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Abstract: To investigate the structure of Arthrospira platensis polysaccharide (PAP) (intracellular
polysaccharide) and the antioxidant activity of the first component of PAP (PAP-1) on pseudorabies
virus (PRV) -infected RAW264.7 cells. The PAP was separated and purified by the Cellulose DE-52
chromatography column and Sephacryl S-200 high-resolution gel column to obtain PAP-1. The antiox-
idant activity and regulation of PAP-1 on PRV-infected RAW264.7 cells of circRNA-miRNA-mRNA
network were investigated by chemical kit, Q-PCR, and ce-RNA seq. The results indicated that the
molecular weight (Mw) of PAP-1, which was mainly composed of glucose and eight other monosac-
charides, was 1.48 × 106 Da. The main glycosidic bond structure of PAP-1 was→4)-α-D-Glcp-(1→.
PAP-1 may be increased the antioxidant capacity by regulating the circRNA-miRNA-mRNA network
in PRV-infected RAW264.7 cells. This study provided a scientific foundation for further exploring the
antioxidant activity of PAP-1 based on its structure.

Keywords: Arthrospira platensis polysaccharide; pseudorabies virus; antioxidant; structure; circRNA-
miRNA-mRNA

1. Introduction

Algal polysaccharides are natural macromolecular compounds extracted from al-
gal and are composed of more than ten monosaccharide molecules connected by gly-
cosidic bonds. The most commonly used method for extracting polysaccharides is the
hot water extraction method, but it requires a long extraction time, high temperature,
and a large amount of solvent. Therefore, researchers have improved extraction methods
based on the hot water extraction method, including enzyme-assisted hot water extraction
method, ultrasonic-assisted hot water extraction method, microwave-assisted hot water
extraction method, freeze-thaw-assisted hot water extraction method, alkaline extraction,
freeze-thawing cold-pressing, and so on [1,2]. However, different extraction methods
not only affect the extraction rate but also influence the structure and biological activity
of polysaccharides [2,3]. Therefore, it is necessary to screen the extraction methods to
determine which is best and to ensure the structural integrity of polysaccharides when
further studying their structures. In this study, the best extraction method of PAP was
selected for subsequent experiments, which provided an experimental basis for further
study on the structure and activity of PAP.
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At present, Arthrospira is recommended by FAO as “the most ideal food in the 21st
century”, while the World Health Organization calls it “the best health care product for
mankind in the 21st century” [4]. PAP, as a natural health product, has no toxic and side
effects and can be taken for a long time. PAP is a type of cyanobacteria, which are con-
sidered to be one of the most potent species for prevention and nutritious supplementary
because of their abundant special active ingredients [5]. At present, researchers on PAP
have made progress in the separation, purification, and determination of chemical structure
and biological activity, but there are still many problems to be solved. Most studies have
been based on crude polysaccharides, but crude polysaccharides may contain multiple
mixed sugar components and small molecular impurities, so it is difficult to obtain a
definitive conclusion from these studies [6–8] In addition, there have been some studies on
the structure of isolated and purified PAP by FT-IR, NMR, and GC-MS, but research on
the structure has not been thorough enough [5,9,10]. The detailed structure of polysaccha-
rides was the foundation for studying their potential mechanisms and structure-activity
relationships. In our research, the structure of PAP-1 is studied not only by FT-IR, NMR,
and GC-MS, but also by specific optical rotation, periodate oxidation, smith degradation,
and methylation analysis.

PRV is a double-stranded DNA herpes virus that can cause highly contagious neu-
rological and respiratory diseases in swine and is often fatal [11]. It has caused huge
economic losses to the swine industry in many countries. Most viruses, such as coronavirus
disease 2019 (COVID-19), influenza virus, porcine epidemic diarrhea virus, and hepatitis C
virus, cause oxidative stress when they infect cells [12–14]. High levels of reactive oxygen
species (ROS) can cause serious damage to biological structures, such as cell membrane
damage, DNA degeneration, and chromosome translocation. The oxidative stress caused
by ROS can cause some diseases [15]. In addition to developing drug therapy, it may
be a useful strategy to use dietary supplements and nutritional drugs to prevent or treat
SARS-CoV-2 infection in the field of alternative and adjuvant therapy [16]. Bioactive sub-
stances in many naturally occurring foods have strong antioxidant activity. Some studies
have shown that polysaccharides can reduce oxidative stress caused by adverse stimula-
tion [17–19]. Therefore, it is still necessary to study antioxidation food and its mechanisms.
Herein, PAP (intracellular polysaccharide) [20] was isolated and purified, and the effect
of PAP-1 on the activity and antioxidant capacity of PRV-infected RAW264.7 cells was
further investigated.

MiRNA (MicroRNA) is an endogenous single-stranded small molecular RNA with
a length of about 22 nucleotides, which is widely distributed in eukaryotes, animals,
and plants, and is located in the non-coding region of the genome [21]. MiRNA is a very
important regulatory factor of gene expression, which mainly regulates the stability and
translation efficiency of its target gene (mRNA). There are two main ways of regulation:
Firstly, it is directly and completely complementary to mRNA, which leads to the degrada-
tion of the target gene (mRNA) [22]. Secondly, it can induce the target gene (mRNA) to
degrade or repress its translation by forming incomplete base complementation with the
3’UTR of the target gene [23]. Some studies suggest that the Japanese encephalitis virus,
dengue virus, porcine epidemic strains virus (PEDV), and other viruses could induce a
significant variation of miRNA in the host, and miRNA not only regulates virus replication
and pathogenicity but also adjusts the immune response of the host [24–26]. CircRNA,
a closed-loop RNA molecule, is the product of gene cutting, but it participates in gene
transcription and protein translation and plays an important role in the occurrence and
development of tumors, neurodegenerative diseases, cardiovascular diseases, diabetes,
nephropathy, arthritis, viruses, and other diseases. Therefore, it is expected to become a
potential new target for diagnosis and treatment. Among its complex biological regulation
functions, it mainly plays a role by competing for endogenous RNA (ceRNA): circRNA in-
directly regulates the expression of the target gene of miRNA by competitively binding
this miRNA [27]. Studies have shown that Chinese medicine may play an active role in
the treatment of cardiovascular diseases through circRNA/miRNA/mRNA regulatory
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network [28]. With the continuous development of sequencing technology, RNA-Seq has
become an effective tool for excavating and identifying new transcripts. The above studies
indicate that PAP has antiviral and antioxidant effects [5,8,9], and PRV infection RAW264.7
cells may cause the differential expression of circRNA, miRNA, and mRNA [29–31].
In this study, the non-coding RNA sequencing data of PRV-infected RAW264.7 cells
and PAP-1 acting on PRV-infected RAW264.7 cells from the GEO database were ana-
lyzed, and the circRNA-miRNA-mRNA network was successfully constructed, which has
the characteristics of highlighting specific molecular functions and mechanisms. Then,
functional enrichment analysis and annotation were carried out to further explore the
potential role of circRNA, miRNA, and mRNA in the regulation of PAP-1 on PRV-infected
RAW264.7 cells. The research is of great significance for PAP-1 to regulate the antioxidant
capacity and circRNA-miRNA-mRNA network caused by PRV-infected RAW264.7 cells.

