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Abstract: The temperature dependent density of Al and Ga droplets deposited on AlGaAs with
molecular beam epitaxy is studied theoretically. Such droplets are important for applications in
quantum information technology and can be functionalized e.g., by droplet epitaxy or droplet etching
for the self-assembled generation of quantum emitters. After an estimation based on a scaling
analysis, the droplet densities are simulated using first a mean-field rate model and second a kinetic
Monte Carlo (KMC) simulation basing on an atomistic representation of the mobile adatoms. The
modeling of droplet nucleation with a very high surface activity of the adatoms and ultra-low
droplet densities down to 5 × 106 cm−2 is highly demanding in particular for the KMC simulation.
Both models consider two material related model parameters, the energy barrier ES for surface
diffusion of free adatoms and the energy barrier EE for escape of atoms from droplets. The rate
model quantitatively reproduces the droplet densities with ES = 0.19 eV, EE = 1.71 eV for Al droplets
and ES = 0.115 eV for Ga droplets. For Ga, the values of EE are temperature dependent indicating the
relevance of additional processes. Interestingly, the critical nucleus size depends on deposition time,
which conflicts with the assumptions of the scaling model. Using a multiscale KMC algorithm to
substantially shorten the computation times, Al droplets up to 460 °C on a 7500 × 7500 simulation
field and Ga droplets up to 550 °C are simulated. The results show a very good agreement with the
experiments using ES = 0.19 eV, EE = 1.44 eV for Al, and ES = 0.115 eV, EE = 1.24 eV (T ≤ 300 °C)
or EE = 1.24 + 0.06 (T[°C] − 300)/100 eV (T > 300 °C) for Ga. The deviating EE is attributed to a
re-nucleation effect that is not considered in the mean-field assumption of the rate model.

Keywords: droplet density; droplet epitaxy; droplet etching; nucleation; scaling; rate model; Monte
Carlo simulation

1. Introduction

Semiconductor quantum dots (QDs) are established as quantum emitters and rep-
resent essential building blocks for quantum information technology [1–3]. For their
fabrication, the use of self-assembly techniques is a powerful approach providing versatile
semiconductor nanostructures by molecular beam epitaxy (MBE) [4]. Two major paths are
pursuit relying on different mechanisms for the self-assembly. In the Stranski-Krastanov
growth, epitaxial layers of different lattice constant are deposited and the driving force for
self-assembled formation of e.g., InAs/GaAs QDs or Ge/Si QDs is the minimization of the
strain energy [5–7]. As a drawback of this technique, the resulting QDs are substantially
strained. More flexible regarding the choice of the materials are droplet-based techniques [8]
such as the droplet epitaxy [9–13] or droplet etching [14–18]. Here, the driving force for
self-assembly is the minimization of the solid and liquid surface and interface energies.
For droplet epitaxy, often Ga droplets are deposited on AlGaAs surfaces and subsequently
recrystallized to form GaAs QDs [19,20] or quantum rings [21]. For droplet etching, usually
Al droplets are deposited on AlGaAs, transformed into low-density nanoholes during
post-growth annealing, and subsequently filled with GaAs to form GaAs QDs [22,23] or
quantum dot molecules [24].
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For both methods, droplet epitaxy and droplet etching, the desired feature density
is equal to the density of the initial droplets. Thus, the precise control of the droplet
density is essential for the creation of quantum emitters with well-defined properties.
For instance, low density QDs [25] are relevant as single-photon sources for quantum
information technology and high density dots [26] for device applications such as lasers or
solar cells. The central process parameter controlling the droplet density is the substrate
temperature T. In an earlier study [12], we have discussed the T-dependent density of Ga
droplets, but only for low temperatures up to 300 °C and using only basic approaches for
modeling. Here, we study also Al droplets and significantly expand the temperature range
to consider technologically relevant processes. Furthermore, we compare three different
approaches for the modeling of the experimental data. In this sense, the present manuscript
follows two goals: first, the better understanding of the experimental droplet densities and
the determination of relevant material parameters and, second, the evaluation of different
concepts for droplet modeling.

