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The aim of this article is to show the way to get both, exact and analytical approximate solutions for certain 
variational problems with moving boundaries but without resorting to Euler formalism at all, for which we 
propose two methods: the Moving Boundary Conditions Without Employing Transversality Conditions (MWTC) 
and the Moving Boundary Condition Employing Transversality Conditions (METC). It is worthwhile to mention 
that the first of them avoids the concept of transversality condition, which is basic for this kind of problems, 
from the point of view of the known Euler formalism. While it is true that the second method will utilize the 
above mentioned conditions, it will do through a systematic elementary procedure, easy to apply and recall; in 
addition, it will be seen that the Generalized Bernoulli Method (GBM) will turn out to be a fundamental tool in 
order to achieve these objectives.
1. Introduction

In this brief introduction the required aspects of the variational cal-

culus for this work are presented, we will begin by exposing the case 
of problems with fixed boundaries and later on we will expose what 
concerns to variational problems with moving boundaries [1, 2, 3, 4].

1.1. Introduction to variational calculus

Calculus of variations is a field of mathematical analysis which is 
concerned with finding maxima or minima of functionals [2, 5]. Func-

tional is a term which refers to a mapping from a vector space into 
a field such as the real numbers. When the vector space is a space of 
functions then functionals are frequently expressed in terms of definite 
integrals, denominated functional integrals. In this case, a functional 
is characterized for making to correspond a function with a number, 
while a common function like 𝑦 = 𝑓 (𝑥), makes a number correspond 
with another one. Calculus of variations is not only relevant from the-
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oretical point of view, but many laws of physics are expressed in terms 
of a variational principle. In this case, a certain functional has to reach 
its maximum or minimum value in the physical considered process. To 
these variational principles belong the law of conservation of energy 
(see our case study 2, as example), the law of conservation of momen-

tum, the Fermat principle in optics, the Castiglianos principle in the 
theory of elasticity. In modern physics, Einstein used the calculus of 
variations in his works on general relativity and in quantum mechanics 
Schrödinger used it to discover his famous wave equation, among many 
other examples. Despite to the fact that some variational problems were 
solved through especial methods (like for instance, Bernoulli’s solution 
to the Brachistochrone problem, which is of particular interest for this 
work [6, 7] (see (4)), it was Euler who presented the variational calculus 
as a coherent branch of the analysis by discovering the basic differen-

tial equation for an extremization curve. It is clear that the amplitude 
and relevance of the variational calculus justify the research on the sub-

ject; especially the one that contributes to facilitate both the variational 
problems formulation as well as the solution methods of these.
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This work proposes two ways to approach certain variational prob-

lems with moving boundaries without resorting to Euler equations; 
nevertheless there exist other methods to solve variational problems 
without Euler’s formulation, for instance [8], employed He’s brackets 
and Ritz method; and the case of variable two-end problems is consid-

ered in [9]. On the other hand, the question of the inverse problem of 
the variational principle which aims to replace the Lagrange multiplier 
method, is considered in [10, 11]. Other similar variational problems 
of interest are presented in [12, 13, 14, 15, 16].

Many of the results of this work are based on the Generalized 
Bernoulli method (GBM) [17] that proposed a technique which gen-

eralize the Johann Bernoulli’s solution of the brachistochrone problem. 
GBM was employed to find the different equation for other, variational 
problems by using just elementary calculus methods. As a matter of fact, 
[17] showed that GBM is equivalent to Euler’s equation for the case for 
the case where one of the variables does not appear explicitly in the 
functional and given that it is applied without knowing the Euler’s the-

ory is a good method for practical purposes.

The rest of the paper is organized as follows. In Subsection 1.2, a 
brief review of the basic idea of variational problems with fixed bound-

ary conditions is provided. Subsection 1.3 provides the most relevant 
results of variational problems with variable endpoint conditions. Ad-

ditionally, Section 2 presents the basic idea of Generalized Bernoulli 
Method (GBM). Besides, the original contributions of this work are 
presented in Section 3. While Section 4, exposes the methodology em-

ployed in this article. Section 5 applies the ideas and methodologies 
explained in the above sections, by solving in detail five cases study. 
Section 6 provides a detailed discussion of the issues addressed in this 
work. Finally, the conclusions of the relevant issues studied in this arti-

cle, as well as the proposal of future works are given in Section 7.

1.2. Fixed boundary conditions

The problem of fixed boundary conditions consists in extremizing 
integrals of the form.

𝑆[𝑦] =

𝑥2

∫
𝑥1

𝑓 (𝑥, 𝑦, 𝑦′)𝑑𝑥, (1)

where the coordinates of the endpoints remain fixed.

The goal is finding a function 𝑦(𝑥), which satisfies the boundary con-

ditions; and maximizes or minimizes (1) (although this article mainly 
deals with moving boundary conditions problems, the case study 2 deals 
partially with functionals as (1) (see (51)).

A simple example of application would be regarding the problem of 
finding the curve of shortest length joining two given points. For this 
case (1) adopts the form

𝑆[𝑦] =

𝑥2

∫
𝑥1

√
1 + 𝑦′ 2𝑑𝑥, (2)

that is

𝑓 (𝑥, 𝑦, 𝑦′) =
√
1 + 𝑦′ 2. (3)

Although the intuitive answer for this problem is a straight line be-

tween the proposed points, there exist many cases by which the answer 
is not so obvious. For example, the Brachistochrone problem which is 
considered as the antecedent to the calculus of variations. This problem 
involves finding the vertical curve, without friction, that joins two fixed 
points through which a particle slides in the shortest time [1, 2, 5, 17, 
18].

It is possible to show that the integral which has to be minimized 
for this case is

𝑆[𝑦] =

𝑥2

∫
√
1 + 𝑦′ 2√
2𝑔𝑦

𝑑𝑥, (4)
𝑥1

2

where 𝑔 is the acceleration of gravity.

Thus, the function 𝑓 for this problem adopts the form

𝑓 (𝑥, 𝑦, 𝑦′) =
√
1 + 𝑦′ 2√
2𝑔𝑦

. (5)

The systematic way to find a function which extremizes a functional 
like (1) is through the Euler equation of the calculus of variations [1, 2, 
5].

𝑑

𝑑𝑥

(
𝜕𝑓

𝜕𝑦′

)
−
(
𝜕𝑓

𝜕𝑦

)
= 0. (6)

However, there exist some relevant particular cases of this equation.

If the variable 𝑦 does not appear explicitly in function 𝑓 , (6) adopts 
the form [1, 2, 5]

𝑑

𝑑𝑥

(
𝜕𝑓

𝜕𝑦′

)
= 0, (7)

or

𝜕𝑓

𝜕𝑦′
= 𝑐, (8)

where 𝑐 is a constant of integration.

If 𝑓 does not depend explicitly on 𝑥, then (6) is expressed as

𝑦′
𝜕𝑓

𝜕𝑦′
− 𝑓 = 𝑘, (9)

for some integration constant k.

A relevant fact is that these alternative forms of Euler equation are 
expressed in terms of conserved quantities.

1.3. Variable endpoint conditions

In the previous subsection, we mentioned problems in which both 
boundary conditions are specified; nevertheless, there are variational 
problems where is required to determine one or more boundary con-

ditions as part of the sought solution. Next, we summarize the basic 
elements about the conditions of transversality which will provide the 
way to determine the unknown boundary points in the Euler formalism.

To understand the idea of these problems, suppose that it is pro-

posed a variational problem where one of the boundaries remains fixed 
and the other is at some point of a known curve. Then, the solution 
of the Euler equation that joins different end points with the fixed one 
will yield in different extreme values for the functional that defines the 
problem. To a large extent, the problem would be determining the right 
terminal point.

Assuming that it is required to extremize (1) with the condition 
that endpoints are constrained on two curves, then the most general 
transversality conditions that can be employed in order to determine 
the unknown end points (𝑎, 𝑦𝑎) and (𝑏, 𝑦𝑏) are given by [2, 5][(

𝑓 − 𝑦′
𝜕𝑓

𝜕𝑦′

)
𝛿𝑣𝑥+

(
𝜕𝑓

𝜕𝑦′

)
𝛿𝑣𝑦

]
𝑥=𝑎

= 0, (10)[(
𝑓 − 𝑦′

𝜕𝑓

𝜕𝑦′

)
𝛿𝑣𝑥+

(
𝜕𝑓

𝜕𝑦′

)
𝛿𝑣𝑦

]
𝑥=𝑏

= 0, (11)

where 𝛿𝑣𝑥 and 𝛿𝑣𝑦 denote the variation in 𝑥 and 𝑦 along the boundary 
curve [2, 5].

Of course, in the case where one of the boundaries is fixed and 
the other unspecified, then we will only use any of the previous con-

ditions. For sake of simplicity, in most of our case studies, we will 
assume that for example the left boundary condition is specified and 
the right boundary condition remains undetermined; therefore, some 
particular cases of (11) will be considered below (for the case where 
the left boundary is unspecified and the right is fixed, the correspond-

ing transversality condition would be obtained identically).

If the boundary point (𝑏, 𝑦𝑏) can be shifted on the horizontal straight 
𝑦 = 𝑦𝑏, then 𝛿𝑣𝑦 = 0 and the transversality condition (11) would adopt 
the simpler form
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[(
𝑓 − 𝑦′

𝜕𝑓

𝜕𝑦′

)]
𝑥=𝑏

= 0, (12)

whereas if moving boundary is on a vertical line 𝑥 = 𝑥𝑏, then 𝛿𝑣𝑥 = 0
and transversality condition (11) would become in[(

𝜕𝑓

𝜕𝑦′

)]
𝑥=𝑏

= 0. (13)

2. Basic idea of GBM method

Next, we present the basic ideas behind the GBM method, [17] in 
order to use it directly to write the Euler equation using a systematic 
procedure based on elementary calculus without resorting to the known 
Euler formalism. Later on, we will explain the novelties of this work in 
relation to GBM and other aspects.

[17] proposed a generalization of the Bernoulli’s solution of the 
brachistochrone problem (GBM method) and resulted that such method-

ology allows finding directly the Euler-Lagrange equation without re-

sorting to know Euler’s formalism of calculus of variations for the case 
where one of the variables do not appear explicitly in the functional 
(cyclic variable). For example, the method would be useful for the case 
of problems such as (2) and (4). In the first case, both variables 𝑥 and 
𝑦 are absent, while (5) does not depend explicitly on 𝑥. Therefore, the 
differential equations provided by GBM method correspond to the cases 
indicated above with (8) and (9).