2. Materials and Methods

2.1. Materials and Chemicals

Arthrospira platensis (The production base of Arthrospira platensis can produce 500 tons
of high-quality Arthrospira powder per 100,000 square meters of the breeding area.) was pur-
chased from Beihai Shengbada Biotechnology Co., Ltd., (Beihai, China); Papain,
Salicylic acid, Vc, DPPH, and Cellulose DEAE-52 were purchased from Beijing Solar-
bio Science & Technology Co., Ltd., (Beijing, China); Sephacryl S-200 High Resolution
and Dextran standards purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd.,
(Shanghai, China); BI fetal bovine serum was purchased from Biological Industries Israel
Beit Hemek Ltd., (Nazareth, Israel); RPMI 1640 complete culture medium was purchased
from ThermoFisher Biochemical Products (Beijing) Co., Ltd., (Beijing, China); CCK-8 kit
was purchased from Beyotime (Shanghai, China); the Reactive Oxygen Species Assay Kit,
Malondialdehyde (MDA) assay kit, Myeloperoxidase assay kit, Xanthine Oxidase (XOD)
assay kit, Superoxide Dismutase (SOD) assay kit, Catalase (CAT) assay kit, and Glutathione
Peroxidase (GSH-Px) assay kit were purchased from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). RAW264.7 cells were purchased from the cell bank of Wuhan
University. The PRV-GXLB-2013 strain was isolated, identified, and preserved by the
Department of Preventive Veterinary Medicine, College of Animal Science and Technology,
Guangxi University.

2.2. Comparison of Different Extraction Methods

2.2.1. Different Extraction Methods of PAP

2.2.1.1. Hot Water Extraction Method

Arthrospira platensis was extracted with distilled water at 80 ◦C for 4 h. Trichloroacetic
acid was dripped into the above solution to remove the protein in the extract. Then,
the supernatant was obtained by centrifugation of the above solution and placed at 4 ◦C for
24 h. After alcohol precipitation and centrifugation, alcohol precipitation was carried out
again for 24 h. The solution was centrifuged again, and the precipitate was washed with
acetone two times. Finally, the precipitation obtained by centrifuging the above solution
was dried to obtain PAP.

2.2.1.2. Enzyme-Assisted Hot Water Extraction Method

Papain (100 mg) was added to Arthrospira platensis aqueous solution (This solution
contains 20 mg of Arthrospira platensis and 200 mL of distilled water.) and heated at
52 ◦C for 1 h and 100 ◦C for 0.5 h to inactivate the enzyme. Then, the samples were
incubated in a water bath at 80 ◦C for 4 h, and the subsequent steps were the same as those
in Section 2.2.1.1.
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2.2.1.3. Ultrasonication-Assisted Hot Water Extraction Method

The Arthrospira platensis aqueous solution was treated by ultrasonication for 1 h (50 ◦C,
320 W). Then, the samples were placed in a water bath at 80 ◦C for 4 h, and the remaining
experimental processes were the same as those described in Section 2.2.1.1.

2.2.1.4. Microwave-Assisted Hot Water Extraction Method

The Arthrospira platensis aqueous solution was microwaved at 600 W for 10 min. Then,
the water bath was incubated at 80 ◦C for 4 h, and the remaining experimental processes
were the same as those described in Section 2.2.1.1.

2.2.1.5. Freeze-Thaw Assisted Hot Water Extraction Method

The Arthrospira platensis aqueous solution was freeze-thawed repeatedly. Then, the sam-
ples were placed in a water bath at 80 ◦C for 4 h, and the remaining experimental processes
were the same as those described in Section 2.2.1.1.

2.2.2. Comparison of Extraction Rate and Polysaccharide Content

The weight ratio of PAP to Arthrospira platensis was considered the polysaccharide
yield of PAP. The polysaccharide content of PAP was determined by the anthrone-sulfuric
acid method.

2.2.3. Comparison of Antioxidant Activity

2.2.3.1. Determination of Hydroxyl Radical Scavenging Activity

The scavenging activities of extracts to hydroxyl free radicals were determined by
an improved Cumbes-Sironoff method and Fenton method [32]. Polysaccharides and Vc
solutions with different mass concentrations (0, 0.125, 0.25, 0.5, 1.0, 2.0 and 4.0 mg/mL) were
prepared. Then, 9 mM FeSO4 (50 µL), 9 mM salicylic acid-ethanol (50 µL), polysaccharide
solution (50 µL), and 8.8 mM H2O2 (50 µL) were added to 96-well plates. After incubation at
37 ◦C for 1 h, the absorbance at 510 nm was measured. The scavenging rate was calculated
according to the following formula:

Hydroxyl radical scavenging activity (%) = [A0 − (AX − AX0)]/A0 × 100%

where A0 is the absorbance of the blank control, AX is the absorbance of the sample, and AX0
is the absorbance of the sample without H2O2 solution.

2.2.3.2. Determination of DPPH Free Radical Scavenging Activity

The DPPH free radical scavenging activities of polysaccharides were determined by
a previously reported method [33]. DPPH (0.0082 g) was dissolved in 95% ethanol to
make a 100 mL solution. In addition, polysaccharides and Vc solutions were dissolved in
DMSO to prepare different concentrations of inhibitor solutions (0, 0.125, 0.25, 0.5, 1.0, 2.0,
and 4.0 mg/mL). The DPPH solution (0.5 mL) was added to different concentrations of the
inhibitor solution (0.5 mL). The absorbance was measured at 517 nm after reacting in the
dark at room temperature for 30 min. The scavenging rate was calculated according to the
following formula:

DPPH radical scavenging activity (%) = [A0 − (Ai − Ai0)]/A0 × 100%

where A0 is the absorbance of the blank control, Ai is the absorbance of the sample, and Ai0
is the absorbance of the sample without the DPPH solution.