Popular approaches for modeling of nucleation on surfaces during crystal growth
are coupled mean-field rate equations [12,27–29] and kinetic Monte Carlo (KMC) simula-
tions [30–33]. Rate equations describe the time-dependent average density of objects on
the surface such as mobile adatoms (monomers) and clusters of various size. In principle,
every cluster size requires the calculation of an individual equation which can be very time-
consuming for system containing large clusters. To overcome this issue, a critical cluster
size i is introduced which represents the smallest stable cluster size [27–29]. Clusters with
size below i are unstable and the monomer escape rate is larger than the rate of attachment.
Now, all stable clusters can be averaged and do not require individual equations.

As an advantage in comparison to a mean-file rate model, a kinetic Monte Carlo
simulation is based on an atomistic representation of the surface adatoms and allows a
modeling also of the droplet size distribution. On the other side, the computation time of a
KMC simulation substantially increases for large simulation fields (required for the present
low droplet densities) and for a high rate of monomer diffusion processes. This limits
the maximal process temperature accessible by this method. Starting with a conventional
KMC approach, we have simulated the nucleation of Al droplets up to a temperature T of
300 °C. By using a multiscale KMC algorithm [32], we have reduced the computation time
by a factor of 30,000 in comparison to a conventional KMC approach and achieved very
good agreement with experimental Al droplet densities up to a temperature of 460 °C on a
7500 × 7500 simulation field and with Ga droplets up to 550 °C.

2. Experimental Droplet Density

The sample fabrication using solid-source MBE on (001) GaAs wafers is described
previously [34,35]. In brief, after deposition of an atomically flat AlGaAs layer, the As
flux is reduced and the droplet material is deposited. For Ga, the material flux to the
surface is F = 0.8 mL/s, the deposition time = 4 s, and the resulting coverage of droplet
material on the substrate surface is Ft = 3.2 mL. For Al, the parameters are F = 0.4 mL/s,
deposition time = 2.5 s, and coverage Ft = 1.0 mL. The droplets are formed in Volmer-Weber
growth mode [36] driven by the minimization of the liquid and solid surface energies and
of the liquid-solid interface energy. For higher process temperatures [35], the deposited
droplets drill nanoholes into the substrate, which is called droplet etching [14–18]. Relevant
processes are here the diffusion of As from the crystalline substrate into the droplet material
and the removal of the droplet material by spreading over the substrate surface [37].
Importantly, since every droplet forms a nanohole [17], the initial droplet density can be
determined from nanohole data. After growth, the surfaces are characterized using atomic
force microscopy (AFM) and the droplet densities ND are determined. Figure 1 shows
values of ND after deposition of Ga and Al as function of the temperature T during droplet
deposition. The data are taken from previous publications [34,35].
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Figure 1. Density ND of Al and Ga droplets as function of temperature T. The experimental
data (symbols) are taken from AFM images [34,35]. The lines are calculated using the rate model
with ES = 0.19 eV, EE = 1.71 eV for Al droplets and ES = 0.115 eV, EE = T-dependent (see text) for
Ga droplets.

3. Computation

The computations are performed on personal computers. We have started the simula-
tions with the rate equations model using the interpreted programming language Python3.
To reduce the computation time we have tested Julia (about two time faster than Python)
and finally switched to the compiled languages Delphi (about 10 time faster than Python)
and C++ (about 1.5 times faster than Delphi). The final computations of both the rate
equations model as well as the kinetic Monte Carlo simulation are done parallel using two
codes one in Delphi and one in C++. Typical computation times of the rate model range
from a few minutes up to a few hours and depend on the simulated process temperature.
The computation time is determined by the accuracy of the time interval for the numerical
integration, where process conditions with a smaller monomer density require a smaller
time interval. On the other side, the computation times of the KMC simulations are much
longer and depend crucially on the simulated process temperature, since at a higher T the
rate of surface activity increases and the reduced droplet densities require larger simulation
fields. A conventional KMC simulation for a process temperature of T = 300 °C using a
1400 × 1400 simulation field takes about one week, which we consider as a limit for a
reasonable parameterization. A multiscale KMC approach (see below) computes the same
process substantially faster in about 20 s. Here, the limit for Al droplets are simulations
for T = 460 °C using a 7500 × 7500 simulation field and for Ga droplets T = 550 °C, which
require more than one week.