Although [17] explains in detail how GBM works, next we provide 
a brief summary of the steps that should be followed.

Assuming for example integrals of the form

𝑥2

∫
𝑥1

𝑓 (𝑦, 𝑦′)𝑑𝑥. (14)

GBM procedure is expressed as follows.

Step 1. Express the integrand of (14) in terms of increments (substi-

tuting x differential as a differential).

Step 2. Differentiate the expression resulting from the previous step 
with respect to 𝛿𝑥, rewriting in terms of 𝛿𝑦∕𝛿𝑥 ratio and equating to a 
constant.

Step 3. Consider the limit 𝛿𝑥 → 0 to the expression obtained in the 
previous step in order to obtain the Euler equation of the problem. As a 
matter of fact, these steps will be shown frequently in the case studies 
proposed in this paper in order to show in detail the GBM methodology.

At this time it is convenient to mention that [17] showed the per-

formance of GBM through several case studies. Another novelty of this 
work is that it presents a general demonstration which, as will be seen 
below, does not require solving particular cases.

3. Original contributions of this work

In order to achieve the objectives of this work it was necessary to 
propose some novelties, which will be explained below.

3.1. Formal justification of why GBM works to find the Euler equation in 
some relevant cases

Next we will deduce (9) by using GBM. With that purpose we start 
directly of (14).

In accordance with GBM, considering the integrand from (14) in 
terms of increments

𝑓

(
𝑦,
𝛿𝑦

𝛿𝑥

)
𝛿𝑥, (15)

where we have introduced the notation for increments adopted in [17].

Since the last expression is not an explicit function of 𝑥, we differ-

entiate (15) with respect to 𝛿𝑥 and finally we will equate the result to a 
constant, thus
3

𝑑𝑓

(
𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑥)
= 𝑓

(
𝑦,
𝛿𝑦

𝛿𝑥

)
+ 𝛿𝑥

(
− 𝛿𝑦

(𝛿𝑥)2

)
𝑓𝑦′

(
𝑦,
𝛿𝑦

𝛿𝑥

)
, (16)

we note that in the previous step we use the chain rule.

Simplifying (16) we get

𝑑𝑓

(
𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑥)
= 𝑓

(
𝑦,
𝛿𝑦

𝛿𝑥

)
−
(
𝛿𝑦

𝛿𝑥

)
𝑓𝑦′

(
𝑦,
𝛿𝑦

𝛿𝑥

)
. (17)

Following GBM method, we take the limit as 𝛿𝑥 → 0 in such a way that 
the right hand side of (17) adopts the form.

𝑓

(
𝑦,
𝛿𝑦

𝛿𝑥

)
−
(
𝛿𝑦

𝛿𝑥

)
𝑓𝑦′

(
𝑦,
𝛿𝑦

𝛿𝑥

)
→ 𝑓

(
𝑦, 𝑦′

)
− 𝑦′𝑓𝑦′ (𝑦, 𝑦′). (18)

Finally, equating to a constant 𝑐′, the expression after the arrow 
adopts the form

𝑦′
𝜕𝑓

𝜕𝑦′
− 𝑓 = 𝑐, (19)

where 𝑐 = −𝑐′ and we adopted a simplified functional notation.

Of course (19) is the Euler equation (9) for the case where f does not 
depend explicitly on 𝑥.

Next, we will find (8) by using GBM.

We start directly from

𝑥2

∫
𝑥1

𝑓 (𝑥, 𝑦′)𝑑𝑥. (20)

Following GBM algorithm, the integrand of (20) in terms of incre-

ments is given by

𝑓

(
𝑥,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥. (21)

Since the last expression is not an explicit function of 𝑦, we will 
differentiate (21) with respect to 𝛿𝑦 and finally we will equate the result 
to a constant, in such a way that

𝑑𝑓

(
𝑥,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑦)
= 𝛿𝑥

(
1

(𝛿𝑥)

)
𝑓𝑦′

(
𝑥,

𝛿𝑦

𝛿𝑥

)
, (22)

or

𝑑𝑓

(
𝑥,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑦)
= 𝑓𝑦′

(
𝑥,

𝛿𝑦

𝛿𝑥

)
. (23)

Following GBM method, we take the limit as 𝛿𝑥 → 0 so that the right 
hand side of (23) adopts the form.

𝑓𝑦′

(
𝑥,

𝛿𝑦

𝛿𝑥

)
→ 𝑓𝑦′ (𝑥, 𝑦′). (24)

Therefore, in accordance with GBM, we equate to a constant 𝑐′, the 
expression after the arrow in such a way that

𝜕𝑓

𝜕𝑦′
= 𝑐, (25)

where 𝑐 = −𝑐′.
(25) is the Euler equation (8) for the case where 𝑓 does not depend 

explicitly on 𝑦.

3.2. Proposal for the solution of variational problems with moving 
boundary conditions without employing transversality conditions

MWTC method. As far as we know, the only way to solve problems 
with variable end points is by using the Euler formalism to determinate 
both, the Euler differential equation and the transversality conditions. 
This paper proposes two methodologies as an alternative way of solving 
this type of problems but without resorting to Euler’s known formalism, 
as already explained. We will see that the Moving Boundary Condi-

tions Without Employing Transversality Conditions (MWTC) method 
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proposes to replace transversality conditions for a simple but effective 
idea; substituting the solution of the obtained Euler equation (either ex-

act or approximate) in the functional (see Section 4). An advantage of 
this procedure is that it is direct and systematic. Besides, when GBM is 
used also to find the Euler equation, the procedure offers the possibility 
of finding a solution to the problem without resorting to Euler’s for-

malism at all (for instance, the first method does not even employ the 
concept of transversality anywhere in the process). It turns out that this 
method is not always applicable because the integral resulting from the 
aforementioned substitution process is not always soluble. However, we 
will see that when the method works, it is possible to resort to elemen-

tary differential calculus methods to obtain the solution of the proposed 
problem. In a sequence, also is possible to obtain, by using elementary 
methods (unlike the methodologies that employ the transversality con-

ditions), the maximum or minimum character of the obtained solution.

3.3. Relation of GBM method with transversality conditions

METC method. Unlike MWTC, we will see that the Moving Boundary 
Condition Employing Transversality Conditions (METC) just like Euler 
formalism also determines the conditions of transversality, but in a dif-

ferent way. It turns out that GBM besides being useful to find Euler’s 
equation of the problem also it will result appropriate to determine the 
transversality conditions. It is noteworthy to mention that the proce-

dure followed is essentially the same employed for GBM in order to 
find the Euler equation from the functional integral. As a matter of fact, 
this practical extension of GBM method is another of the novel contri-

butions of this work. In order to understand this new GBM application 
we compare the conditions of transversality expressed from the point of 
view of the Euler formalism (12) and (13) with the corresponding re-

sults (19) and (25) obtained for GBM in order to obtain Euler equations. 
From the expressions between brackets and the left hand side of equa-

tions (19) and (25) we note that it is possible to extend the application 
of GBM in order to find the conditions of transversality. However, it is 
necessary to mention at this point a formal difference regarding this re-

mark that does not affect the GBM applications in practice. As it was 
mentioned already, the GBM application to find the Euler equation re-

quires that one of the variables 𝑥 or 𝑦 do not explicitly appear in the 
functional (1) while to transversality conditions (10)–(13) such require-

ments are not imposed. The above means that it is possible to apply 
GBM to find such transversality conditions even when the integrand of 
(1) depends on all the variables 𝑓 (𝑥, 𝑦, 𝑦′). From a formal point of view, 
it means we could repeat the GBM procedure presented in (14)–(25)

even with 𝑓 = 𝑓 (𝑥, 𝑦, 𝑦′). From the above, it is important to remark, that 
although the application of GBM to find the Euler equation is restricted 
to the cases already mentioned (14) and (20), its application to find the 
conditions of transversality is completely general. Thus, it is possible 
to write the conditions of transversality (10) and (11) in terms of GBM 
algorithm as follows

⎡⎢⎢⎢⎣
𝑑𝑓

(
𝑥, 𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑥)
𝛿𝑣𝑥+

𝑑𝑓

(
𝑥, 𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑦)
𝛿𝑣𝑦

⎤⎥⎥⎥⎦𝑥=𝑎
= 0, (26)

⎡⎢⎢⎢⎣
𝑑𝑓

(
𝑥, 𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑥)
𝛿𝑣𝑥+

𝑑𝑓

(
𝑥, 𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑦)
𝛿𝑣𝑦

⎤⎥⎥⎥⎦𝑥=𝑏
= 0, (27)

where 𝛿𝑣𝑥 and 𝛿𝑣𝑦 denote again the variation in 𝑥 and 𝑦 along the 
boundary curve.

Following variational theory, for the case where 𝛿𝑣𝑥 and 𝛿𝑣𝑦 are 
dependent, then, assuming that for instance, the right boundary point 
(𝑏, 𝑦𝑏) can move through the curve 𝑦𝑏 = 𝑓 (𝑏) then, 𝛿𝑣𝑦𝑏 = 𝑓 ′(𝑏)𝛿𝑣𝑥𝑏.

Substituting this last result into (27) and considering that 𝛿𝑣𝑥𝑏 varies 
arbitrarily, the transversality condition is easily obtained (see case stud-

ies 3, 4, 5).
4

It is important to remark that in practice the mentioned expressions 
are easy to recall; The result from deriving with respect to 𝛿𝑥 is multi-

plied by 𝛿𝑣𝑥 and the result obtained from deriving with respect to 𝛿𝑦 is 
multiplied by 𝛿𝑣𝑦.

For the case where one of the boundaries is fixed and the other un-

specified, we would use only one of the previous conditions. Such as it 
was mentioned before, we will assume that for example, the left bound-

ary condition is specified and the right boundary condition remains 
undetermined, therefore we will require consider particular cases of 
(11). For the case where the left boundary is unspecified and the right 
is fixed, the corresponding transversality conditions would be obtained 
identically.

If the boundary point (𝑏, 𝑦𝑏) can be shifted on the horizontal straight 
line 𝑦 = 𝑦𝑏, then 𝛿𝑣𝑦 = 0 and the transversality condition (27) adopts the 
form

⎡⎢⎢⎢⎣
𝑑𝑓

(
𝑥, 𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑥)

⎤⎥⎥⎥⎦𝑥=𝑏
= 0, (28)

whereas if the moving boundary is on a vertical line 𝑥 = 𝑥𝑏, then 𝛿𝑣𝑥 = 0
and transversality condition (27) becomes in

⎡⎢⎢⎢⎣
𝑑𝑓

(
𝑥, 𝑦,

𝛿𝑦

𝛿𝑥

)
𝛿𝑥

𝑑(𝛿𝑦)

⎤⎥⎥⎥⎦𝑥=𝑏
= 0. (29)

Note the symmetry of the previous equations.