2.2.3.3. Reducing Power

The method for the determination of reducing power is based on a previously reported
method [34]. The polysaccharides and Vc solutions were dissolved in PBS to prepare
solutions at different concentrations (0, 0.125, 0.25, 0.5, 1.0, 2.0, and 4.0 mg/mL). Then,
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the polysaccharide solution (50 µL) and 1% potassium ferricyanide (50 µL) were mixed
and incubated at 50 ◦C for 20 min. After incubation, the mixture was cooled to room
temperature, and 10% trichloroacetic acid (40 µL) was added. FeCl3 was added to the
supernatant, and the absorbance was measured at 700 nm after 5 min. The reducing power
was calculated according to the following formula:

Reducing power = A1 − A2

where A1 is the absorbance of the sample and A2 is the absorbance with deionized water
instead of FeCl3.

2.3. Separation and Purification of PAP

PAP extracted by enzyme-assisted hot water extraction method was prepared into
20 mg/mL solution. PAP solution was added to a Cellulose DE-52 chromatography col-
umn (2.0 cm × 60 cm) and then subsequently eluted with deionized water, 0.1, 0.2, 0.3,
0.4, and 0.5 M NaCl solution. The eluent was collected in test tubes by fraction collector,
each tube was 5 mL. The content of polysaccharides in each tube was detected by the
anthrone-sulfuric acid method, and then the elution curve was drawn with the number of
tubes as abscissa and the content of polysaccharide as ordinate. The main absorption peaks
were mixed according to the polysaccharide content of the eluent. NaCl was removed by
dialysis in deionized water, and the purified polysaccharides were obtained by vacuum
freeze-drying. Then, each component separated and purified by Cellulose DE-52 chro-
matography column was further purified by a Sephacryl S-200 high-resolution gel column
(1.7 cm × 100 cm). The polysaccharide content of the eluent was also detected, and the
absorption peaks were combined and finally freeze-dried.

2.4. Comparison of Antioxidant Activity of PAP

The methods of scavenging hydroxyl radicals, DPPH radicals, and reducing power
were the same as those described in Section 2.2.3.

2.5. Structure Analysis of the First Component of PAP (PAP-1)

2.5.1. Determination of Molecular Weight

Dextran standards (5 mg/mL) with different molecular weights (1152, 5000, 11,600,
23,800, 48,600, 80,900, 148,000, 273,000, 409,800, and 667,800 Da) and PAP-1 were cen-
trifuged and filtered. The purity of PAP-1 was identified, and its molecular weight
was determined by HPGPC. The conditions were as follows: Chromatographic column:
BRT105-104-102 gel column (8 × 300 mm) (BoRui Saccharide, BRT105-104-102, Yangzhou,
China); mobile phase: 0.05 M NaCl; flow rate: 0.6 mL/min; column temperature: 40 ◦C;
sample size: 20 µL; detector: differential detector RI-502 (Shimadzu (China) Co., Ltd.,
RI-502, Guangzhou, China).

2.5.2. Specific Rotation

The optical intensity of PAP-1 (0.4 mg/mL) was measured by a digital automatic
polarimeter (Shanghai Precision Scientific Instruments Co., Ltd., WZZ-2S, Shanghai, China)
at 20 ◦C.

2.5.3. FT-IR

PAP-1 was mixed with KBr and pressed into thin slices, which were scanned by FT-IR
(Thermo Scientific, Nicolet iS50, New York, NY, USA) in the range of 4000~400 cm−1.

2.5.4. Monosaccharide Composition Analysis

PAP-1 (5 mg) was dissolved in 2 M trifluoroacetic acid (2 mL) and then hydrolyzed
at 121 ◦C for 2 h, but the standard solutions have not been hydrolyzed by trifluoroacetic
acid. Nitrogen was introduced into the acidolysis solution and blown dry. The pow-
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der was cleaned with methanol repeatedly and blown dry three times to remove the
trifluoroacetic acid. The obtained dry powder was dissolved in distilled water and
transferred to a chromatographic bottle for determination. Galacturonic acid, glucuronic
acid, 6-Deoxy-L-mannosehydrat, arabinose, fucose, mannose, galactose, glucose, fructose,
xylose, and ribose were prepared in 1, 10, 20, 30, 40, and 50 µg/mL solutions,
respectively. The standard can be directly analyzed on the machine without derivation.
The adopted chromatographic system was a Thermo ICS-5000+ ion chromatographic sys-
tem (Thermo Fisher Scientific, ICS-5000+, New York, NY, USA). The chromatographic
conditions were as follows: Dionex™ CarboPac™ PA20 liquid chromatography column;
sample size: 20 µL; mobile phase A: H2O; mobile phase B: 100 mM NaOH; column tempera-
ture: 30 ◦C. The monosaccharide components were detected by the electrochemical detector
(HPLC-DAD) (Shimadzu (China) Co., Ltd., Shimadzu LC-10A, Guangzhou, China).

2.5.5. Periodate Oxidation and Smith Degradation

PAP-1 (50 mg) was oxidized with 15 mM NaIO4 (25 mL) and then reacted at 4 ◦C
in the dark. The absorbance was measured at 223 nm every 4 h until it reached a stable
value. The consumption of periodic acid was calculated according to the standard curve of
NaIO4. The yield of formic acid was determined by titration with 0.053 M NaOH. Then,
ethylene glycol was added to terminate the periodic acid reaction. The oxidized products
of periodate were dialyzed in water for 48 h and reduced by adding NaBH4 (50 mg) for
12 h. Then, acetic acid was added to adjust the pH, and the solution was dialyzed in
deionized water for 48 h. The residue was completely hydrolyzed with 2 M trifluoroacetic
acid. Methanol was repeatedly added and dried to remove trifluoroacetic acid. Finally,
the product was acetylated and analyzed by GC (Agilent Technologies lnc., Agilent 7820A;
Santa Clara, CA, USA) [35].

2.5.6. Methylation Analysis

PAP-1 (1 mg) was methylated so that all the free hydroxyl groups were methylated by
the Hakomori method. Infrared spectroscopy is used to detect the absorption at 3500 cm−1

to determine whether the methylation reaction is complete. Then, 2 M trifluoroacetic acid
(100 µL) was added and hydrolyzed at 121 ◦C for 90 min to obtain a partially methylated
monosaccharide. These monosaccharides were reduced and acetylated, and the methylene
chloride phase in the lower layer contained partially methylated alditol acetate. The above
derivatives were analyzed by GC-MS, and the connection mode of the glycosidic bond
was obtained by analyzing the peak sequence in GC and the main ion fragments of MS.
Mass spectrometry conditions were as follows: PAP-1 was detected by electron bombard-
ment ion source (EI) in full SCAN mode, and the mass scanning range (m/z) was 30-600
(Agilent Technologies lnc., Agilent 5977B; Santa Clara, CA, USA). Gas chromatography
conditions: 140 ◦C for 2.0 min, 3 ◦C/min to 230 ◦C for 3 min, and the injection volume was
1 µL (Agilent Technologies lnc., Agilent 7820A; Santa Clara, CA, USA).