4. Scaling Analysis

We start the analysis of the experimental droplet density using classical nucleation the-
ory [27–29], which predicts the density of stable three-dimensional clusters by a scaling law

ND ∝ Fp exp[E/(kBT)] (1)

For complete condensation of three-dimensional clusters the scaling energy becomes
E = p(ES + Ei/i), with the energy barrier ES for surface diffusion, p = i/(i + 2.5), the crit-
ical cluster size i, and the energy Ei of a critical cluster.

A scaling analysis of the experimental droplet densities in Figure 1 yields a fitted slope
of E = 0.74 eV for Al (T = 280. . . 570 °C) and E = 0.35 eV for Ga droplets. The reduction of
ND at T > 570 °C for Al droplets was earlier [12] related to droplet coarsening by Ostwald
ripening [29,38].
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Earlier flux dependent data [12] indicate p = 0.5 and thus i = 2.5 for a low T = 200 °C
and Ga droplets. We will show below that this value of i is not valid for the higher
temperatures discussed here. For a comparison with the rate model described below,
an energy barrier EE for escape of atoms from a cluster is introduced with EE = 2Ei/i [12].
Now, the scaling energy becomes E = p(ES + EE/2).

5. Mean-Field Rate Equations

Mean-field rate equations represent a common approach to model nucleation processes
during crystal growth [12,27–29]. The present model considers the average densities of
three types of objects on the growing surface: (1) Mobile adatoms (monomers) with density
N1. (2) Small droplet-like immobile clusters of density Ns that are composed of s atoms
and potentially unstable, i.e., below the critical cluster size i. (3) Droplets with density ND
and an average volume of s atoms that are above the critical cluster size and, thus, stable.
Droplets and clusters are approximated by a hemispherical shape.

Furthermore, three classes of processes are considered: (1) Arrival of the impinging
material with a flux F on the surface and formation of monomers. (2) Attachment of mobile
monomers to either other monomers, to clusters with size s, or to droplets. The correspond-
ing rates are RA,1, RA,s, and RA,D, respectively. In this scheme, collisions between mobile
adatoms represent nucleation events. (3) Escape of monomers from clusters or droplets
with the respective rates RE,s and RE,D.

The driving force for monomer mobility and their attachment to other objects is
the surface diffusion where the hopping frequency is given by the diffusion coefficient
D = ν exp[−ES/(kBT)], with ν = 2kBT/h is a vibrational frequency [39], kB Boltzmann’s
constant, and h Planck’s constant. We have to consider also the capture numbers [27,28,40]
σs, σD = 2π(r/λ)k1(r/λ)/k0(r/λ), which reflects the depletion of the monomer density
around monomers, clusters, or droplets, where k0, k1 are modified Bessel functions, r is the
radius, and λ−2 = (F/D) + 2σ1N1 + σD ND is the surface diffusion length [40]. We assume
that clusters and droplets are hemispherically shaped with a radius of r = 3

√
3s/(2π). This

allows to calculate the monomer attachment rates to other monomers (s = 1) and clusters
with size s as RA,s = N1σsNsD, and to droplets as RA,D = N1σD NDD.

Escape of atoms from clusters with size s is considered with rate RE,s = 2πrζNsDE and
from droplets with rate RD = 2πrζNDDE, where DE = ν exp[−EE/(kBT)], ζ = exp(rc/r)
describes the enhancement of the vapor pressure for small droplets due to the Gibbs-Thomson
effect, rc = 2γVmol/(NAkBT), γ is the surface tension (0.89 N/m for Al and 0.67 N/m for
Ga), Vmol the molar volume (10.0 × 10−6 m3/mol for Al and 11.8 × 10−6 m3/mol for Ga),
and NA the Avogadro constant.