In practice, it is easy to remember (28) and (29) cases. On one hand, 
if boundary point is on a horizontal straight line, then in order to obtain 
the transversality condition, differentiate with respect to 𝛿𝑥. On the 
other hand, if boundary point is on a vertical straight line, then to obtain 
the transversality condition differentiate with respect to 𝛿𝑦.

4. Methodology

As mentioned earlier, this article proposes two methods or proce-

dures in order to expose and solve some variational problems with 
moving boundaries, without resorting to Euler formalism, by using a 
direct methodology based on elementary operations.

Both methods are distinguished in the way of determining the un-

known end point, in fact, despite the practical advantages of the first 
method which does not consider the notion of transversality condition 
at all; its implementation is more direct but its application is not always 
possible (see subsection 3.2), and for these cases method 2 could be 
used, which employs the known transversality conditions, but starting 
from GBM to find them easily. Once that Euler equation and transver-

sality condition are known by using GBM, the rest of the problem is 
performed in the same way as known Euler procedure (see Section 1.1).

MWTC method. This article takes advantage of the practical nature 
of GBM method previously explained, in order to obtain the Euler-

Lagrange equation in an elementary and systematic way. Subsequently, 
instead of calculating transversality conditions, the proposal of this 
work consists in substituting the solution of the obtained equation (ei-

ther exact or approximate) into the functional integral. From the point 
of view of this proposal, it can be considered that the former process is 
done in two stages. The first extremization occurs when Euler-Lagrange 
equation is obtained and solved. It results that, given two points, its so-

lution passing through them corresponds to the curve that extremizes 
functional 𝑆 for these points. Now suppose, to exemplify, that the right 
end point can move along a known curve in such a way that the coor-

dinates of that boundary are not determined until this moment. Then, 
it is required to re-extremize 𝑆, that is, to determine which is the curve 
that extremizes 𝑆 of all the curves that start from the same point and 
end on the aforementioned curve. Since the solution to the Euler equa-
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tion will depend at least on one of the coordinates of the unknown end; 
then, by replacing it in 𝑆 and after integrating, it will be possible to ex-

press functional 𝑆 in terms of some unknown parameters of the problem 
to be determined. In order to express it in terms of a single parameter 
(for the case of one variable end point), we will resort the fact that the 
extremal and boundary curves must intersect at the point required to 
find.

In this way, it is possible to resort to elementary differential calculus 
methods to identify the value of the aforementioned parameters, among 
them, the value of the unknown coordinate. Although we proposed for 
sake of simplicity to solve problems mostly with only one variable end 
point, the final problem will exemplify the methodology for a problem 
of two moving end points (in this case is possible to express 𝑆 in terms 
of just two parameters). A remarkable fact is that in cases where this 
method can be applied it is possible to obtain, with relative ease (unlike 
the methodology that uses the transversality conditions), the maximum 
or minimum character of the obtained solution.

With the end to ease the understanding of MWTC method, we re-

sume the above in the following steps:

1. – Employ GBM in order to obtain Euler equation.

2. – Substitute the solution of Euler equation (exact or approximate) 
into the functional integral 𝑆 that defines the variational problem.

3. – Perform the integration indicated in the previous step to express 
𝑆 as a common function of some unknown parameters.

4. – Employ the condition that the extremal and boundary curves are 
intersected at the points required to be found by the problem, in order 
to get mathematical expressions among the mentioned parameters.

5. – Use the equations deduced in the above point in order to express 
𝑆 in terms of one (or two) parameters.

6. – Obtain the critical points of 𝑆, to identify the values of the 
parameters.

7. – Resort to elementary differential calculus to determinate if the 
aforementioned parameters maximize or minimize the value of 𝑆.

8. – Finally we employ this information to identify the extremal(s) 
of the problem.

METC method. This method starts again by obtaining the Euler-

Lagrange equation through the GBM method. Unlike method 1, and as it 
is done by using Euler’s known formalism, method 2 also determines the 
conditions of transversality, but it turns out that, as mentioned above, 
GBM is appropriate not only to find Euler’s equation of the problem but 
also to determine, employing essentially the same procedure explained 
in [17], the transversality conditions. As a matter of fact, this is a prac-

tical extension of the utility of GBM, and as it was already mentioned is 
one of the novel contributions of this work. When comparing the con-

ditions of transversality expressed from the point of view of the Euler 
formalism (10), (11) with the corresponding (26) and (27) of this work, 
it is clear that in the proposed form, they are more symmetrical and sim-

pler to apply and recall, it is sufficient differentiating with respect to the 
corresponding increment, depending on the case study and after the in-

crements quotient form is recovered, such as it was already explained. 
Once the differential equation and the conditions of transversality of 
the problem are established, what remains is to proceed in the usual 
way (see Section 1.1) as it is done using Euler’s formalism in order to 
obtain the solution [2, 5].

Next, we resume METC method as follows:

1. – Employ GBM in order to obtain Euler equation.

2. – We employ again GBM method, in order to determinate the 
transversality conditions of the problem.

3. – The equation of Euler, the conditions of transversality and other 
possible conditions that could arise if one of the boundaries is fixed, 
determine a problem of boundary conditions to solve.

4. – The solution of this problem provides an exact or approximate 
solution to the propose problem (see case studies 3–5).
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5. Applications

Next, we will apply the ideas and methodologies explained in the 
above sections with as much detail as possible, according to the idea of 
this work, but without resorting at all to the known formalism of Euler 
(Subsections 1.1, 1.2, 1.3).

Example 1. Finding the extremum for functional [5].

𝑆[𝑦] =

𝑥0

∫
0

(
1 + 𝑦′ 2

)
𝑑𝑥, (30)

subject to boundary condition

𝑦(0) = 0, (31)

and where the right end point can move along the curve

𝑦(𝑥) = 1∕𝑥. (32)

We will employ the first methodology explained in Section 4.

WTC method. In accordance with GBM [17]:

Step 1. We express the integrand in terms of increments.(
1 +

(
𝛿𝑦

𝛿𝑥

)2
)
𝛿𝑥→ 𝛿𝑥+ (𝛿𝑦)2

𝛿𝑥
. (33)

Step 2. Since the integrand does not depend explicitly neither on 𝑥 nor 
on 𝑦, we could differentiate (33) irrespectively respect to 𝛿𝑥 or 𝛿𝑦.

Differentiating respect to 𝛿𝑦, rewriting in terms of 𝛿𝑦∕𝛿𝑥, and equat-

ing to a constant 𝑐, we obtain

𝛿𝑦

𝛿𝑥
= 𝑐. (34)

Step 3. Considering 𝛿𝑥 → 0, (34) adopts the form

𝑦′(𝑥) = 𝑐, (35)

this is the differential equation for extrema.

After separating variables and integrating, the solution of elemen-

tary differential equation (35) is expressed as

𝑦 = 𝑐𝑥+ 𝑏, (36)

where 𝑐, is an integration constant; thus the extrema are straight lines.

Taking up the boundary condition (31), then 𝑏 = 0, and (36) adopts 
the form

𝑦 = 𝑐𝑥, (37)

therefore, the derivative of (37) results

𝑦′ = 𝑐. (38)

In accordance with the method 1, we substitute (38) into (30) to get

𝑆(𝑐, 𝑥0) =

𝑥0

∫
0

(
1 + 𝑐2

)
𝑑𝑥, (39)

where we have already considered that functional 𝑆 is from here on a 
function of parameter 𝑐 and the abscissa of the right end point 𝑥0.

After evaluating (39), it is obtained

𝑆(𝑐, 𝑥0) =
(
1 + 𝑐2

) 𝑥0

∫
0

𝑑𝑥 =
(
1 + 𝑐2

)
𝑥0. (40)

Since the aim is to extremize the value of (40), then we require to 
express 𝑆 in terms of just one parameter. For that purpose we note that 
the extremal and boundary curves must intersect at the point 𝑥0.
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Thus, from (32) and (37) we get

𝑐𝑥0 =
1
𝑥0

, (41)

or

𝑐 = 1
𝑥20

. (42)

Substituting (42) into (40) it is obtained

𝑆(𝑥0) =

(
1 + 1

𝑥40

)
𝑥0. (43)

The value of 𝑥0 which extremizes the value of (43) is obtained, differ-

entiating (43) and solving the equation 𝑆′ = 0, to obtain

𝑆′(𝑥0) = 1 − 3
𝑥40

= 0, (44)

or

𝑥0 = 31∕4. (45)

Besides, from the substitution of (45) into second derivative of (43)

𝑆′′(𝑥0) = 12∕𝑥50, we conclude that

𝑆′′(31∕4) > 0. (46)

For the elementary criterion of second derivative for functions of one 
independent variable, we conclude the critical value (45) corresponds 
to a relative minimum of (43).

Substitution of (45) into (42) yields in

𝑐 = 1√
3
. (47)

Thus, from (37) and (47), the extremal function sought is

𝑦(𝑥) = 𝑥√
3
. (48)

Finally, the extremum value of 𝑆 is obtained from the substitution of 
(45) into (43)

𝑆 = 4
33∕4

. (49)

What is more, since (43) has only one critical point, then (49) is also an 
absolute minimum [19].

[5] solved this example by using Euler equation (8) and transver-

sality condition (11) obtaining (48), but without determining if this 
maximizes or minimizes (30).

Example 2. This case study analyzes from the point of view of calculus 
of variations with variable endpoint conditions, a typical problem of 
mechanics. A cannon fires its projectiles with speed 𝑉0 directly on the 
slope of a hill with angle of inclination 𝛽, as shown in Fig. 1. Neglecting 
air resistance, what angle 𝜃 should the cannon form with respect to the 
horizontal so that its shots have the greatest distance traveled 𝑅 on the 
slope of the hill?

In this case study, we will use the first method already explained in 
Section 4.

With the end of emphasize the usefulness of GBM, in place of writing 
directly the equation of motion, which is simple because in accordance 
with the hypothesis, the only force acting on the particle is the force 
of gravity, we will resort to the Lagrangian formulation for the conser-

vative mechanical system, consisting of a particle of mass 𝑚 and speed 

𝑉 =
√

(�̇�)2 + (�̇�)2 where we denote �̇� = 𝑑𝑥∕𝑑𝑡, �̇� = 𝑑𝑦∕𝑑𝑡, and subject to 
the action of the force of gravity.