2.5.7. NMR Analysis

PAP-1 (50 mg) was dissolved in D2O (0.5 mL) and freeze-dried into powder (this pro-
cess was repeated to fully exchange active hydrogen). The 1H-NMR, 13C-NMR,
one-dimensional spectrum, and two-dimensional spectrum of DEPT135 in which PAP-1
was dissolved in D2O were measured by a 600 MHz NMR spectrometer (Bruker Scientific
Technology (Shanghai) Co., Ltd., Bruker AVANCE III HD600, Shanghai, China) at 25 ◦C.

2.6. The Effect of PAP-1 on Antioxidation of PRV-Infected RAW264.7 Cells

2.6.1. The Effect of PAP-1 on the Activity of RAW264.7 Cells

RAW264.7 cells at a concentration of 1 × 106 cell/mL were added to 96-well culture
plates. They were divided into a blank group, cell group, and PAP-1 groups (25, 50, 100,
200, 400, 800, and 1600 µg/mL). Culture medium (100 µL) was added to the cell group,
PAP-1 solution at different concentrations was added to the PAP-1 groups, and the cells



Antioxidants 2021, 10, 1689 7 of 24

were cultured for 8 h, 12 h, 24 h, or 48 h. Cell counting kit-8 (CCK-8) assay was used to
detect cell activity [36]. Add the CCK-8 solution (10 µL) to each well of 96-well plates,
then put them in an incubator to incubate for 1–4 h, and finally use a microplate reader
(Tecan (Shanghai) Trading Co., Ltd., Infinite M200 Pro, Zürich, Switzerland) to detect the
absorbance at 450 nm.

2.6.2. The Effect of PAP-1 on the Activity of PRV-Infected RAW264.7 Cells

The following groups were used: blank group, cell group, PRV group, and PAP-1
groups (25, 50, 100, 200, and 400 µg/mL). Cell culture medium (100 µL) was added to the
cell group, and PRV solution (100 µL) was added to the other groups and incubated for 2 h
in 96-well culture plates. The supernatant was discarded, and the cells were washed with
PBS three times. Culture medium was added to the cell group and PRV group, while PAP-1
solution (100 µL) was added to the PAP-1 groups. They were cultured for 8 h, 12 h, 24 h, or
48 h, and the cell activity was detected by the CCK-8 method.

2.6.3. The Effect of PAP-1 on the Antioxidative Capacity in PRV-Infected RAW264.7 Cells

This experiment included the cell group, PRV group, and PAP-1 groups (50, 100,
and 200 µg/mL) (96-well culture plates). The steps of incubating PRV and adding PAP-1
solution were the same as those in Section 2.6.2. The supernatant was discarded, and the
cells were washed with PBS three times. DCFH-DA fluorescent probe (100 µL) was added
to each well and incubated for 30 min. Finally, PBS (100 µL) was added to each well to
remove the cells, and then the absorbance was measured at an excitation wavelength of
488 nm and an emission wavelength of 525 nm according to the Reactive Oxygen Species
Assay Kit.

This experiment also included the cell group, PRV group, and PAP-1 groups (50,
100, and 200 µg/mL) (6-well culture plates). The steps of incubating PRV and adding
PAP-1 solution were the same as those in Section 2.6.2. The supernatant was used to
measure MDA level, and the cells were washed with PBS three times. Add PBS (500 µL)
to each well, scrape off the cells, crush the cells with a cell ultrasonic breaker (Ningbo
Scientz Biotechnology Co., Ltd., SCIENTZ-IID, Ningbo, China), centrifuge at 3000 rpm for
10 min, and then take the supernatant to measure the activities of GSH-Px, SOD, MPO,
XOD, and CAT in the cells. The experiment was carried out in strict accordance with the
instructions of the kits.

2.6.4. CeRNA-Seq

CircRNA-miRNA-mRNA regulatory network was constructed by ceRNA-seq to fur-
ther explore the antioxidant regulatory effect of PAP-1 on PRV-infected RAW264.7 cells.
The experiment was divided into three groups, which were PAP-1 group (200 µg/mL),
PRV group, and cell group, with three replicates in each group (When performing ceRNA-
Seq, each group was labeled for convenience. “C” is the abbreviation of cell, “V” is the
abbreviation of virus, and “M” is the abbreviation of medicine. Therefore, the PAP-1
group, PRV group, and cell group are marked as CVM group, CV group, and C group,
respectively). RAW264.7 cells at a concentration of 1 × 106 cells/mL were added into a
6-well plate. After incubation for 8 h at 37 ◦C with 5% CO2, PRV solution was added and
incubated for 2 h. The virus solution was discarded and washed with PBS three times.
Finally, PAP-1 was added and incubated for 12 h. Cell samples were collected, and the
ceRNA-seq was completed by Guangzhou Gidio Biotechnology Co., Ltd. The constructed
sequencing library was sequenced with Illumina HiSeqTM 4000 to find the differentially ex-
pressed circRNA, miRNA, and mRNA among the three groups of PAP-1 group, PRV group,
and cell group. According to the sequence of circRNA, the targetScan 7.2 is used to predict
the interaction with miRNA, and then combined with the regulatory relationship between
miRNA and genes in the miRTarBase and miRBase databases, Cytoscape 3.7.1 software is
used to construct a circRNA-miRNA-mRNA regulatory network. Finally, Gene Ontology
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and KO enrichment analysis were performed on the mRNA differentially expressed in the
C group and the CV group, and the CV group and the CVM group.

2.6.5. Quantitative Real-Time PCR

RAW264.7 cells treatment was the same as the second experiment in Section 2.6.3.
The total RNA of RAW264.7 cells was extracted by Trizol reagent according to the man-
ufacturer’s instructions. cDNA was synthesized with the 5×All-In-One RT MasterMix
with AccuRT (Lot. 0229854828001, abm). Quantitative real-time PCR EvaGreen 2 × qPCR
MasterMix-No Dye (Lot. 10518551127002, abm). The mRNA expression levels of MPO,
XOD, SOD, and GSH-Px were detected by Q-PCR.

