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Mice lacking DYRK2 exhibit congenital
malformations with lung hypoplasia and altered
Foxf1 expression gradient
Satomi Yogosawa 1, Makiko Ohkido2, Takuro Horii3, Yasumasa Okazaki 4, Jun Nakayama 5,

Saishu Yoshida1, Shinya Toyokuni 4, Izuho Hatada3,6, Mitsuru Morimoto 7 & Kiyotsugu Yoshida 1✉

Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular

mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice

display congenital malformations in multiple organs. Transcriptome analysis reveals mole-

cular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant

pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of

primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to

altered airway branching and insufficient alveolar development. Furthermore, the Foxf1

expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes,

which are necessary for proper airway and alveolar development. In ex vivo lung culture

system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by

restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for

embryogenesis and its disruption results in congenital malformation.
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Congenital malformations are a major issue in pediatric
healthcare and the leading cause of infant mortality in the
United States1. A recent study showed that an estimated

0.5 million children aged 0–59 months die from congenital
anomalies2. The analysis of molecular pathology of congenital
malformations provides a better understanding of the etiology of
pediatric diseases, which also identify essential genes in normal
development. Embryogenesis is a well-orchestrated process that is
tightly regulated by genes related to transcription factors, mor-
phogen gradients, and their regulators. Since congenital mal-
formations occur during embryogenesis, these genes play
important roles in multiple congenital anomalies. In addition to
improving our understanding of the particular genes in devel-
opment, the genetic knockout of these genes in mice often
reproduces congenital malformations, providing extremely
insightful information for the study of refractory pediatric
diseases3–8.

Lung development is well-orchestrated by the temporal and
spatial expression of transcription factors, hormones and growth
factors6–8. Lung morphogenesis depends on mesenchymal–
epithelial interaction which is mediated by SHH, WNTs, FGFs,
TGF-β and BMP47,9,10. The mouse lung appears from the ventral
foregut endoderm by segregating from esophagus in an
embryonic day (E) 9.5 embryo. Trachea arises from the more
proximal foregut tube, whereas the rest of the lung develops from
two ventral buds that format the distal end of the trachea and
undergoes branching morphogenesis to produce the pulmonary
tree11,12. Many genes essential for early lung development are also
required for other part of embryogenesis, and deletion of these
genes sometimes leads to death in utero or neonatal lethality13–15.
Among the transcription factors known to be crucial for lung
development, the Fox family is of particular importance as a
regulator. Genetic studies of mice have previously demonstrated
that Foxf1 transcription in the lung mesenchyme is activated by
epithelial Shh via epithelial-to-mesenchymal interaction and is
required for airway branching morphogenesis15,16. However, the
mechanisms underlying lung development have not been
elucidated.

Dual-specificity tyrosine-phosphorylation-regulated kinase 2
(DYRK2) is a serine/threonine kinase that directly phosphorylates
p53 at Ser46 to regulate apoptotic cell death in response to DNA
damage17–20. The knockdown of DYRK2 increases cell pro-
liferation in cancer cells and tumor progression21–24. Importantly,
accumulating studies have demonstrated that DYRK2 is down-
regulated in various cancer tissues, and that low DYRK2
expression is closely associated with a poor prognosis21,22,25–27.
These findings collectively indicate that DYRK2 is implicated in
anti-tumor effects20. We recently reported that loss of Dyrk2 in
mice leads to the suppression of Shh signaling to cause skeletal
abnormalities28. However, limited information is available
regarding the function of Dyrk2 during embryogenesis.

In the present study, we report the generation of Dyrk2-defi-
cient mice using the CRISPR/Cas9 nickase system. We find that
Dyrk2-deficient mice exhibit congenital malformations of multi-
ple organs and death soon after birth due to respiratory failure.
Dyrk2 is required for a gradient pattern of Foxf1 expression in the
fetal lung, which is needed to coordinate airway branching
morphogenesis. Collectively, we show that kinase activity of
epithelial Dyrk2 is involved in proper lung mesenchymal devel-
opment by regulating Shh signaling.