The functional for this case is the action integral, which is expressed 
in terms of the Lagrangian function
6

Fig. 1. A cannon fires its projectiles with speed 𝑉0 , with angle 𝜃, directly on the 
slope of a hill with angle of inclination 𝛽.

𝐿 =𝑚∕2
(
�̇�2 + �̇�2

)
− 𝑉 (𝑦), (50)

as follows [18].

𝑆[𝑦] =

𝑡0

∫
0

(
𝑚

2
(�̇�2 + �̇�2) − 𝑉 (𝑦)

)
𝑑𝑡, (51)

where 𝑉 (𝑦) is identified as the potential energy, which for this problem 
is given by

𝑉 (𝑦) =𝑚𝑔𝑦 (52)

and 𝑇 =𝑚∕2 
(
�̇�2 + �̇�2

)
is the kinetic energy (see Fig. 1).

Since Lagrangian function is not an explicit function of 𝑡, then GBM 
provides a known first integral of motion as follows [17, 18].

Step 1. We express the integrand of (51) (that is, the Lagrangian) in 
terms of increments (including the differential of 𝑡)

𝑚

2

((
𝛿𝑥

𝛿𝑡

)2
+
(
𝛿𝑦

𝛿𝑡

)2
)
𝛿𝑡−𝑚𝑔𝑦𝛿𝑡→

𝑚

2

(
(𝛿𝑥)
𝛿𝑡

2
+ (𝛿𝑦)

𝛿𝑡

2)
−𝑚𝑔𝑦𝛿𝑡 (53)

Step 2. Since the integrand does not depend explicitly on 𝑡, then we dif-

ferentiate (53) respect to 𝛿𝑡, to obtain, after some elementary algebraic 
arrangements, and equating to a constant 𝑐.

𝑚

2

((
𝛿𝑥

𝛿𝑡

)2
+
(
𝛿𝑦

𝛿𝑡

)2
)

+𝑚𝑔𝑦 = −𝑐 =𝐸. (54)

Step 3. Considering the limit 𝛿𝑡 → 0, (54) adopts the form

𝑚

2

[(
𝑑𝑥

𝑑𝑡

)2
+
(
𝑑𝑦

𝑑𝑡

)2
]
+𝑚𝑔𝑦 =𝐸, (55)

or

𝑚𝑉 2

2
+𝑚𝑔𝑦 =𝐸. (56)

In the last expression 𝐸 denotes the mechanical energy of the system, 
which for this case is constant.

On the other hand, since the integrand of (51) does not depend 
explicitly on 𝑥, we obtain in the same way, after differentiating (53)

respect to 𝛿𝑥, and equating to a constant 𝑃 .

𝑚

(
𝛿𝑥

𝛿𝑡

)
= 𝑃 . (57)

Considering the limit 𝛿𝑡 → 0, (57) adopts the form

𝑚
𝑑𝑥

𝑑𝑡
= 𝑃 . (58)

(58) expresses the conservation of 𝑥 component of momentum, and for 
the same reason, that 𝑑𝑥∕𝑑𝑡 is a constant.
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In order to obtain the equation of motion, we differentiate (55) with 
respect to time, to get

𝑚

(
𝑑𝑦

𝑑𝑡

)(
𝑑2𝑦

𝑑𝑡2

)
+𝑚𝑔

(
𝑑𝑦

𝑑𝑡

)
= 0, (59)

or(
𝑑2𝑦

𝑑𝑡2

)
= −𝑔, (60)

after we take into account that 𝑑𝑥∕𝑑𝑡 is a constant (see (58)).

The integration of (58) yields immediately to

𝑥(𝑡) = 𝑉0 cos𝜃𝑡, (61)

where

𝑉0 cos𝜃 = 𝑃∕𝑚. (62)

In the same way, integrating twice (60)

𝑦(𝑡) = 𝑉0𝑠𝑒𝑛𝜃𝑡−
1
2
𝑔𝑡2. (63)

By eliminating the time between (61) and (63) we get immediately

𝑦 = 𝑥 tan𝜃 − 𝑔𝑥2

2𝑉 2
0 cos2 𝜃

. (64)

It is the well-known equation of the parabola, for this problem [20, 21, 
22].

Since, we are seeking the greatest traveled distance on the slope of 
the hill, then our strategy will be to find the maximum value of distance 
on the slope.

As it is well known, the problem of calculating the distance between 
two points is equivalent to find the shortest curve joining the mentioned 
points. For it is necessary to minimize the functional integral.

𝑅[𝑦] =

𝑥0

∫
0

√
1 + 𝑦′ 2(𝑥)𝑑𝑥. (65)

Next we will employ GBM to get the differential equation that has to be 
satisfied for a function 𝑦(𝑥) in order to extremize (65).

Step 1. We express the integrand of (65) in terms of increments.√√√√(
1 +

(
𝛿𝑦

𝛿𝑥

)2
)
𝛿𝑥→

√
𝛿𝑥2 + 𝛿𝑦2. (66)

Step 2. Again, as in the case of the previous example, the integrand does 
not depend explicitly neither on 𝑥 nor on 𝑦, thus we could differentiate 
(66) irrespectively respect to 𝛿𝑥 or 𝛿𝑦.

Differentiating (66) respect to 𝛿𝑦, rewriting in terms of 𝛿𝑦∕𝛿𝑥, and 
equating to a constant 𝑘, we obtain

𝛿𝑦∕𝛿𝑥√(
1 +

(
𝛿𝑦

𝛿𝑥

)2
) = 𝑘 (67)

Step 3. Considering 𝛿𝑥 → 0, (67) adopts the form

𝑦′(𝑥)√(
1 + 𝑦′(𝑥)2

) = 𝑘, (68)

this is the differential equation for extrema.

It is clear that (68) can be expressed as

𝑦′ = 𝑎, (69)

where 𝑎 = 𝑡𝑎𝑛𝛽 (see Fig. 1).

In order to solve (69), we separate variables and integrate; to obtain

𝑦 = 𝑎𝑥+ 𝑑, (70)
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where 𝑑, is an integration constant; thus we get the expected result; the 
extrema are straight lines.

From the Fig. 1, it is clear that 𝑑 = 0, and (70) adopts the form:

𝑦 = 𝑎𝑥, (71)

(the straight lines from the origin to (𝑥0, 𝑦0) on the hill).

Besides, the derivative of (71) results in

𝑦′ = 𝑎. (72)

Next, MWTC method will be applied.

Following the algorithm MWTC, we substitute (72) into (65) to get

𝑅(𝑥0) =

𝑥0

∫
0

√(
1 + 𝑎2

)
𝑑𝑥, (73)

where we have explicitly recognized that the functional 𝑅 is from here 
on a function of parameter 𝑎 and the abscissa of the right end point 𝑥0.

After evaluating (73) it is obtained

𝑅(𝑥0) =
√
1 + 𝑎2𝑥0. (74)

Since the parabola and the slope of the hill must intersect at the above 
mentioned point 𝑥0, from (64) and (71) we obtain

𝛼𝑥0 − 𝛽𝑥20 = 𝑎𝑥0, (75)

where

𝛼 = tan𝜃, 𝛽 = 𝑔

2𝑉 2
0 cos2 𝜃

. (76)

Solving for 𝑥0 we get

𝑥0 =
𝛼 − 𝑎

𝛽
, (77)

thus, from (74) and (77), it is obtained

𝑅(𝜃) =
√
1 + 𝑎2

(
𝛼 − 𝑎

𝛽

)
=
√
1 + 𝑎2

(
2𝑉 2

0 cos2 𝜃 tan𝜃 − 2𝑎𝑉 2
0 cos2 𝜃

𝑔

)
.

(78)

The value of 𝜃 which extremizes the value of (78) is obtained differen-

tiating (78) and solving the equation 𝑅′ = 0, to obtain.

1 − 2sin2 𝜃 + 2𝑎 sin𝜃 cos𝜃 = 0. (79)

In order to get an equation which contains only sin𝜃, we employ the 
known identity cos2 𝜃 = 1 − 𝑠𝑒𝑛2𝜃.

Thus, (79) acquires the form

(4 + 4𝑎2) sin4 𝜃 − (4 + 4𝑎2) sin2 𝜃 + 1 = 0, (80)

utilizing the substitution 𝑢 = 𝑠𝑒𝑛2𝜃, the solution of (80) can be expressed 
as

sin𝜃 =

√√√√√
4 + 4𝑎2 + 2𝑎

2
√
4 + 4𝑎2

. (81)

Applying again the criterion of second derivative of the elementary 
calculus with the purpose of determining the character of the obtained 
critical value would be rather cumbersome for this case; nevertheless, 
it is clear that (81) corresponds to a maximum. We note from (78) that 
the minimum would have corresponded to 𝜃 = 𝜋∕2 and 𝜃 = 𝛽 (since 
𝑎 = tan𝛽). Furthermore (81) adopts known value for the largest trav-

eled distance corresponding to a horizontal terrain in the limit 𝑎 → 0; 
𝜃→ 𝜋∕4. Thus, the result obtained is consistent for this limit case [21]. 
As the interval of interest 𝜃 ∈ [𝛽, 𝜋∕2], then, strictly this problem is one 
of the absolute extrema [20]. Nevertheless, since (78) is a non-negative 
function and 𝑅(𝛽) =𝑅(𝜋∕2) = 0, then the critical value (81) corresponds 
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to extrema of (78), which is indeed, a maximum. Therefore, the use of 
the criterion of second derivative resulted equivalent to consider the 
open interval (𝛽, 𝜋∕2) since the mentioned criterion is applied for rel-

ative extrema, and as discussed above, this is indeed correct for this 
case.

Example 3. This case study presents an example of economics, the 
Ramsey growth model. Next, it is provided a basic explanation of this 
model [23]. We assume the production of a homogeneous product 𝑌
requires the investments of an amount of capital 𝐾 . Disregarding the 
dependence of 𝑌 on other values, then the production is only a function 
of the capital, that is to say.

𝑌 = 𝜙(𝐾). (82)

Of the production 𝑌 a part 𝐷 is consumed, and the remainder 𝐼 = 𝑌 −𝐷, 
is invested in such a way that it gives place to a change in capital, 
therefore.

𝐼 = 𝑑𝐾∕𝑑𝑡. (83)

From the above we deduced that

𝑌 = 𝑑𝐾

𝑑𝑡
+𝐷 = 𝜙(𝐾). (84)

Next, we propose to determine the distribution of consumption and in-

vestment as a function of time 𝑡, in order that total product 𝑣 results 
maximum.