2.7. Statistical Analysis

The data were analyzed by SPSS 22.0, and the results include the mean± SD. One-way
analysis of variance (ANOVA) was used for comparisons among groups, and the LSD-t-test
was used for pairwise comparisons among groups.

3. Results and Discussion

3.1. Comparison of Different Extraction Methods

In this study, the extraction rate and contents of polysaccharides processed by the three
extraction methods except for the microwave-assisted hot water extraction method were
significantly higher than those processed by the hot water extraction method (Figure 1A,B)
(p < 0.05 or p < 0.01). Scavenging hydroxyl radicals, DPPH radicals, and reducing power
are important indexes to evaluate the antioxidant activity of polysaccharides [37]. The scav-
enging capacity of PAP increased rapidly and then slowly with increasing concentra-
tion, which was consistent with a previous research method [38]. The order of scaveng-
ing of hydroxyl radicals by different extraction methods, DPPH radicals, and reducing
power from strong to weak was enzyme-assisted hot water extraction method > freeze-
thaw assisted hot water extraction method > microwave-assisted hot water extraction
method > ultrasonic-assisted hot water extraction method > hot water extraction method
(Figure 1C–E). Compared with other methods, the enzyme-assisted hot water extraction
method had the advantages of mild reaction conditions, high extraction rate, less dam-
age to polysaccharide structure, avoid changing the biological activity of polysaccharides,
low cost, energy savings, and environmental protection [39]. Therefore, the PAP obtained by
the enzyme-assisted hot water extraction method was selected for subsequent experiments.

3.2. Isolation and Purification

The PAP obtained by the enzyme-assisted hot water extraction method was sepa-
rated into five peaks by a Cellulose DE-52 chromatography column; that is, it mainly
contained five polysaccharide components (PAPs) (Figure 2A). After further purification
by a Sephacryl S-200 High-Resolution chromatography column, each component showed
a single symmetrical elution peak, indicating that the molecular weights of PAPs were
uniform (Figure 2B–F). The polysaccharide contents of PAPs were significantly higher than
those of PAP (p < 0.01) (Figure 2G), and the results were similar to that of Ren et al. [40].
The yield of PAP-1 was the highest of the PAPs, so the structure of PAP-1 was analyzed in
detail in this study.

3.3. Determination of the Antioxidant Activity of PAPs

From Figure 3A–C, the antioxidant activities of PAPs showed a dose-dependent rela-
tionship with the concentration. The order of scavenging hydroxyl radicals, DPPH radicals,
and reducing power from strong to weak was PAP-3 > PAP-1 > PAP-4 > PAP-5 > PAP-2.
Overall, the antioxidant activities of PAPs were different; this trend is consistent with the
results of Chen et al. [38].
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Figure 1. Comparison of polysaccharide yield (A) (means ± SD, n = 9), polysaccharide content (B) (means ± SD, n = 9),
and antioxidant activity (C–E) (means ± SD, n = 3) of PAP were obtained by different extraction methods. HWEM,
hot water extraction method; EHWEM, enzyme-assisted hot water extraction method; UHWEM, ultrasonic-assisted hot
water extraction; MHWEM, microwave-assisted hot water extraction; FAHWEM, freeze-thaw assisted hot water extraction.
Bars with * and ** indicate significant difference or most significant difference with the HWEM group, respectively (p < 0.05
or p < 0.01). “A, a” designate p < 0.05 or p < 0.01 between them.
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Figure 2. The elution curve of PAP was separated and purified by Cellulose DE-52 chromatography column (A)
and Sephacryl S-200 high-resolution chromatography column (B–F) respectively; (G) Polysaccharide content of PAPs
(means ± SD, n = 3). Bars with ** indicates most significant difference with other groups (p < 0.01).
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3.4. Structure Analysis of PAP-1

3.4.1. Molecular Weight

From Figure 4A, the equation of the lgMw-RT calibration curve was y =−0.206x + 12.862
(R2 = 0.9919). The Mw of PAP-1 was calculated by the formula to be 1.48 × 106 Da.
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Figure 4. HPGPC chromatogram (A) and FT-IR spectrum (B) of PAP-1. Chromatogram of standard (C) and PAP-1
(D). The spectrum of PAP-1 by methylation analysis: (E) Spectrum of total ion flow of PAP-1; (F) Spectrum of t-Glc(p);
(G) Spectrum of 4-Glc(p); (H) Spectrum of 4,6-Glc(p).

3.4.2. Specific Optical Rotation

The specific rotation [α]20
D of PAP-1 at 20 ◦C was +196.5◦ (c = 0.4 mg/mL, H2O).

The higher positive value of optical rotation indicated that PAP-1 mainly exhibits α-
glycosidic bonding [41].

3.4.3. FT-IR

In Figure 4B, there was a strong absorption peak at 3350.82 cm−1, which was at-
tributed to the stretching vibration of hydroxyl groups. The absorption peak produced
by the stretching vibration of C-H appeared at 2929.83 cm−1. These two characteristic
absorption peaks indicated the presence of polysaccharides in the sample [42]. The peak
at 1658.35 cm−1 was the hydration vibration peak C-O of polysaccharides [43]. The peak
at 1416.54 cm−1 was due to the bending vibration of C-H. Three peaks at 1155.99, 1080.76,
and 1022.04 cm−1 indicated the presence of a pyranose ring and was caused by the C-O-C
vibration. The peak of carbohydrate molecules, that is, the asymmetric ring stretching vibra-
tion of pyranose, appeared at 932.41 cm−1. The absorption peak at 851.95 cm−1 indicated
that there were α-glycosidic bonds and C-H α-anomers. The peak at 762.41 cm−1 was due
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to the inclusion of C-O-C and was caused by the stretching vibration of the symmetric ring
of D-glucopyranose [44]. In conclusion, PAP-1 is an α-configured neutral polysaccharide
with a pyranose ring.

3.4.4. Analysis of Monosaccharide Composition

The molar ratio of the monosaccharide composition of PAP-1 was: fucose:6-Deoxy-L-
mannosehydrat:arabinose:galactose:glucose:xylose:mannose:galacturonic acid:glucuronic
acid = 0.15:0.15:0.08:0.02:54.99:0.06:0.04:0.01:0.02 (Figure 4C,D). Chaiklahan et al. found that
the content of rhamnose in PAP was the highest, but our results showed that the content of
glucose was the highest in PAP-1, which may be due to the monosaccharide compositions
of PAP being related to its place of origin [45].