In the following a mean-field model basing on a set of coupled rate-equations is
introduced which describes the droplet nucleation and allows to calculate the time depen-
dence of the average droplet density. Since the critical cluster size i depends on the model
parameters and is not know initially, a maximum possible unstable cluster size j > i is
introduced. The first equation describes the monomer density, which is balanced by the flux
of impinging adatoms, monomer attachment to other monomers, clusters, and droplets,
as well as by escape from clusters and droplets:

dN1(t)/t = F− 2RA,1 −
j

∑
s=2

RA,s − RA,D + 2RE,2 +
j

∑
s=3

RE,s + RE,D (2)

The density of clusters with size of s = 2. . . j− 1 atoms evolves as:

dNs(t)/dt = RA,s−1 − RA,s − RE,s + RE,s+1 (3)

and that of clusters with s = j as:

dNj(t)/dt = RA,j−1 − RA,j − RE,j (4)
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Finally, the droplet density follows:

dND(t)/dt = RA,j (5)

For the model calculations, the j + 1 individual rate equations (Equations (2)–(5)) are
solved numerically (see Section 3).

Figure 2 show an example for the simulated time evolution of various quantities
during Al droplet deposition at F = 0.4 mL/s, deposition time 2.5 s, T = 500 °C, ES = 0.19 eV,
and EE = 1.71 eV. The monomer density N1 initially increases, followed by a decrease due to
nucleation and attachment events. The droplet density ND saturates very fast. We note that
this is not the case at low temperatures. Both the surface diffusion length λ = 300. . . 350 nm
and the capture number σD = 1.4. . . 3.1 increase slightly during deposition. As an interesting
result, the critical cluster size i increases from 10 to 14. The critical cluster is the smallest
cluster size s which fulfills the condition RA,s ≥ RE,s. In the numerical calculations, j must
be always larger then i. In addition, finally the droplet volume which increases nearly
linear with time according to V = s ' Ft/ND.

Figure 2. Simulated time evolution of various quantities during Al droplet deposition at F = 0.4 mL/s,
deposition time 2.5 s, T = 500 °C, ES = 0.19 eV, and EE = 1.71 eV. (a) Monomer density N1, (b) droplet
density ND, (c) surface diffusion length λ, (d) droplet capture number σD, (e) critical cluster size i,
and (f) droplet volume V in atoms.

The rate model has two free model parameters, the energy barrier ES for surface
diffusion of monomers and the energy barrier EE for escape of monomers from clusters
or droplets. We start with the parameterization of the model for the Al droplet density
using the experimental flux F = 0.4 mL/s and a deposition time of 2.5 s, which yields a
droplet material coverage Ft = 1.0 mL. In a first step, we have calculated ND for varied
ES and EE at a constant T = 500 °C. Results are shown in Figure 3a and demonstrate that
ND depends on ES and even stronger on EE. Interestingly, the expected decrease of ND
with decreasing ES is observed only for very large EE = 10 eV, i.e., irreversible aggregation.
Here, the mobile adatoms perform a faster migration at a lower ES and attach preferred to
existing islands instead of nucleating new ones. In contrast to that, a lower EN ≤ 2.0 eV
yields two regimes separated by a maximum of ND. We assume that EE influences ND
by two competing effects. First, the nucleation rate will be reduced due to the escape of
atoms from clusters with size below i. Second, the monomer density is increased by escape
which yields an enhanced nucleation rate. Therefore, the regime at lower ES is diffusion
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controlled and ND decreases with decreasing ES, whereas the regime at higher ES is escape
controlled and ND decreases with increasing ES.
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Figure 3. Parameterization of the rate model for Al droplets. (a) Calculated droplet densities ND for
varied ES and EE at T = 500 °C. The dashed line indicates the experimental ND taken from AFM data.
Agreement between experiment and model results is obtained for a range of pairs ES, EE. (b) Pairs
ES, EE with agreement to the experimental ND for T = 500 °C and T = 280 °C. For ES = 0.19 eV,
EE = 1.71 eV agreement is achieved for both temperatures. (c) Critical cluster size i at the end of the
deposition time as function of T.