The total product is defined by the integral of the instantaneous 
product 𝑁(𝑡), which in turn depends of the consumption

𝑁(𝑡) =𝑁(𝐷(𝑡)), (85)

that is to say

𝜈 =

𝑡1

∫
𝑡0

𝑁(𝐷(𝑡))𝑑𝑡. (86)

From (84) and (86) we obtain the variational problem

𝜈 =

𝑡1

∫
𝑡0

𝑁

(
𝜙(𝐾(𝑡)) − 𝑑𝐾(𝑡)

𝑑𝑡

)
𝑑𝑡→max . (87)

With the purpose to exemplify, we propose the following simplified 
possibility

𝜙(𝐾) = 𝑏𝐾, (88)

i.e. the production is assumed proportional to capital, and

𝑁(𝐷) = −𝑎
(
𝐷 −𝐶∗)2 , (89)

where 𝐶∗, 𝑎 and 𝑏, are constants (𝑎>0, 𝑏>0).

Thus, after substituting (88) into (87), and considering (89), we get

−𝜈(𝐾) =

𝑡1

∫
𝑡0

𝑎

(
𝑏𝐾(𝑡) − 𝑑𝐾(𝑡)

𝑑𝑡
−𝐶∗

)2
𝑑𝑡→min . (90)

Next, we will express (90) in the form of the following variational prob-

lem

𝐽 [𝐾] =

𝑇

∫
0

𝑎

(
𝑏𝐾(𝑡) − 𝑑𝐾(𝑡)

𝑑𝑡
−𝐶∗

)2
𝑑𝑡, (91)

where we select 𝑡0 = 0.

The capital stock 𝐾(0) at the initial time of the planning period is as-

sumed known and is given by 𝐾(0) =𝐾0. On the other hand, the planner 
will not want to determine how big the capital will be at the time 𝑡 = 𝑇 , 
8

since he is only concerned with maximizing the total benefit. Thus, this 
is an example of a variational problem with variable right end point.

Next, we pick out the following values employed in [24]. That article 
provided an approximate solution for this variational problem by em-

ploying Adomian Decomposition Method. 𝑎 = 𝑏 = 𝐶∗ = 1, 𝑇 = 1, 𝑦0 = 2. 
Thus, (91) adopts the form

𝐽 [𝐾] =

1

∫
0

(
𝐾(𝑡) −𝐾 ′(𝑡) − 1

)2
𝑑𝑡. (92)

This problem has the following exact solution [24]

𝐾(𝑡) = 1 + 𝑒𝑡. (93)

This is relevant because it will allow us to know the accuracy of the 
approximate solutions that we will obtain later (see Table 1).

Next, we will find the corresponding Euler equation of the problem, 
which is necessary for the two proposed methods. This case study will 
get a precise approximate analytical solution for this problem. For that 
purpose, GBM is employed to integrand of (92) (including as usual the 
differential of 𝑡).

Step 1. First, we perform the indicated algebraic operation and after 
it is expressed the integrand in terms of increments.[
𝐾2 +

(
𝛿𝐾

𝛿𝑡

)2
+ 1 − 2𝐾

(
𝛿𝐾

𝛿𝑡

)
− 2𝐾 + 2

(
𝛿𝐾

𝛿𝑡

)]
𝛿𝑡

→𝐾2𝛿𝑡+ (𝛿𝐾)
𝛿𝑡

2
+ 𝛿𝑡− 2𝐾𝛿𝐾 − 2𝐾𝛿𝑡+ 2𝛿𝐾.

(94)

Step 2. Since the integrand of (92) does not depend explicitly on 
𝑡, then in accordance with GBM, we differentiate (94) respect to 𝛿𝑡. 
Thus, differentiating the expression to the right of the arrow, rewriting 
in terms of 𝛿𝐾∕𝛿𝑡, and equating the resulting expression to a constant 𝑐
we obtain

𝐾2 −
(
𝛿𝐾

𝛿𝑡

)2
+ 1 − 2𝐾 = 𝑐. (95)

Step 3. Considering 𝛿𝑡 → 0, (95) adopts the form

𝐾2 −
(
𝐾 ′)2 + 1 − 2𝐾 = 𝑐. (96)

This is the differential equation for extrema.

With the purpose to work with a second order differential equation, 
we differentiate the above equation respect to 𝑡 to get.

𝐾 ′′ −𝐾 + 1 = 0, (97)

subject to 𝐾(0) = 2 (for the case of METC method, it is still required to 
add the conditions of transversality, see below).

We note that unlike (96), differential equation (97) is linear.

MWTC method. Although (97) admits the exact solution (93), the goal 
of this case study is to provide an accurate analytical approximate so-

lution by using a methodology based only in basic integrals with a 
minimum effort. For this purpose we will use Boundary Value Problems 
Picard Method (BVPP) [25], which is a modification of classic Picard 
method employed to obtain approximate solutions for both, linear and 
nonlinear ordinary differential equations, defined with boundary condi-

tions. Other important aspect of this example is that it shows a possible 
way to aboard problems which really don’t possess an exact solution.

In accordance with BVPP [25, 26], we express (97) in terms of the 
following integral equation.

𝐾 = 2 + 𝛼𝑡+∬ (𝐾 − 1)𝑑𝑥𝑑𝑥′, (98)

where 𝛼 denotes the value of 𝐾 ′(0), unknown until now.

The corresponding iterative equation, derived from (98) is expressed 
as [25].
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𝐾𝑛 = 2 + 𝛼𝑡+∬
(
𝐾𝑛−1 − 1

)
𝑑𝑡𝑑𝑡′, (99)

for 𝑛 = 1, 2, 3, … .
It is important at this time to clarify the following. Despite one of 

the advantages of BVPP (unlike the classic Picard method, which is 
employed to solve problems with initial conditions) is that it allows 
to select as trial function polynomials provided with parameters to be 
determined for the same method in order to accelerate the convergence 
of boundary value problems [25]; for sake of simplicity we choose as 
trial function the initial condition of the problem 𝑦0 = 2.

Thus for 𝑛 = 1, (99) adopts the form

𝐾1 = 2 + 𝛼𝑡+∬ 𝑑𝑡𝑑𝑡′,

after integrating twice, we get

𝐾1 = 2 + 𝛼𝑡+ 𝑡2

2
. (100)

In the same way for 𝑛 = 2, we obtain from (99) and (100).

𝐾2 = 2 + 𝛼𝑡+∬
(
𝛼𝑡+ 𝑡2

2
+ 1

)
𝑑𝑡𝑑𝑡′,

after performing the indicated elementary integrations, we get

𝐾2(𝑡) = 2 + 𝛼𝑡+ 𝛼𝑡3

6
+ 𝑡4

24
+ 𝑡2

2
. (101)

Assuming that second iteration is sufficient (note the ease of the 
process that led to (101)) then in accordance with the first method, we 
have to substitute (101) into (92) with the purpose to determine the 
value of 𝛼 that extremizes (92). In order to ease this procedure we note 
by simple differentiation that the integrand of (92) can be rewritten as 
follows.

(
𝐾(𝑡) −𝐾 ′(𝑡) − 1

)2 =𝐾 ′ 2(𝑡) + 2𝐾2(𝑡) − 2𝐾(𝑡) +
𝑑
(
2𝐾(𝑡) + 𝑡−𝐾2(𝑡)

)
𝑑𝑡

,

(102)

so, after substituting (102) into (92), we obtain.

𝐽 [𝐾] =

1

∫
0

(𝐾 ′ 2(𝑡) +𝐾2(𝑡) − 2𝐾(𝑡))𝑑𝑡+
[
2𝐾(𝑡) + 𝑡−𝐾2(𝑡)

]1
0 , (103)

or

𝐽 [𝐾] =

1

∫
0

(𝐾 ′ 2(𝑡) +𝐾2(𝑡) − 2𝐾(𝑡))𝑑𝑡+
[
2𝐾(1) + 1 −𝐾2(1)

]
, (104)

where we employed the boundary conditions and from (101)

𝐾(1) =𝐾2(1) =
61
24

+ 7𝛼
6
. (105)

The substitution of (101) and (105) into (104) involves a set of ele-

mentary operations that lead to the result

𝐽 (𝛼) = 1.78730159𝛼2 + 5.071180556𝛼 + 6.89344687 −
(61
24

+ 7𝛼
6

)2
, (106)

where we have already considered that functional integral 𝐽 is from 
here on a function of parameter 𝛼.

The value of 𝛼 which extremizes the value of (106) is obtained as 
usual, differentiating (106) respect to 𝛼 and solving the equation 𝐽 ′ = 0, 
to obtain

𝐽 ′(𝛼) = 0.85238096𝛼 − 0.85937498 = 0, (107)

or

𝛼 = 1.00820527. (108)
9

Fig. 2. Graphic for function (106).

Besides, by substituting (108) into second derivative of (106), we con-

clude that

𝐽 ′′(1.00820527) = 0.85238096 > 0. (109)

For the elementary criterion of second derivative for functions with 
one independent variable, we conclude the critical value (108) corre-

sponds indeed to a relative minimum of (106).

In a sequence, since (106) has only one critical point, then (108)

corresponds also to an absolute minimum as it should be (see (90), (91)

and Fig. 2).

Thus, the sought solution is obtained, substituting (108) into (101)

to get

𝐾2(𝑡) = 2 + 1.00820527𝑡+ 0.16803421𝑡3 + 𝑡4

24
+ 𝑡2

2
. (110)

METC method. Such as it was mentioned, it is relevant to remark that 
GBM also provides the transversality conditions following essentially 
the same procedure employed to find the Euler-Lagrange equations in 
the cases already mentioned [17] (see Subsection 3.3 and Section 4).

Since that the end point can move along the straight line 𝑡 = 1, 
the transversality condition is obtained employing GBM, differentiat-

ing (94) respect to 𝛿𝐾 (see (29)).

𝑑

𝑑(𝛿𝐾)

[
𝐾2𝛿𝑡+ (𝛿𝐾)

𝛿𝑡

2
+ 𝛿𝑡− 2𝐾𝛿𝐾 − 2𝐾𝛿𝑡+ 2𝛿𝐾

]
= 2𝛿𝐾

𝛿𝑡
− 2𝐾 + 2.

(111)

In accordance with GBM methodology, next we take the limit 𝛿𝑡 → 0, 
in such a way that (111) adopts the form[2𝑑𝐾

𝑑𝑡
− 2𝐾 + 2

]
𝑡=1

= 0 (112)

(see (29)) or

𝐾(1) −𝐾 ′(1) − 1 = 0 (113)

(note that (113) is a Robin-like boundary condition).