3.4.5. Periodate Oxidation and Smith Degradation

After PAP-1 was oxidized by periodic acid, the consumption of periodic acid and the
formation of formic acid were 1.02 mM and 0.08 mM, respectively. The oxidized samples
were subjected to smith degradation, and then the products were reduced. The products
were mainly erythritol and a small amount of glycerol, which indicated that there were
glucose residues linked by (1→4) glycosidic bonds in PAP-1.

3.4.6. Methylation Analysis

Three kinds of connection modes (t-Glc(p); 4-Glc(p); 4,6-Glc(p)) and three derivatives
(1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol; 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl gluci-
tol; 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol) were obtained by methylation analysis
of PAP-1 (Figure 4E–H).

3.4.7. NMR

The 1H NMR spectrum signals of PAP-1 were mainly concentrated between 3.0 and
5.5 ppm. The proton signals of the sugar ring appeared between δ3.2-4.0 ppm, and the
signal peaks of the main terminal matrix were present at δ5.31, 5.26, 5.15, 4.89, and 4.57 ppm
and were concentrated in the range of 4.3~5.5 ppm (Figure 5A).

From Figure 5B, the signals in the 13C NMR (201 MHz, D2O) spectrum of PAP-1 were
mainly concentrated between 60–120 ppm. By observing the carbon spectrum, it can be
seen that the main anomeric carbon signal peaks were mainly located between δ93 and
105 ppm; they appeared at δ101.33, 101.05, 99.88, 97.01, and 93.33, separately. The main
signal peaks between 60–80 ppm appeared at δ79.52, 78.39, 78.31, 77.5, 77.4, 77.1, 75.56,
74.99, 74.56, 74.03, 74.02, 72.91, 72.86, 72.8, 72.53, 72.11, 71.94, 71.68, 70.69, 70.61, 68.46,
62.3, 61.89, and 61.67 ppm. These results, combined with monosaccharide composition
analysis, showed that PAP-1 mainly contained glucose. According to the analysis of the
DEPT135 NMR spectrum, the peaks at 61.67, 62.3, 61.89, and 68.46 ppm were inverted
peaks, indicating that they were C6 chemical shifts.

The anomeric carbon signal was at δ101.05, and the corresponding anomeric hydrogen
signal was δ5.32 in the HQSC spectrum (Figure 5C). Through the HH-COSY spectrum
(Figure 5D), the signals of H1-2 were at 5.32/3.55, H2-3 was 3.55/3.90 and H3-4 was at
3.90/3.58. We can infer that H1, H2, H3, and H4 corresponded to the peaks at δ5.31, 3.55,
3.90, and 3.58, respectively. The TOCSY spectrum showed that the peak at δ5.32 correlated
to the peaks at 3.58, 3.78, and 3.90, and H5 was 3.78 ppm (Figure 5E). The corresponding
C5 appeared at 72.53, the chemical shift of C6 was δ61.95, and the corresponding H6a was
at δ3.79. Therefore, the signal should be attributed to the glycosidic bond →4)-α-Glcp-
(1→ [46].

In the HMBC spectrum (Figure 5F), according to the one-dimensional and two-dimensional
NMR spectrum, we attributed the glycosidic bond signal of PAP-1. The anomeric hydrogen of
glycosidic bond→4)-α-D-Glcp-(1→) had a correlation signal peak with its own C4, and the
anomeric carbon had a single correlation peak with its own H4, which indicated that there was
a linkage mode of→ 4)-α-D-glcp-(1→ 4)-α-D-glcp-(1→).
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Figure 5. NMR spectrum and structure of PAP-1. (A) 1H NMR spectrum; (B) 13C NMR spectrum; (C) HH-COSY spectrum;
(D) HSQC spectrum; (E) HMBC spectrum; (F) TOCSY spectrum; (G) Bonding structures of PAP-1; (H) Structural formula
of PAP-1.

In summary, we can infer that the main glycosidic bond structure of the polysaccha-
ride was a →4)-α-D-Glcp-(1→ glycosidic bond. The bonding structures and structural
formula of PAP-1 are shown in Figure 5G,H, respectively. Chen et al. showed that the
monosaccharides of PAP were mainly composed of rhamnose, fucose, arabinose, xylose,
mannose, and glucose with the molar ratio of 3.42:0.76:0.34:0.53:0.43:0.59 [5]. The results of
Pr et al. showed that PAP contained a relatively large proportion of galactose [9]. Ma et al.
found that PAP was mainly composed of rhamnose, glucose, and galactose [6]. Similarly,
Chaiklahan et al. found that the content of rhamnose in PAP was the highest [45]. Li et al.
showed that PAP-1 was mainly composed of glucose, which was similar to our results.
The difference was that its structure has a C-6 branched by an α-D-Glcp, and its molecular
weight was 93.856 KDa. In addition, they obtained spirulina from Fujian Shenliu Health
Food Co. (Fujian, China) by alkali liquor extraction, which was different from our purchas-
ing place and extraction method [47]. Perhaps the structures of PAP obtained by different
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extraction methods in different regions may be similar or different, which were helpful to
lay a foundation for further study of its mechanism of action.

3.5. The Effect of PAP-1 on the Activity of RAW264.7 Cells

PAP-1 could significantly increase cell activity in the range of 25 µg/mL–400 µg/mL
within 8–48 h, while PAP-1 at concentrations of 800 µg/mL and 1600 µg/mL significantly
decreased the activity of cells at 48 h (p < 0.01) (Figure 6A). Perhaps the concentrations
of PAP-1 at 800 µg/mL and 1600 µg/mL were a little high, which caused toxic effects
on RAW264.7 cells. Most studies have shown that the polysaccharide components iso-
lated and purified from plant polysaccharides can promote cell proliferation in a suitable
concentration range (Excessively low concentration of plant polysaccharide may not sig-
nificantly improve cell activity, while excessive concentration may cause toxicity to cells
and inhibit cell proliferation) [10,48,49]. This study was consistent with the above re-
search results. Therefore, PAP-1 in the concentration range of 25–400 µg/mL was used for
subsequent experiments.
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Figure 6. The effect of PAP-1 on the activity of RAW264.7 cells (A). The regulation of PAP-1 on the
activity (B) and ROS level (C) in PRV-infected RAW264.7 cells. (means ± SD, n = 4). Bars with #
indicate a significant difference between the PRV group, respectively (p < 0.05). ** and ## show the
most significant differences with cell group and PRV group, respectively (p < 0.01).
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3.6. The Effect of PAP-1 on the Activity of PRV-Infected RAW264.7 Cells

Macrophages are ancient and conservative immune cells that play a key role in host
defense and innate immune responses. They can not only initiate the innate immune
response but also help to fight infections and inflammation [50]. Adverse stimulation
can decrease the activity of macrophages, while plant polysaccharides can increase cell
activity caused by harmful stimulation [51]. In this study, the cell activity of the PRV
group was highly significantly lower than that of the cell group at 24 h and 48 h (p < 0.01).
Compared with the PRV group, PAP-1 in the range of 50–400 µg/mL incubated for 24 h and
48 h significantly increased cell activity (p < 0.05 or p < 0.01). Among them, PAP-1 groups
(50–200 µg/mL) have a better effect, so they were selected for subsequent experiments
(Figure 6B).