Results
Generation of Dyrk2-deficient mice. We have previously shown
that DYRK2 exerts anti-tumor effects in various cancer
cells21,22,24,25,29. However, little is known about the function of

Dyrk2 gene ablation during embryogenesis. To address this issue,
we generated Dyrk2-deficient mice using the CRISPR/Cas9
nickase system (Supplementary Fig. 1a). Three heterozygous mice
with deleted mutations (32, 19, or 34 bp deletion) in Dyrk2 gene
were obtained (Supplementary Figs. 1b and 2b and Supplemen-
tary Table 2). We further intercrossed F1 heterozygous mice with
three different deletion patterns to generate wild type (WT),
Dyrk2+/−, or Dyrk2−/− (Supplementary Fig. 1c)30. We then
validated the loss of Dyrk2 protein expression in the corre-
sponding tissues of E18.5 Dyrk2−/− embryos, while the expres-
sion levels of other Dyrk family members (Dyrk1A, 1B, and 3)
remained unchanged, confirming the exclusive and precise edit-
ing of the Dyrk2 gene (Supplementary Figs. 1d, e and 2c)30. As
shown in Supplementary Table 3, although there were no
Dyrk2−/− homozygotes in the post-weaning pups, Dyrk2−/−

embryos survived until E18.5, according to the Mendelian ratio.
However, Dyrk2−/− neonates (P0) died soon after birth. These
findings indicate that Dyrk2 is required for survival after birth
and that it likely plays a role in embryonic organ development.

Dyrk2-null embryos exhibit congenital malformations. We
initially confirmed that none of the three types of Dyrk2+/− mice
showed significant defects in the size or shape of the organs
(Supplementary Fig. 3). To determine the biological function of
Dyrk2 during embryogenesis, we examined the gross morphology
of Dyrk2−/− embryos for each deletion type. At E18.5, all Dyrk2−/

− embryos displayed multiple defects, including the omphalocele
phenotype, craniofacial development, short limb, and anal atresia,
as well as an open eyelid phenotype at times (Fig. 1a–c and
Supplementary Fig. 4a–c). In addition, abnormalities of tongue,
cleft palate, and hair follicles were also observed in the mutants
(Fig. 1d–f and Supplementary Fig. 4d–f). Further, limb dysmor-
phology was observed, including ectrodactyly, syndactyly, and
polydactyly, as well as shortened radial bones (Fig. 1g, h and
Supplementary Fig. 4g, h). These results suggest that Dyrk2−/−

embryos exhibit congenital malformations in multiple organs. We
hypothesized that Dyrk2 is a key gene involved in the develop-
ment of the several vital organs.

To test this hypothesis, we validated the phenotypes of
developmental abnormalities in Dyrk2−/− embryos. The
Dyrk2−/− embryos displayed overall growth retardation. Skeletal
staining revealed vertebral defects, including butterfly vertebrae,
and many bone abnormalities in the ribs and radial bone in E18.5
Dyrk2−/− embryos (Figs. 1c, d, h and 2a and Supplementary
Figs. 4c, d, h and 5a). The short arch ribs and vertebral body were
also found to be poorly mineralized. Moreover, Dyrk2−/−

embryos were found to have a severely truncated gastrointestinal
tract, with shortened small and large intestines (Fig. 2b–d and
Supplementary Fig. 5b–d). The mutant embryos exhibited an
imperforate anus with recto-urethral fistula, anal atresia, and
persistent cloaca (Fig. 2b and Supplementary Fig. 5b). These
phenotypes are typical for anorectal malformations. Dyrk2
deficiency affected intestinal villus morphogenesis and prolifera-
tion patterns with omphalocele phenotypes (Fig. 2c, d and
Supplementary Fig. 5c, d). The Dyrk2−/− embryos also displayed
cardiovascular defects, although no heart defect was observed
(Fig. 2e and Supplementary Fig. 5e). Defects in the left and right
subclavian artery were observed in Dyrk2−/− embryos. Both the
trachea and esophagus were hypoplastic in the Dyrk2−/−