A comparison with droplet densities obtained from AFM measurements establish that
a range of pairs ES, EE provides agreement between model calculations and experiments
(Figure 3a). A summary of the possible pairs is plotted in Figure 3b. The same procedure
for T = 280 °C gives a second range of pairs ES and EE (Figure 3b). As a key point, there is
only one pair ES = 0.19 eV, EE = 1.71 eV which yields agreement for both temperatures and
represents an unambiguous determination of both energy values. Figure 1 demonstrates
the very good reproduction of the experimental droplet densities by the rate model using
these parameters.

As a further interesting point, the rate model reproduces also the experimental reduc-
tion of ND at T > 570 °C. This reduction was earlier [12] attributed to droplet coarsening
by Ostwald ripening [29,38]. Since the present model does not consider droplet coarsening,
the relevance of Ostwald ripening for droplet formation is now questionable.

In addition, Figure 3c shows that the temperature dependence of the critical cluster
size i = 3. . . 39 at the end of deposition follows approximately i ∝ exp(T). Since a time
and T-dependent i is not considered in the scaling model (Equation (1)), a scaling anal-
ysis of the droplet densities establishes as an only rough approximation. Nevertheless,
from E = p(ES + EE/2) or p = E/(ES + EE/2), an effective critical cluster size i = 6 can
be estimated.

The parameterization of the model for the Ga droplet density is more complex. Here,
the experimental conditions are F = 0.8 mL/s and a deposition time = 4 s. Again, pairs ES,
EE with agreement between calculated and experiments ND are determined (Figure 4a).
However, in contrast to the Al droplets above, for the Ga droplet density there is no pair
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which provides agreement for the whole temperature range. Only the low temperature
regime from 140. . . 300 °C is reproduced by a common pair ES = 0.115 eV, EE = 1.51 eV and
calculations using these parameters agree well with the AFM data in this regime (Figure 4b).
The behavior at higher temperatures cannot be reproduced using these energies (Figure 4b).
We assume that above 300 °C either ES or EE depends on T. Since a variation of ES has an
only small effect, probably EE is the relevant T-dependent parameter. Assuming a constant
ES = 0.115 eV, Figure 4c shows values of EE which provide agreement with the experimental
ND at varied T. Figure 4c clearly establishes that above 300 °C the experimental ND cannot
be reproduced assuming a constant EE. This is also confirmed by the example in Figure 4b
which agrees only at T = 500 °C using ES = 0.115 eV and a constant EE = 1.71 eV. As a
consequence, for a reproduction of the whole temperature range, the escape energy must be
T-dependent with EE = 1.51 eV for T ≤ 300 °C and EE = 1.51 + 0.1 (T[°C]− 300)/100 eV for
T > 300 °C. This choice for EE allows a very good reproduction of the Ga droplet density
(Figures 1 and 4b).
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Figure 4. Parameterization of the rate model for Ga droplets. (a) Pairs ES, EE with agreement to
the experimental ND for several temperatures as indicated. (b) Experimental Ga droplet density
(symbols) together with model results calculated using different parameters. ES is always 0.115 eV
and EE is indicated. (c) T-dependent values of EE for agreement with the experimental ND at a
constant ES = 0.115 eV.

An analysis of the scaling behavior makes sense only for T ≤ 300 °C where EE is
constant. Here, p = E/(ES + EE/2) yields an effective critical cluster size of about i = 2.

6. Kinetic Monte Carlo Simulations

The kinetic Monte Carlo (KMC) simulation model considers in an atomistic picture
the activity of mobile atoms (monomers) on the growing surface and their nucleation
to droplets (size s ≥ 2 atoms). The model assumes that only monomers are mobile.
The surface is represented as a square simulation field with mn = mx ×my elements and
cyclic boundary conditions. The positions of the respective monomers and droplets as well
a the individual droplet sizes define the status of the growth process.
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We start with a conventional KMC approach (called MC1), where individual atoms
can arrive on the surface with flux F, hop to a nearest-neighbor surface site with rate
D = ν exp[−ES/(kBT)], or escape from a hemispherically shaped droplet composed of s
atoms with rate RE,s = 2πrζν exp[−EE/(kBT)], r is the droplet radius, and ζ the Gibbs-
Thomson enhancement as is already defined above for the rate model. In the MC1 model,
the various rates sum up to a total activity rate:

Rtot = mnF + n1D + ∑
s

nsRE,s (6)

with the monomer number n1 and the numbers ns of droplets with size s. This allows the
random selection of the next process as well as the calculation of the time interval up to the
next event dt = 1/Rtot.