3.7. The Effect of PAP-1 on Antioxidant Capacity in PRV-Infected RAW264.7 Cells

Oxidative stress originates from the imbalance between the oxidant produced by
ROS and the endogenous antioxidant. Endogenous and exogenous oxidants are related
to disease development [52]. The main component involved in oxidative stress is ROS,
which is characterized by oxygen-containing reactive chemicals, such as superoxide an-
ion (O2

•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH) and so on. Excessive
ROS levels caused by adverse stimulation will cause lipid peroxidation and then produce
MDA [53]. MPO can mediate oxidative stress by promoting the production of ROS and
reactive nitrogen (RNS) [54]. Xanthine oxidase (XOD) is a homodimer with a molecular
weight of 290 kDa, which widely exists in various tissues from bacteria to humans and
mammals. XOD uses dioxygen as its substrate to produce O2

•− and H2O2 [55]. SOD is
responsible for catalyzing the conversion of O2

•− into H2O2, and then GSH-Px and CAT
convert H2O2 into H2O [56]. At present, many studies have shown that natural plans can
improve the antioxidant activity of hosts and are potent antioxidants, which provide a
basis for the development and utilization of antioxidant plants. Natural compounds can
alleviate cerebral ischemia injury by targeting the activity of MPO to alleviate oxidative
stress [54]. Passiflflora edulis rinds can eliminate the ROS generated by stimulated poly-
morphonuclear neutrophils production and inhibit MPO activity to decrease oxidative
stress [57]. Taking the XOD inhibitor from plants may be a promising method to prevent
microbial infection, inflammation, hypertension, and ischemia/reperfusion injury caused
by excessive production of O2

•− [55]. Okra Polysaccharide can reduce ROS and MDA,
and increase SOD, GSH-Px, and CAT in the liver of mouse type 2 diabetes mellitus model,
that is, it can reduce blood sugar by relieving oxidative stress [58]. The treatment of mo-
mordica charantia polysaccharides decreased the level of MDA and increased the activities
of SOD and CAT in the hippocampus of Kainic acid-induced epileptic rats, and reduced
the neuronal damage in the brain induced by kainic acid, which played a neuroprotective
role [59]. From Figure 6C, the ROS level in the PRV group was significantly higher than
that in the cell group and the levels of ROS in the PAP-1 groups were significantly lower
than those in the PRV group at 12–48 h (p < 0.05 or p < 0.01). As shown in Figure 7A–F,
MDA level, and MPO and XOD activities were significantly increased after PRV-infected
RAW264.7 cells, while SOD, CAT, and GSH-Px activities were extremely significantly de-
creased (p < 0.01). PAP-1 (50 µg/mL) could significantly reduce MDA level, MPO activity,
and increase SOD and CAT activities (p < 0.05 or p < 0.01). 100 µg/mL and 200 µg/mL
of PAP-1 could significantly reduce the level of MDA, the activities of MPO and XOD,
and increase the activities of SOD, CAT, and GSH-Px (p < 0.01). The expression levels of
MPO and XOD mRNA increased significantly (p < 0.01), while the mRNA expression levels
of SOD and GSH-Px decreased significantly after PRV infected RAW264.7 cells (p < 0.05 or
p < 0.01). Different concentrations of PAP-1 can significantly reduce the expression levels
of MPO and XOD mRNA, and significantly increase the mRNA expression levels of SOD
and GSH-Px (p < 0.01) (Figure 7G). The results of this study are also consistent with those
of the above studies. The results indicated that PAP-1 with different concentrations could
protect RAW264.7 cells by improving the antioxidant capacity of PRV-infected RAW264.7
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cells. However, the molecular mechanism by which PAP-1 acts on PRV-infected RAW264.7
cells needs further study.
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Figure 7. The effect of PAP-1 on the antioxidant activity of PRV-infected RAW264.7 cells. (A) The activity of MPO; (B) The
activity of XOD; (C) The level of MDA; (D) The activity of SOD; (E) The activity of GSH-Px; (F) The activity of CAT;
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difference between the cell group and the PRV group (p < 0.05). ** and ## show the most significant differences with the cell
group and PRV group, respectively (p < 0.01).
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3.8. The Effect of PAP-1 on the Network of CircRNA-miRNA-mRNA in PRV-Infected
RAW264.7 Cells

More and more evidence show that circRNA is closely related to virus infection, and it
may play an important role in the pathogenesis and diagnosis of diseases through miRNA.
CircRNA-miRNA-mRNA, a regulatory network, has also become an important direction of
Chinese herbal medicine regulation. There are 151 circRNAs, 56 miRNAs, and 341 mRNAs
differentially expressed in Orf virus-infected goatskin fibroblast cells [60]. The brains of
mice infected with Rabies virus were sequenced, and the constructed circRNA-miRNA-
mRNA network was composed of 25 differentially expressed circRNAs, 29 miRNAs,
and 264 mRNAs [61]. In this study, there were 17 differentially expressed circRNAs,
117 miRNAs, and 2113 mRNAs between C group and CV group (Figure 8A–C) (p < 0.05,
FC > 1.5). There are 13 differentially expressed circRNAs, 90 miRNAs, and 175 mRNAs
between the CV group and the CVM group (Figure 8D–F) (p < 0.05, FC > 1.5). Heat map gen-
erated by hierarchical clustering analysis of differentially expressed circRNA (Figure 8G,J),
miRNA (Figure 8H,K), and mRNA (Figure 8I,L) showed that all samples were clustered
into cell groups (C1, C2, C3), PRV group (CV1, CV2, CV3), and PAP-1 group (CVM1,
CVM2, CVM3). The results indicated that PRV-infected RAW264.7 cells and PAP-1 acting
on PRV-infected RAW264.7 cells caused the differential expression of circRNA, miRNA,
and mRNA. To further analyze the regulatory roles among circRNA, miRNA, and mRNA,
Cytoscape 3.7.1 software was used to construct a circRNA-miRNA-mRNA network di-
agram (Figure 9). Generally, the expression correlation between ceRNAs is negatively
correlated, that is, circRNA can down-regulate the expression of target miRNAs, and miR-
NAs can down-regulate mRNA expression. Therefore, the regulatory effect of PAP-1 on
PRV-infected RAW264.7 cells was screened based on the expression correlation of circRNA,
miRNA and mRNA. Among them, 10 circRNAs, 30 miRNAs, and 71 mRNAs were in-
volved in network regulation. Compared with the CV group, the mRNA expression levels
of Igf1, Gclm, Sqstm1, and Slc7a11 genes related to antioxidant activities in the CVM
group were significantly increased. The results showed that PRV-infected RAV264.7 cells
caused a change in the regulation of the circRNA-miRNA-mRNA network, and PAP-1
acting on PRV-infected RAW264.7 cells may improve antioxidant activity by regulating the
circRNA-miRNA-mRNA network.