embryos, and the cartilaginous rings of the Dyrk2−/− embryo
tracheas were smaller, as well as split in some cases (Fig. 2f, g and
Supplementary Fig. 5f, g), suggesting a tracheal stenotic
phenotype. The esophagus of the Dyrk2−/− embryos contained
very small lumens lacking the typical folded structure. The
Dyrk2−/− embryos also displayed aberrant patterning of renal
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medullary collecting ducts, and lobe folds, but no horseshoe
kidney, which has been reported to be associated with genetic
abnormality in Shh (Fig. 2h, i and Supplementary Fig. 5h, i). We
assessed the detailed phenotypes of the respiratory organs since
lung hypoplasia leads to neonatal lethality of refractory congenital
disease. As expected, the deletion of Dyrk2 caused severe lung
hypoplasia and fatality from respiratory failure at P0 (see below).
The Dyrk2−/− embryos exhibited lung immaturity, hypoplasia,
fusion of the right lung lobes, and a large cyst on the lower left
lung (Fig. 2j, k and Supplementary Fig. 5j, k). These findings
collectively suggest that Dyrk2 is essential for normal lung
development. The summary of abnormal phenotypes in 3
different Dyrk2−/− mice lines was shown in Supplementary
Data 1. There was no significant difference among three different
Dyrk2−/− mice lines (Table 1 and Fig. 2l, and Supplementary
Data 1). Thus Dyrk2−/− mice exhibit developmental abnormal-
ities and congenital malformations of multiple organs.

In contrast, the Dyrk2−/− embryos exhibited no morphological
abnormalities in the brain, heart, liver, or pancreas (Supplemen-
tary Figs. 6a–e and 7a–e). A histological analysis of the stomach
further revealed a thinner epithelial morphology in mutants
compared to WT, although their gross morphologies were
indistinguishable (Supplementary Figs. 6f and 7f). Furthermore,
abnormalities of seminiferous tubule were also observed in the
Dyrk2−/− embryos (Supplementary Figs. 6g and 7g).

Dyrk2−/− embryo altered expression of organogenesis asso-
ciated genes. Since Dyrk2−/− mice displayed a wide range of
developmental abnormalities, we speculated that the phenotype
of Dyrk2−/− mice appears at the early organogenesis stage. To
understand the cause of the abnormalities in Dyrk2−/− mice, we
compared gene expression profiles between the WT and
Dyrk2−/− embryos at E8.5 and E10.5 using RNA collected from

whole embryos. An examination of the microarray data revealed
963 individual probes in E8.5 and 733 individual probes in E10.5
with a 1.5-fold or greater change, which were selected for further
analysis. We also observed that the expression levels of genes
related to lymphocyte and erythrocyte development and some of
top differentially expressed genes tended to increase or decrease
in both E8.5 and E10.5 Dyrk2−/− embryos (Supplementary
Fig. 8). The results of the GO analysis using DAVID are provided
in Supplementary Table 6. Since embryogenesis is a well-
orchestrated process that is tightly regulated by transcription
factors, we focused on the transcription factor genes (97 probes in
E8.5 and 65 probes in E10.5) that may be implicated in the
abnormal phenotypes of Dyrk2−/− embryos.

The results are displayed as heatmaps (Fig. 3a, b). Among
these, we focused on the downregulated genes that are reasonable
for interpreting the relationship between developmental abnorm-
alities. This comprehensive analysis revealed decreases in gene
expressions associated with lung development; Foxa2, Notch1,
Foxp2, Nkx2.1, and intestine development; Cdx2, Foxf2, Foxl1,
and skeletal development; Hoxd12, Hoxd13, Scx, Brachyury, and
cleft palate; Foxf2 (Fig. 3a–c). Importantly, the expression of
several Fox family genes was reduced in both E8.5 and E10.5
Dyrk2−/− embryos, suggesting that altered gene expression of Fox
families may be involved in developmental abnormalities.