The arrival of an atom on the surface can result either in the formation of a new
monomer, a nucleation event by a direct hit to another monomer, or in droplet growth
by a direct hit. Monomer diffusion can cause a site-change, a nucleation event, or the
attachment to a droplet. An escape from a droplet yields a new monomer at a random
angle and distance r + 2 from the droplet center. A scheme of a single loop of the Monte
Carlo model MC1 is shown in Figure 5.

Status: monomers, droplets

Rates: arrival, diffusion, escape

Total activity rate ⇒ dt

Random Select (RndSel) next process

Arrival Diffusion Escape

RndSel atom

Delete atom

RndSel drop

Drop shrink.

RndSel dir.

New atom

RndSel site

RndSel site

New status

New 
monomer

Nucleation Attachment

New dimer Drop growth

Figure 5. Scheme of a single loop of the kinetic Monte Carlo simulation model.

For a reasonable statistics we consider a minimum of 20 droplets per simulation
field. This requires for Al droplets, e.g., a 1400 × 1400 field for T = 300 °C, 4000 × 4000
for T = 400 °C, and 10,000 × 10,000 for T = 500 °C. Simulation runs for Al droplets at
T = 300 °C are performed on a 1400 × 1400 grid using the energy values ES = 0.19 eV and
EE = 1.71 eV as determined by the rate model above. The simulated droplet density of
2.3 × 1010 cm−2 ± 7% is significantly larger compared to the results of the rate model.
This disagreement demonstrates that the determined energy values are model-dependent.
A discussion will be given below.

We note that a precise parameterization or simulations for higher temperatures are
not accessible with the MC1 model due to the very long computation time. On a personal
computer, a single simulation run for T = 300 °C using the above parameters takes about
one week. This is caused by the large simulation fields in combination with the very high
number of diffusion processes due to the small ES. Simulations for a higher temperature
with even larger simulation fields and a much higher D would require a substantially
longer simulation time.
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To speed-up the Monte Carlo simulation, in the modified simulation model MC2
we replace monomer diffusion via a large number of nearest-neighbour hops by fewer
jumps over longer distances. This approximation is established by DeVita et al. as a
multiscale kinetic Monte Carlo algorithm [32]. In detail, Equation (6) indicates that for
D � mnF + ∑s nsRE,s an individual monomer performs much more diffusion events
compared to arrival plus escape. To reduce the number of simulation steps, all diffusion
events within the time interval τI = 1/(mnF + ∑s nsRE,s) up to the occurrence of the next
arrival or escape are summarized. The monomer surface diffusion length is λ =

√
τD

according to the Einstein relation, with the diffusion time τ. In the time interval τI the
diffusing monomer travels a distance dI =

√
τI D. Or, in other words, the rate RI = 1/τI =

mnF + ∑s nsRE,s for travelling a distance dI by diffusion is given by the time interval
up to the next arrival or escape. If there are other objects at a distance smaller than dI ,
the diffusion can result in either a displacement of the monomer, in nucleation by collision
with another monomer, or in attachment to a droplet. The probability p for a collision with
another object depends on the circular segment r/(πd) covered by the object, where d is the
distance and r is the radius of the object. This gives the nucleation rate RN,ij = rD/(πd3

ij)

at which monomer i collides with a second monomer j, with the distance dij between both.
Accordingly, the rate of attachment to a droplet k is RA,ik = rD/(πd3

ik). Replacing the rate
n1D for monomer diffusion in Equation (6) by the above modifications yields for the total
activity rate:

Rtot = mnF + ∑
s

nsRE,s + ∑
i

(
RI + ∑

j 6=i
RN,ij + ∑

k
RA,ik

)
(7)

As for the MC1 model, Rtot is used for the random selection of the next process and
the calculation of dt = 1/Rtot.