Thus, the problem to solve is one with boundary conditions, which 
is expressed as a whole, as follows
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Table 1

Comparison of the proposed solutions (110) and (116) with exact solution (93). (A. Error means Absolute Error.)

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1

1 + exp(t) 2.105170 2.221402 2.349858 2.491824 2.648721 2.82211 3.013752 3.225540 3.718281

(110) 2.105992 2.223051 2.352336 2.495102 2.652711 2.826618 3.018383 3.229664 3.717906

(116) 2.117691 2.246566 2.3879 2.543066 2.713541 2.9009 3.106816 3.333066 3.854166

A. Error (110) 8.21 × 10−4 1.64 × 10−3 2.47 × 10−3 3.27 × 10−3 3.98 × 10−3 4.5 × 10−3 4.63 × 10−3 4.12 × 10−3 3.75 × 10−4

A. Error (116) 1.25 × 10−2 2.51 × 10−2 3.8 × 10−2 5.12 × 10−2 6.48 × 10−2 7.87 × 10−2 9.3 × 10−2 1.07 × 10−1 1.35 × 10−1
𝐾 ′′ −𝐾 + 1 = 0,

𝐾(0) = 2,𝐾(1) −𝐾 ′(1) − 1 = 0.
(114)

Of course, we will use the solution already obtained (101) in order 
to recalculate 𝛼, by solving (114).

We note that (101) already satisfies the condition 𝐾(0) = 2, so what 
remains is to replace (101) into (113) to obtain an elementary algebraic 
equation to 𝛼; the value obtained is

𝛼 = 1.125. (115)

Thus, substituting (115) into (101) we obtain the following approximate 
solution

𝐾(𝑡) = 2 + 1.125𝑡+ 0.1875𝑡3 + 𝑡4

24
+ 𝑡2

2
. (116)

The table shows the comparison between the proposed solutions (110)

and (116). Again, we emphasize the ease to obtain (113) and (116).

From Table 1 is appreciated that (110) is more accurate than (116), 
although the procedure that led to (110) be more extensive. In this 
regard, we note that the second method calculated the value of the un-

known 𝛼 optimizing its value to ensure the proposed solution satisfies 
the transversality condition. Since both methods adjusted an approx-

imate solution (see (101)) it seems reasonable that the first method, 
which optimizes 𝑆, through the complete domain of the problem has 
been more accurate. If more accurate approximate solutions are re-

quired, more BVPP iterations should be carried out than those per-

formed to obtain (101). Although this article suggested BVPP, there are 
other methods that could be used to find approximate solutions to vari-

ational problems, such as the Adomian Decomposition Method [24], 
HPM [27], LTHPM [28, 29, 30], among others. Finally, unlike METC, 
the proposed MWTC method, once again employed elementary crite-

rion of elementary calculus in order to show that the only critical value 
(108) corresponded indeed to a minimum of (106) (indeed an absolute 
minimum, see Fig. 2). We noted that the proposed solutions (110) and 
(116) are polynomial functions of fourth degree which only contain five 
terms, ideal for applications.

Example 4. Determine the extremum for the functional.

𝑆[𝑦] =

𝑥0

∫
0

(
𝑦′ 2 + 𝑥𝑦′

)
𝑑𝑥, (117)

subject to boundary condition 𝑦(0) = 0, and the right end point is con-

strained to lie on the line 𝑦(𝑥) = −𝑥.

This example is relevant because its solution determines the exis-

tence of two extremal functions and it will be solved by using the two 
methods presented in this work.

First we will employ GBM in order to obtain the differential equation 
that has to be satisfied for a function 𝑦(𝑥) in order to extremize (117).

Step 1. We express the integrand of (117) in terms of increments.((
𝛿𝑦

𝛿𝑥

)2
+ 𝑥

(
𝛿𝑦

𝛿𝑥

))
𝛿𝑥→

(𝛿𝑦)2

𝛿𝑥
+ 𝑥𝛿𝑦. (118)

Step 2. We note the integrand does not depend explicitly on 𝑦, thus we 
differentiate (118) respect to 𝛿𝑦.
10
After differentiating (118) respect to 𝛿𝑦, rewriting in terms of 𝛿𝑦∕𝛿𝑥, 
and equating to a constant 𝑘, we obtain

2𝛿𝑦∕𝛿𝑥+ 𝑥 = 𝑘. (119)

Step 3. Considering 𝛿𝑥 → 0, (119) adopts the form

2𝑦′(𝑥) + 𝑥 = 𝑘. (120)

This is the differential equation for extrema.

In order to solve (120), we separate variables and integrate; to ob-

tain immediately

𝑦 = 𝑘𝑥

2
− 𝑥2

4
, (121)

where, we have already considered the boundary condition 𝑦(0) = 0.

Next, we complete the solution of the proposed problem by using 
two methodologies.

MWTC method. In accordance with MWTC, we substitute (121) into 
(117) to get

𝑆(𝑘,𝑥0) =

𝑥0

∫
0

((
𝑘

2
− 𝑥

2

)2
+ 𝑘

2
𝑥− 𝑥2

2

)
𝑑𝑥, (122)

where as usual, we have already considered that functional 𝑆 is from 
here on a function of parameters 𝑥0 and 𝑘.

After evaluating (122) it is obtained

𝑆(𝑘,𝑥0) =
𝑘2𝑥0
4

−
𝑥30
12

. (123)

Since the aim is to extremize the value of 𝑆; then, we require expressing 
it in terms of just one parameter. For that purpose we note that the 
extremal and boundary curve must intersect at the point 𝑥0.

Thus, from (121) and 𝑦(𝑥) = −𝑥 we get

−𝑥0 =
𝑘𝑥0
2

−
𝑥20
4
, (124)

or

𝑘 =
𝑥0
2

− 2. (125)

Substituting (125) into (123) it is obtained

𝑆(𝑥0) =
1
4

(𝑥0
2

− 2
)2

𝑥0 −
𝑥30
12

. (126)

The value of 𝑥0 which extremizes the value of (126) is obtained 
differentiating (126) respect to 𝑥0 and solving the equation 𝑆′ = 0, to 
get

𝑆′(𝑥0) = − 1
16

𝑥20 − 𝑥0 + 1 = 0, (127)

or

𝑥0 =
−16 ± 17.8885438

2
(128)

Thus, we have two values of 𝑥0.

𝑥0
+ = 0.9442719, (129)

where 𝑥0+ denotes the upper solution of (128).
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Fig. 3. Graphic for function (126).

From (125), to this corresponds the value of

𝑘 = −1.527864. (130)

In the same way, the lower solution of (128) is

𝑥0
− = −16.9442719, (131)

and from (125) we obtain

𝑘 = −10.472136. (132)

On the other hand it is immediate that

𝑆′′(𝑥0) = −1
8
𝑥0 − 1. (133)

We note that

𝑆′′(𝑥+0 ) < 0, (134)

and

𝑆′′(𝑥−0 ) > 0. (135)

Thus, we conclude from (130) and (132) the existence of two extremal 
functions (see (121)):

𝑦 = −0.763932𝑥− 𝑥2

4
, (136)

which corresponds to 𝑥0(+) = 0.9442719, while

𝑦 = −5.236068𝑥− 𝑥2

4
, (137)

corresponds to 𝑥0(−) = −16.9442719.

For the elementary criterion of second derivative, we conclude that 
in accordance with (134), (136) maximizes (117), and from (135) we 
conclude that (137) minimizes (117) (see Fig. 3 and Section 6).

METC method. In accordance with this method, we start from (121). 
As the right end point is constrained to lie on the line 𝑦(𝑥) = −𝑥, then 
the transversality condition is obtained employing GBM, substituting 
(118) into (27) and performing the elementary derivatives respect to 
increments indicated, to obtain.

(𝛿𝑦)2

𝛿𝑥
+ 𝑥𝛿𝑦→

(
−
(
𝛿𝑦

𝛿𝑥

)2
𝛿𝑣𝑥+

(
2 𝛿𝑦
𝛿𝑥

+ 𝑥

)
𝛿𝑣𝑦

)
𝑥=𝑥0

. (138)

As usual, we take the limit 𝛿𝑥 → 0, in such a way that (138) adopts 
the form[
−𝑦′ 2(𝑥)𝛿𝑣𝑥+

(
2𝑦′(𝑥) + 𝑥

)
𝛿𝑣𝑦

]
= 0. (139)
𝑥=𝑥0

11
Since, the terminal curve is 𝑦 = −𝑥, then 𝛿𝑣𝑦 = −𝛿𝑣𝑥, and the above 
equation is rewritten as[
(−𝑦′ 2(𝑥) − 2𝑦′(𝑥) − 𝑥)

]
𝑥=𝑥0

𝛿𝑣𝑥 = 0. (140)

Since 𝛿𝑣𝑥 varies arbitrarily, then[
(−𝑦′ 2(𝑥) − 2𝑦′(𝑥) − 𝑥)

]
𝑥=𝑥0

= 0, (141)

thus, the transversality condition sought is

𝑦′ 2(𝑥0) + 2𝑦′(𝑥0) + 𝑥0 = 0. (142)

From the condition that the extremal and terminal curves are inter-

sected at 𝑥 = 𝑥0, then we get equation (125) again.

Substituting (121) into (142) result in

1
4
(
𝑘− 𝑥0

)2 + 𝑘 = 0, (143)

and from (125), we obtain

𝑥0 = 2𝑘+ 4. (144)

Thus, from (143) and (144) yield immediately in

𝑘2 + 12𝑘+ 16 = 0. (145)

The solutions of the above equation are

𝑘1 = −1.527864, (146)

𝑘2 = −10.472136. (147)

The substitution of (146) and (147) into (144), result in the values.

𝑥01 = 0.9442719, (148)

and

𝑥02 = −16.9442719, (149)

respectively.

We note that (146)–(149) are the same results already obtained by 
using the first methodology ((129), (131) and (130), (132)). As a con-

sequence, we obtain again the extremal functions (136) and (137). We 
emphasize that GBM allowed us to know the differential equation of the 
problem and its transversality condition essentially in the same way, 
which systematizes the procedure for this kind of problems. From the 
point of view of the known procedure of Euler, it is clear that this is 
less systematic because it requires memorizing formulas, besides it re-

sults sometimes cumbersome. We noted that, again, unlike MWTC, our 
second procedure only provided the character extreme of its solutions. 
Going further, from the formal point of view of the variational calcu-

lus in order to determinate if a solution corresponds to a maximum or a 
minimum, it would entail deepening the theory of the subject, and the 
present work has not any proposals in this regard.