To reveal the potential functions of differentially expressed circRNA, we used the Gene
Ontology website and Innovative Path Analysis software to enrich the functions and signal
pathways of circRNA and miRNA-targeted mRNA. Gene Ontology enrichment analysis
includes molecular function, cellular component, biological process. The differentially
expressed mRNAs screened from C Group and CV Group (Figure 10A–C) or CV Group
and CVM Group (Figure 10D–F) were analyzed for Gene Ontology function enrichment by
David database. In the molecular function of CV Group and CVM Group, genes are mainly
enriched in peroxidase activity, antioxidant activity, and oxidoreductase activity acting on
peroxide as acceptor, etc. Enrichment and screening of KEGG pathway in C group and
CV group resulted in 315 signaling pathways, involving osteogenic class differentiation,
c-type lectin receptor signaling pathway, MAPK signaling pathway, Viral carcinogenesis,
TNF signaling pathway, herpes simplex infection, nod-like receptor signaling pathway,
microRNAs in cancer, Malaria et al. (Figure 11A–D). 171 signal pathways were obtained
by enrichment and screening of the KEGG pathway in the CV Group and the CVM
Group, which mainly involved systemic lupus erythematosus, alcoholism, necroposis,
viral carcinogenesis, fluid shear stress and atheroslerosis, transcriptional misregulation in
cancers, and others signaling pathways (Figure 11E–H). Chicken infected with ALV-J also
caused the differential expression of circRNA, in which circRNA_3079 and predicted target
genes were mostly concentrated in immune or tumor-related signaling pathways, such as
p53 signaling pathway, JAK-stat signaling pathway, nod-like receptor signaling pathway,
and other signaling pathways [62]. In addition, total saponins from the leaves of Panax
notoginseng saponins can regulate chronic unpredictable mild stress. In the model group,
the ventral median prefrontal cortex and hippocampus of C57BL male mice expressed
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a large amount of circRNA, which may be an important mediator of the antidepressant
effect of Panax notoginseng saponins [63]. The abnormal expression of circRNA may lead
to defective or abnormal cell functions, resulting in a variety of human diseases. At the
same time, circRNA can be used as a good biomarker because of its structural stability and
high tissue specificity [64,65], so it may become a more accurate and effective target for the
diagnosis and treatment of diseases in the future.
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Figure 8. Volcano map and cluster heat map of circRNA, miRNA, and mRNA expression. 17 differentially expressed
circRNAs, 117 miRNAs, and 2113 mRNAs between C group and CV group (A–C) (p < 0.05, FC > 1.5). There are 13
differentially expressed circRNAs, 90 miRNAs, and 175 mRNAs between the CV group and the CVM group (D–F) (p < 0.05,
FC > 1.5). Heat map generated by hierarchical clustering analysis of differentially expressed circRNA (G,J), miRNA (H,K),
and mRNA (I,L).
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Figure 9. The regulation network of PAP-1 on circRNA-miRNA-mRNA in PRV-infected RAW264.7 cells. The up-regulated
mRNA was represented as a red circle, while the down-regulated mRNA was represented as a blue circle. The up-regulated
circRNA was represented by a red diamond, while the down-regulated circRNA was represented by a blue diamond.
The up-regulated miRNA is represented by a red triangle, while the down-regulated miRNA is represented by a blue
triangle. Sequence targeting relationships between miRNA and other RNA analyses are shown in black lines.
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GO, Gene Ontology; CC, cellular component; MF, molecular function; BP, biological process.
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Figure 11. Ko term analysis of differentially expressed mRNA. Enrichment and screening of KEGG pathway in C group
and CV group re-sulted in 315 signaling pathways, involving osteogenic class differentiation, c-type lectin re-ceptor
signaling pathway, MAPK signaling pathway, Viral carcinogenesis, TNF signal-ing pathway, herpes simplex infection,
nod-like receptor signaling pathway, microRNAs in cancer, Malaria et al. (A–D). 171 signal path-ways were obtained by
enrich-ment and screening of the KEGG pathway in the CV Group and the CVM Group, which mainly involved systemic
lupus erythematosus, alcoholism, necroposis, viral carcino-genesis, fluid shear stress and atheroslerosis, transcriptional
misregulation in cancers, and others signaling pathways (E–H).

In conclusion, ceRNA-seq showed that PAP-1 increased the expression of antioxidation-
related genes in PRV-infected RAW264.7 cells by regulating the circRNA-miRNA-mRNA
network, and caused changes in antioxidation-related signaling pathways. This study
can provide a research basis for circRNA-miRNA-mRNA as a drug target to improve the
antioxidant capacity of virus-infected cells.

4. Conclusions

PAP obtained from the enzyme-assisted hot water extraction method was isolated and
purified, and the structure of PAP-1 was deeply studied. The main glycosidic bond structure
of PAP-1 was→4)-α-D-Glcp-(1→. PAP-1 could increase the antioxidant capacity of PRV-
infected RAW264.7 cells by regulating oxidation and antioxidant factors (MDA, MPO, XOD,
SOD, GSH-Px, and CAT). In addition, the circRNA-miRNA-mRNA regulatory network
was constructed, and the biological functions and regulatory pathways of differentially
expressed mRNA in PRV-infected RAW264.7 cells incubated with PAP-1 were analyzed.
We found that PAP-1 may be increased the antioxidant activity of PRV-infected RAW264.7
cells by regulating circRNA-miRNA-mRNA networks and antioxidation-related signaling
pathways. This study can lay a certain experimental foundation and open up a new idea
for elucidating the activity of PAP-1 from the structure.
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