pairs of sites of the consid-
ered TFs, considering only the cases of the independent
sites (i<j). Let U be the number of all possible pairs, then
we can call

Fij = Fu,

u ∈ {1,..., U}

It is easy to show, that the probability Ppair can be calcu-
lated as:

Let us estimate the probability P2pairs to find k sequences
with any common pairwise combination of pairs (pair of
pairs). The pairs of pairs may consist either of 3 (when one
site is shared) or of 4 different sites (thus leaving out com-
binations of identical pairs); their probabilities therefore
are:

and

where fi, fj, fl, fo are the frequencies of the single sites of the
considered TFs, i<j<l<o.

We can enumerate all possible pairs of pairs (notating
them as Q):

Let V be the number of all possible pairs of pairs, V = t + s.

Analogously to (2), the probability to find k sequences
each possessing a pair of pairs of one type, is:

where v ∈ {1,..., V}.

Let us estimate the probability to find k sequences with
any complementary pair (complementary combinations).
We consider pairs as complementary, if two of them are
found in the seed set in not more than 60% of the
sequences and not less than 40 %, the allowed overlap
being 20%. The two complementary pairs together must
cover the whole seed set. In the case studied here, com-
prising the 12 sequences of the seed set, we fixed that each
of the pairs should be present in at least 5, but not more
than 7 sequences, and they are allowed to co-occur in 0–
2 sequences.

The probability that we choose 12 sequences, possessing
any one pair of complementary pairs in accordance with
these requirements can be calculated as:

where u, w ∈ {1,..., U}, and  are the binomial
coefficients (note that this formula implies that Pcompl

reaches the maximum when the frequencies of both pairs
are 0.5).

All the probabilities were calculated for the (-)training set
of 2040 5'-upstream sequences and for the set of 5
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selected transcription factors (see Methods). The results
are:

Ppair = 0.44 ± 0.02

P2pairs = 0.13 ± 0.01

Pcompl = 0.013± 0.003

We have estimated the simplest variant, considering each
time only one feature (1 pair, 2 pairs, or complementary
pairs). In this case it can be seen that the simultaneous
occurrence of 1 or 2 pairs in 12 randomly chosen
sequences has a rather high probability, and thus we can
not base our model construction on the search of only
these features. (An increase of the number of "normal"
pairs in the search will not dramatically improve the situ-
ation: the formula (3) describes the probability to find
any combination of 3 or 4 sites, therefore, up to 6
pairs;obviously, the simultaneous search of more than 6
pairs will definitely overfit the model, so we do not
consider this case). The probability to find 12 sequences
sharing complementary pairs is much lower, so the con-
sideration of a complementary combination makes the
model much more specific, and the probability of finding
a model with a complementary pair "by chance" is suffi-
ciently low for us to claim that the proposed algorithm is
valid. Note that this is a very rough estimation, consider-
ing only the upper borders; we would like to emphasize
once more, that the probabilities were calculated without
considering orientation and distance constraints, and that
this is the estimation made for only the very first step of
analysis: choosing of a seed set with needed properties.
Obviously, this value depends on the number of the
sequences in the "seed". Note that when we spread our
requirements for simultaneous search on the whole (+)-
training set (which is the next step of the model construc-
tion) the probability of constructing a model "by chance"
will drop dramatically.

Additional material
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