With the modified MC2 model, simulation runs are performed for Al droplets on a
1400 × 1400 grid using the energy values ES = 0.19 eV and EE = 1.71 eV as for the rate
model and MC1. In the temperature range of 150 °C≤ T ≤ 300 °C the simulated Al droplet
densities agree within ±4% to the results of the MC1 simulation. This indicates that the
approximations applied for the multiscale KMC algorithm MC2 are compatible with the
conventional MC1 model. As a huge advantage, a corresponding simulation run takes
about 20 s, which is about 30,000 times faster than the MC1 simulation. This extreme
improvement of the computation time suggests the modifications applied for MC2 also for
processes at higher temperatures.

A parameterization of the modified MC2 simulation for T = 300 °C using a
1400 × 1400 field yields agreement with the experimental droplet density for ES = 0.19 eV
and EE = 1.44 eV (Figure 6c). Similar to the rate model (Figure 3a), the influence of ES is
only weak. Further simulations using the same ES and EE demonstrate also very good
agreement with the experimental droplet densities at higher T (Figure 6c). Due to the
more than exponential increase of the time needed for simulation runs as function of T
(Figure 6d), the model is limited for Al droplets to T ≤ 460 °C. For illustration, Figure 6a
shows an AFM image of an AlGaAs surface after Al droplet deposition at T = 460 °C.
At this temperature, the deposited droplets are transformed into nanoholes during post-
growth annealing [35]. Figure 6b shows a corresponding surface with droplets simulated
with MC2.

As an interesting point, the value of EE = 1.44 eV determined with MC2 is much
smaller than the EE = 1.71 eV given by the rate model. In order to examine the origin of the
deviating energy parameters, we study the relevant processes in more detail. The droplet
density is balanced by nucleation (collisions between mobile monomers) and dimer break
break-off (monomer escape from dimers). To separate both processes, we have performed
simulations for irreversible aggregation, where escape processes are frozen by a very high
EE = 10 eV and droplet nucleation is controlled only by ES. Here, for Al droplets, T = 460 °C,
and ES = 0.19 eV, the rate model yields ND = 2.8 × 1010 cm−2 and the MC2 simulation a
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nearly identical ND = 2.6 × 1010 cm−2. The KMC model simulates nucleation basing on a
more realistic atomistic picture, where diffusing monomers located on individual positions
can collide. Here, the very small deviation between KMC and rate model results justifies
the approximations made by the rate model, where the nucleation rate is calculated via
N2

1 σ1D assuming an average monomer density and a capture number which describes the
monomer depletion around other objects.
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Figure 6. (a) 3 × 3 µm AFM image of an AlGaAs surface after Al droplet deposition at T = 460 °C.
At this temperature, the deposited droplets are transformed into nanoholes during post-growth
annealing (droplet etching). (b) Surface with Al droplets simulated using the MC2 model with
ES = 0.19 eV, EE = 1.44 eV on a 7500 × 7500 field (3 × 3 µm). (c) Comparison of experimental Al
droplet densities with simulation results obtained using MC2. (d) Time needed for a simulation run
as function of the modeled process temperature.

Now we switch to reversible aggregation with EE = 1.71 eV according to the rate
model. Here the rate model yields ND = 2.4 × 108 cm−2 in agreement with the AFM data,
whereas the MC2 simulation computes a much higher ND = 9.2 × 109 cm−2. This example
demonstrates that the difference between rate model and MC2 simulation is related to
dimer break-off. The rate model calculates dimer break-off via 2πrζN2DE and, after escape,
the monomers increases the average monomer density on the whole surface. For the
atomistic Monte Carlo simulation, after escape, a monomer is still in the close proximity
of the other monomer with a high probability for a re-nucleation and, thus, a recovery of
the dimer. This effect causes an effective reduction of the rate of dimer break-off events for
the KMC simulation and finally results in much higher droplet densities compared to the
rate model. We note, that we consider the atomistic approach of the KMC simulation to be
more realistic.