Example 5. Determine the distance between the curves 𝑦 = 𝑥2 and 𝑦 =
𝑥 − 5 [31].

The relevance of this final example is that in this case the two bound-

aries are unspecified.

As occurred with Example 2 in this problem we require minimize 
the functional.

𝑑[𝑦] =

𝑥2

∫
𝑥1

√
1 + 𝑦′ 2(𝑥)𝑑𝑥. (150)

This example will be solved by using both methods presented in this 
work.

The Euler equation for (150) was already obtained by using GBM in 
the example (2), taking into account that the functions (65) and (150)
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coincide (see (66)–(70)), the expected answer is of course a straight 
line.

𝑦 =𝐴+𝐵𝑥, (151)

for some integration constants 𝐴 and 𝐵.

MWTC method. In accordance with this method, we substitute (151)

into (150) to obtain

𝑑(𝑥1, 𝑥2,𝐵) =

𝑥2

∫
𝑥1

√(
1 +𝐵2

)
𝑑𝑥, (152)

where we have explicitly recognized, as in another previous examples 
that at this stage functional integral 𝑑 is from here on a function of 
parameter 𝐵 and the abscissa of the end points 𝑥1 and 𝑥2.

After evaluating (152) it is obtained

𝑑(𝑥1, 𝑥2,𝐵) =
√
1 +𝐵2

(
𝑥2 − 𝑥1

)
(153)

We note that the extremal and boundary curves must intersect at 
the points corresponding to 𝑥1 and 𝑥2. Thus, from (151) and boundary 
curves we obtain

𝐴+𝐵𝑥1 = 𝑥21, (154)

𝐴+𝐵𝑥2 = 𝑥2 − 5. (155)

Since the previous equations (153)–(155) involve four independent 
variables, then the procedure will consist of expressing 𝑑 as a function 
of two of such these variables.

For this purpose it is directly subtracted (154) from (155) to obtain

𝑥2 =
𝐵𝑥1 − 𝑥21 − 5

𝐵 − 1
. (156)

Thus, after substituting (156) into (153), we get

𝑑(𝑥1,𝐵) =
√
1 +𝐵2

[
𝐵𝑥1 − 𝑥21 − 5

𝐵 − 1
− 𝑥1

]
. (157)

Following the usual procedure to determine the relative maxima and 
minima of a function of two variables, we partially differentiate (157)

respect to 𝑥1 and 𝐵 in order to obtain the critical values from the system 
of equations.

𝜕𝑑

𝜕𝑥1
= 0, (158)

𝜕𝑑

𝜕𝐵
= 0. (159)

The substitution of (157) into (158) and (159) respectively, yield im-

mediately to the following values.

𝐵 = −1, (160)

𝑥1 =
1
2
. (161)

In order to know the values of 𝑥2 and 𝐴, we substitute the values of 
(160) and (161) into (156), and (160) into (154) respectively, to get 
the values

𝑥2 =
23
8
, (162)

𝐴 = 3
4
. (163)

Thus, the straight line that extremizes (157) results of substituting (160)

and (163) into (151)

𝑦 = 3
4
− 𝑥. (164)

On the other hand, in the same way as it happened with the previ-

ous examples, it is possible to determine if the extremal function (164)
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maximizes or minimizes (150). For this purpose, we will employ a basic 
result of differential calculus of two variables; the criterion of the sec-

ond partial derivatives for relative extrema. Next, we will consider only 
the necessary results for this work (for more details see [19, 32]).

Let (𝑎, 𝑏) be a critical point of 𝑧 = 𝑓 (𝑥, 𝑦), then the criterion depends 
to a large extent on the function

𝐷(𝑥, 𝑦) = 𝑓𝑥𝑥(𝑥, 𝑦)𝑓𝑦𝑦(𝑥, 𝑦) −
[
𝑓𝑥𝑦(𝑥, 𝑦)

]2
. (165)

So that if 𝐷(𝐴, 𝐵) > 0, and 𝑓𝑥𝑥(𝑎, 𝑏) > 0, then 𝑓 (𝑎, 𝑏) is a relative min-

imum, while if 𝐷(𝐴, 𝐵) > 0, and 𝑓𝑥𝑥(𝑎, 𝑏) < 0, then 𝑓 (𝑎, 𝑏) is a relative 
maximum.

Next we will adapt (165) to our problem (157)

𝐷(𝑥1,𝐵) = 𝑑𝑥1𝑥1
(𝑥1,𝐵)𝑑𝐵𝐵(𝑥1,𝐵) −

[
𝑑𝑥1𝐵

(𝑥1,𝐵)
]2
. (166)

The obtained partial results are the following

𝑑𝐵𝐵

(1
2
,−1

)
= 19

16
√
2
> 0, (167)

𝑑𝑥1𝑥1

(1
2
,−1

)
=
√
2 > 0, (168)

𝑑𝑥1𝐵

(1
2
,−1

)
= 0. (169)

Therefore, substituting equations (167)–(169) into (166) it is obtained

𝐷

( 1
2
,−1

)
= 19

16
> 0. (170)

Thus from (168) and (170) we concluded that 𝑑 (1∕2,−1) is a rela-

tive minimum. In a sequence, since (157) has only one critical point 
then 𝑑 (1∕2,−1) is also an absolute minimum as it should be. After im-

plementing this criterion, (168) and (170) showed that (164) indeed 
minimizes (150). We emphasize again the simplicity of the method and 
the information it provides.

METC method. In accordance with METC, we start from (26) and (27)

for this variational problem of two moving boundaries.

Such as it was already mentioned, it is easy to recall the following: 
the result of differentiating with respect to 𝛿𝑥 is multiplied by 𝛿𝑣𝑥, and 
what results from deriving with respect to 𝛿𝑦 is multiplied by 𝛿𝑣𝑦.

Explaining in detail the above procedure.

At first place we express the integrand of (150) in terms of incre-

ments.√√√√(
1 +

(
𝛿𝑦

𝛿𝑥

)2
)
𝛿𝑥→

√
𝛿𝑥2 + 𝛿𝑦2. (171)

Differentiating (171) respect to 𝛿𝑦, and rewriting in terms of 𝛿𝑦∕𝛿𝑥 we 
obtain

𝛿𝑦∕𝛿𝑥√(
1 +

(
𝛿𝑦

𝛿𝑥

)2
) (172)

Considering 𝛿𝑥 → 0, (172) adopts the form

𝑦′(𝑥)√(
1 + 𝑦′(𝑥)2

) . (173)

Next, we differentiate (171) respect to 𝛿𝑥 and rewriting the result in 
terms of 𝛿𝑦∕𝛿𝑥, we obtain

1√(
1 +

(
𝛿𝑦

𝛿𝑥

)2
) . (174)

In the limit 𝛿𝑥 → 0 (174) takes the form

1√(
1 + 𝑦′(𝑥)2

) . (175)
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Thus, by substituting (173) and (175) into (26) and (27), we get[
1√

1 + 𝑦′ 2(𝑥)
𝛿𝑣𝑥+

𝑦′(𝑥)√
1 + 𝑦′ 2(𝑥)

𝛿𝑣𝑦

]
𝑥=𝑥1

= 0, (176)

[
1√

1 + 𝑦′ 2(𝑥)
𝛿𝑣𝑥+

𝑦′(𝑥)√
1 + 𝑦′ 2(𝑥)

𝛿𝑣𝑦

]
𝑥=𝑥2

= 0. (177)

Note how GBM provides both, the Euler equation (see (66)–(68)) and 
transversality conditions in a simple and systematic way, essentially 
following the same mathematical steps for both.

Since the boundary curves are 𝑦 = 𝑥2 and 𝑦 = 𝑥 − 5 then

𝛿𝑣𝑦 = 2𝑥𝛿𝑣𝑥, (178)

𝛿𝑣𝑦 = 𝛿𝑣𝑥 (179)

After substituting (178) and (179) into (176) and (177) respectively we 
obtain[

1√
1 + 𝑦′ 2(𝑥)

+ 2𝑥𝑦′(𝑥)√
1 + 𝑦′ 2(𝑥)

]
𝑥=𝑥1

𝛿𝑣𝑥 = 0, (180)

[
1√

1 + 𝑦′ 2(𝑥)
+ 𝑦′(𝑥)√

1 + 𝑦′ 2(𝑥)

]
𝑥=𝑥2

𝛿𝑣𝑥 = 0. (181)

Since 𝛿𝑣𝑥 varies arbitrarily, then[
1√

1 + 𝑦′ 2(𝑥)
+ 2𝑥𝑦′(𝑥)√

1 + 𝑦′ 2(𝑥)

]
𝑥=𝑥1

= 0, (182)

[
1√

1 + 𝑦′ 2(𝑥)
+ 𝑦′(𝑥)√

1 + 𝑦′ 2(𝑥)

]
𝑥=𝑥2

= 0. (183)

Taking into account that extrema function is (151), then the above 
conditions can be rewritten as

1√
1 +𝐵2

+
2𝑥1𝐵√
1 +𝐵2

= 0, (184)

1√
1 +𝐵2

+ 𝐵√
1 +𝐵2

= 0. (185)

In short, it is necessary to solve the non-linear system of four equations 
and four unknowns (154), (155), (184), and (185).

From (184) and (185) the values of 𝑥1 and 𝐵 are deduced with ease; 
with that information, we get the following results from this system

𝐴 = 3∕4, 𝐵 = −1, 𝑥1 = 1∕2, 𝑥2 = 23∕8. (186)

Thus, the straight line that extremizes (157) results of substituting 
the first two results of (186) into (151) to get (164). Of course, the 
results obtained by the two methods coincide. It is worthwhile retak-

ing here the matter about the ease with which GBM provided Euler 
equation and transversality condition without resorting at all to Euler 
formalism; as a matter of fact it is sufficient to recall the simple rules 
of Subsection 3.3, but essentially, the same mathematical steps are fol-

lowed for both.

6. Discussion

The main objective of this work was to offer a methodology based 
only on elementary calculus and algebra, in order to analyze and solve 
some variational problems with moving boundaries, without resorting 
to the Euler-Lagrange formalism.

To achieve the above objective, we mainly proposed to use GBM 
method (see Section 2). [17] showed that by following a procedure 
which generalizes the one employed for Bernoulli to solve the Brachis-

tochrone problem it is possible to provide the Euler-Lagrange equations 
for the case where one of the variables does not appear explicitly in the 
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integrand of the variational problem to solve. This article proposed five 
case studies where GBM was employed to determine the Euler equations 
without employing the known formalism; as a matter of fact, it was 
enough to perform elementary derivatives respect to the increment (𝛿𝑥
or 𝛿𝑦) corresponding to cyclic variable and afterwards applying some 
straightforward algebra. Nevertheless one of the relevant contributions 
of this work was to extend the application of GBM for the case of prob-

lems with moving boundaries.

The comparison of the transversality conditions, derived from Eu-

ler’s formalism (see (10)–(13)), with the equations ((19) and (25)), 
showed that for practical purposes, transversality conditions can be de-

rived from the GBM formalism. This extension of GBM method allows 
to solve a variational problem of this nature completely without the 
help of Euler formalism for the case where the integrand of (1) has 
some cyclic variable. However, it is necessary to note that (10) and 
(11) can always be used to get the conditions of transversality, regard-

less of whether the corresponding Euler equation can be determined or 
not from the GBM formalism. In brief, GBM provides both the Euler-

Lagrange equations and conditions of transversality for a wide class of 
variational problems using a direct, elementary, and above all, system-

atic methodology. In our case studies, we identify this procedure as 
method two. The first method starts again finding the corresponding 
Euler-Lagrange equation using GBM, but from that moment it differs. 
As mentioned, the idea of this procedure is to conceive that a prob-

lem of moving boundaries can be visualized as a succession of two 
optimization processes. The first one is the use of GBM in order to 
find the corresponding Euler equation. The solution of this provides 
an extremum curve that connects the starting point to a point, in prin-

ciple arbitrary, on the boundary curve. On the other hand, since the 
previous solution depends on the coordinates of the final point, then 
the next optimization is to find at what point on the boundary curve 
should end the curve so that the value of the functional integral pro-

posed reaches an extreme value among all the points of the boundary 
curve.

From the above, we proposed to substitute the solution that em-

anates from the Euler equation in the functional integral, in such a 
way that it results being a function of some parameters and of some 
of the coordinates of the extreme point. After expressing the mentioned 
functional in terms of a single variable (for the case of one unspecified 
boundary), it is possible to use the elementary calculus to determine 
the coordinates of the final point and thereby obtaining the extreme 
value of the functional integral. Note that this procedure replaces the 
conditions of transversality, by a single systematic procedure, which at 
the same time to determine the unknown point, and the whole solu-

tion of the problem. Given the spirit of GBM of expressing a variational 
problem as one of elementary calculus [17], then it seems natural to 
highlight the unity of the whole procedure above described. To clarify 
the aforementioned, consider that as well as GBM provides the Eu-

ler equations in a systematic manner based on elementary calculus, 
the procedure explained allows determining the final end point using 
elementary methods without needing to keep in mind the different con-

ditions of transversality to be used depending on each problem, as it 
was seen in the proposed cases.

It is necessary to clarify that the utility of this method is condi-

tioned to the solubility of the integral that results of substituting in the 
functional integral, the solution that emanates from the Euler equa-

tion. However, there are important cases of applications where this 
methodology is successfully applied; in our case studies we used it ex-

tensively (as MWTC method). The question of finding solutions to the 
Euler-Lagrange equation is of great importance, but the subject is too 
broad to provide infallible methods in its solution, except in cases where 
the equation admits an exact solution. Following the objective of this 
work, in order to show the proposed methodology as best as possible, 
we selected examples with Euler equations accessible to solve, since that 
ODES solution methods depend too much on the nature of the prob-

lem to be solved. We emphasized in the solution of the linear equation 
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(97), such as it was mentioned, although this admits the exact solution 
(93), the objective was to show a potentially useful procedure, even in 
cases of differential equations where an exact analytical solution cannot 
be provided. Therefore this work proposed Boundary Value Problems 
Picard Method (BVPP) [25] as a tool, indeed easy to use, based on an it-
erative process, which in general employs some adjustment parameters 
as well as elementary integrals to find precise analytical approximate 
solutions (the simplicity and good precision of BVPP is in accordance 
with the objectives of this work and was the reason to use this method 
instead of others, see [25]). This method is as easy to use as the clas-

sic Picard method; but it applies to the case of problems of boundary 
conditions, while the known Picard method is used for problems of ini-

tial conditions. It is also common that few iterations of this method are 
sufficient to get good approximations, just like it happened in this arti-

cle (see Section 5) [25]. We note that, it is possible to obtain solutions 
through the use of BVPP, not only in the case of ODES without an exact 
solution, but also for the case of problems that, even having an exact so-

lution, its obtention is difficult, cumbersome to evaluate or for the case 
of problems where the dependent variable remains implicit in an exact 
solution.

We employed more frequently the first procedure, because it is more 
direct and seeks express functional integral 𝑆 as a simple function of one 
variable (or two for the case of problems with two unspecified boundary 
points) for which the methods of elementary calculus can be applied. As 
a matter of fact, MWTC does not employ the concept of transversality 
at all.

In order to show the practical usefulness of the proposed method, 
we presented two examples of application for the areas of physics and 
economics. As a matter of fact, the Ramsey growth model was studied 
by MWTC and METC methods and the obtained results were compared 
and commented in some detail. In general we employed MWTC in all 
the proposed examples, while METC in three problems, not only for the 
above mentioned reasons, but for the following; it is well known, from 
the view of the formalism of variational calculus, that it is a rather dif-

ficult question to determine the maximum or minimum character of a 
functional integral [2, 5]. On the contrary, MWTC is able to determine 
it, by using elementary procedures, such as the criterion of the second 
derivative from the elementary calculus, which is advantageous. Thus, 
for instance, [5], resolved the same problem that was proposed as Ex-

ample 1 by using Euler’s known formalism that involves the knowledge 
of the transversality condition (11). Naturally [5] obtained the same 
results of this work. For instance, it determined that (45) corresponds 
to the abscissa of the point on the boundary curve (32) for which the 
value of (30) is extremum but it did not determine that also minimizes 
it.

The second case study (which is about a typical problem of mechan-

ics) is particularly relevant because it shows the versatility of GBM. 
First it was employed in the context of Lagrangian formulation in order 
to deduce the equation of motion (60) [18, 19, 20, 21]. It is conve-

nient to mention here that GBM was able to provide the mathematical 
expressions for some physical constants of motion. The mechanical en-

ergy (56) and the 𝑥 component of momentum (58) as well as the above 
mentioned equation of motion; thus, from obtaining these last relevant 
results together with all the previous information make the techniques 
presented in this article attractive for practical applications.

7. Conclusions

The objective of this work was to provide a practical methodology 
with the purpose of solving variational problems with moving bound-

aries using only elementary methods of calculus and algebra, without 
resorting to the known Euler-Lagrange formalism. With the end to em-

phasize the practical character of this work, the examples were solved 
step by step. One of the main tools of this work was the GBM method 
[17] because it allowed us to find the Euler-Lagrange equations by mere 
differentiation in the way already explained along this work; since this 
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procedure is systematic, it is not necessary to recall the Euler equations 
(Subsection 1.2). Once the differential equation is solved, two methods 
or procedures were proposed to complement the solution of the varia-

tional problem.

MWTC method, was the most employed throughout this work, be-

cause following the idea of GBM, it proposed a simple and systematic 
procedure, different from the usual methodology of the Euler method. 
Once a solution is known (exact or approximate), the method calculates 
the unknown parameters by substituting it directly in the functional in-

tegral 𝑆 with the purpose to express 𝑆 as a function of one or two of the 
parameters, so that is easy to extremize it, and even determine if we ob-

tain a maximum or a minimum. Thus, the proposed method expresses a 
variational problem with moving boundaries in terms of an elementary 
calculus problem.

The disadvantage of this procedure is that it is not always possible 
to evaluate the integral that emanates once the solution is substituted in 
𝑆. As a matter of fact, for these cases it is possible to resort to METC as 
an alternative method. However, this work presented several examples 
where MWTC worked satisfactorily.

On the other hand, METC also starts from the solution of the Euler 
equation of the problem. This method deduces the usual transversal-

ity conditions for these problems but without resorting to the Euler-

Lagrange formalism. It was remarkable that after comparing the con-

ditions of transversality expressed from the point of view of the Euler 
formalism (12) and (13) with the corresponding results (19) and (25)

obtained for GBM in order to obtain Euler equations, we noted that GBM 
method also provides, from a practical point of view, the conditions of 
transversality in addition to Euler equation. Nevertheless, the applica-

tion of GBM to find the conditions of transversality is general, since it 
is not required that one of the variables be cyclic in 𝑆. It is relevant to 
note that GBM finds the Euler equation and transversality conditions in 
the same systematic way by using essentially the same systematic ele-

mentary procedure (recalling that for the Euler equation case, one of 
the variables should not appear explicitly in the functional). Of course, 
once the Euler formalism or METC method was used, what remains is 
to solve the same differential equation with the boundary conditions 
proposed. It is usual that after employing conditions of transversality, 
only is determined the extreme character of the solution obtained be-

cause from the point of view of the variational calculus, to determine 
if an extremum corresponds to a maximum or minimum of a functional 
is not a straightforward task. In fact, sometimes it is possible to say 
something on this subject, appealing to arguments of plausibility. For 
example physical arguments, if the functional in question is related to 
some problem of physics and so on. This contrasts with the first pro-

posed method, where it is possible to answer the previous question by 
using analytical elementary methods.

Regarding the question of the solution methods to the Euler equa-

tion; unfortunately this issue depends too much on the details of the 
equation to be solved. Sometimes it admits an exact solution, but it is 
common that this does not happen. For this case, and also when we 
require to find some approximate solution with little effort and good 
precision for those cases of the Euler equation, which, even having an 
exact solution, it turns out to be it too extensive, cumbersome, or it is 
presented implicitly; it was suggested the BVPP method, which in par-

ticular was used to find approximate analytical solutions to the problem 
(97). Since this method allows finding frequently good approximations 
by means of elementary integrals and few iterations; it resulted use-

ful with the objectives of this work, where the goal was showing how 
to resolve with ease, certain variational problems without resorting to 
the formal procedures known. In fact, Example 3 showed that BVPP is 
potentially useful to provide handy accurate analytical approximate so-

lutions. At this point, we suggested other techniques with potential to 
find solutions to variational problems, and that would be a good alter-

native for BVPP.

Finally, given the utility demonstrated by GBM, a future work should 
enlarge the use of the method for the general case of problems where 
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it is required finding the Euler Lagrange equation for functionals that 
depend explicitly on 𝑥, 𝑦 and 𝑦′, which is equivalent to generalizing the 
GBM method in order to find the Euler Lagrange equation for the more 
general case.
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