Finally, we have simulated the density of Ga droplets using the MC2 model. Since
for Al droplets the value of ES is model-independent, we use here ES = 0.115 eV as
given by the rate model. Furthermore, the results of the rate model establish that for
Ga the value of EE depends on the temperature (Figure 4). A parameterization of the
MC2 model yields for T ≤ 300 °C a constant value of EE = 1.24 eV and for T > 300 °C
a T-dependent EE = 1.24 + 0.06 (T[°C] − 300)/100 eV. These values of ES and EE allow a
very good reproduction of the Ga droplet density by MC2 as is demonstrated in Figure 7.
Like for the MC2 simulations of the Al droplet density, the values of EE are smaller than
those of the mean-field model (EE = 1.51 eV for T ≤ 300 °C and EE = 1.51 + 0.1 (T[°C] −
300)/100 eV for T > 300 °C). We assume that the above re-nucleation effect also reduces the
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effective rate of escape processes from Ga droplets and requires a lower EE in comparison
to the mean-field model. The accessible temperatures up to 550 °C are higher compared to
MC2 simulations of Al droplets which is caused by the lower densities of Ga droplets and
the, thus, reduced simulation fields.

Figure 7. Comparison of experimental Ga droplet densities with simulation results obtained using
the MC2 model with ES = 0.115 eV and a T-dependent EE (see text).

7. Conclusions

The deposition temperature controls the density of Ga and Al droplets during droplet
epitaxy and etching over several orders of magnitude. This allows the self-assembled cre-
ation of quantum emitters with a tailored feature density. In particular ultra-low densities
around 107 cm−2 are interesting for applications in quantum information technology, where
individual quantum emitters can be easily addressed. The droplet density is balanced
by nucleation events caused by collisions between diffusing adatoms and the escape of
atoms from droplets. Both processes are characterized by the material dependent activation
energies ES for surface diffusion and EE for escape.

The present manuscript studies the applicability of three different theoretical ap-
proaches for the modeling of the temperature-dependent density of Ga and Al droplets.
An analysis basing on a scaling law requires the knowledge of the critical nucleus size i.
Since for the droplets studied here, the value of i depends on temperature and varies with
the deposition time, a simple scaling analysis is questionable. A model using mean-field
rate equations is able to quantitatively reproduce the experimental Al droplet densities
over the whole temperature range using ES = 0.19 eV and EE = 1.71 eV. This is an important
result and demonstrates that the temperature dependent nucleation is balanced by the
kinetics of droplet nucleation and the escape of atoms from droplets. Other processes
such as Ostwald ripening as assumed earlier [12] are not relevant. Furthermore, the small
value of ES indicates a very high activity of the mobile Al adatoms on the surface. In con-
trast to that, for Ga droplets the experimental droplet densities can be reproduced by
ES = 0.115 eV, EE = 1.51 eV only at low temperatures up to 300 °C, higher temperatures
require a T-dependent EE. This result establishes that for T > 300 °C additional processes
become relevant that modify the binding energy of adatoms to the droplets.

In a further approach for modeling, the Al droplet density is studied using a ki-
netic Monte Carlo (KMC) simulation basing on an atomistic representation of the mobile
adatoms on the surface. A conventional KMC model requires very long computation times
for modeling high process temperatures with high surface activity and low droplet density.
Using a multiscale KMC algorithm [32] to shorten the computation times, the KMC simu-
lation quantitatively reproduces the Al droplet densities up to T = 460 °C. Interestingly,
the value of ES = 0.19 eV is equal to the result obtained using the rate model, but the value
of EE = 1.44 eV is much smaller. This is attributed to the mean-field assumption of the rate
model, where adatoms after escape from a droplet increase the average droplet density
over the whole surface. In contrast to that, in the KMC model the escaped atoms are still in
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the close proximity of the droplet with a high probability of a recapturing. This reduces
the effective rate of escape processes and, thus, requires a lower EE in comparison to the
mean-field model.

We conclude that a KMC model is more accurate for modeling of droplet nucleation
compared to a mean-field rate model. On the other side, the computation times of the
rate model are substantially shorter which allows the modeling also of high process
temperatures. Therefore, a modified rate model which considers the spatial distribution of
adatoms after escape from a droplet is highly desirable.
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