We validated the expression of genes that play important roles
in lung development as lung defects, including hypoplasia and the
fusion of the right lung lobes, have been previously found in
Dyrk2−/− mice (Fig. 3d)7. Interestingly, Foxf1 expression was
significantly reduced in the Dyrk2−/− embryos (Fig. 3d). In
mouse models, Foxf1 transcription in the lung mesenchyme is
activated by epithelial Shh15 and is required for airway branching
morphogenesis16,31. As expected, Shh expression was reduced in
E10.5 Dyrk2−/− embryos (Fig. 3d). Because the mutant embryos
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did not lower the Shh expression at E14.5, Shh may be required
for initiating Foxf1 expression and may influence airway
branching in primordial lung around E10.5. We further found
that the primordial endoderm organs showed no significant
defect in Dyrk2−/− embryos at E10.5 (Fig. 3e), indicating that
Dyrk2−/− embryos initially exhibit genetic abnormalities around
E8.5–10.5 that may be responsible for the developmental defects.

Dyrk2−/− mice die due to respiratory failure caused by upper
respiratory tract malformation and lung hypoplasia. As shown
in Supplementary Table 3, Dyrk2−/− mice were born in Men-
delian ratios, with all Dyrk2−/− neonates dying soon after birth.
We found that Dyrk2−/− mice died due to respiratory failure. The
neonate lungs of Dyrk2−/− mice contained minimal or no air and
sank when placed in physiological salt solution, while those of
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WT mice floated (Fig. 4a). Micro-CT imaging analysis revealed
that the mutant neonates failed to inflate their lungs (Fig. 4b and
Supplementary Fig. 9a). The first breath of these pups was
examined by cesarean section at E18.5. The Dyrk2−/− mice failed
to initiate normal breathing; however, it showed deep respiratory
movements involving the whole-body muscles immediately after
birth (Supplemental Movies 1 and 2). The mutant mice

subsequently became cyanotic and survived for only a few min-
utes. This observation indicates a cause for respiratory failure, but
not neuromuscular, muscular dysfunctions, or skeletal anomalies.

We further examined the details of lung development in
Dyrk2−/− mice to determine the causal phenotype of lung
hypoplasia and respiratory failure. At E18.5, in normal develop-
ment, both alveolar epithelial cell (AEC) I and II line the

Table 1 Congenital malformation phenotypes in Dyrk2−/− mice.

Craniofacial malformations (cleft palate, craniofacial abnormalities)
Hair follicle anomalies (arrested hair follicle phenotype)
Radial/Limb anomalies (shortened radial bone, hypoplasia, ectrodactyly, syndactyly, polydactyly)
Vertebral defects (lack of vertebral body, butterfly vertebrae)
Intestinal/Anorectal malformations (omphalocele phenotype, truncated gastrointestinal tract, cloaca, imperforate anus)
Cardiac defects (the left and right subclavian artery defects)
Tracheoesophageal malformations (esophageal and tracheal stenosis, smaller cartilaginous rings)
Renal malformations (hypoplasia, aberrant patterning of renal medullary collecting ducts, lobe folds)
Lung defects (hypoplasia, fusion of right lung lobes, a large cyst of lower left lung)

The summary of congenital malformation phenotypes in E18.5 Dyrk2−/− mice. Detailed abnormal phenotypes of each organ are indicated in parentheses.
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peripheral saccules, which is the typical mature structure of the
lung at this stage of gestation. As expected, normal lung inflation
and histology with differentiated distal alveolar saccules were
observed in the lung of WT mice (Figs. 2j, k and 4c and
Supplementary Fig. 5j, k). In contrast, Dyrk2−/− appeared to
show severe defects in the dilation with thicker septa and
significantly lower weights. Furthermore, the expression of AEC I
marker, Podoplanin was decreased in the E18.5 Dyrk2−/− lung
(Fig. 4d, e) while there were no significant differences in the
expression of AEC II marker, Prosurfactant Protein C (Pro-SP-C)
and Surfactant Protein C (SP-C), and endothelial marker,
VEGFR2. These observations indicate that the Dyrk2−/− embryos
exhibited lung immaturity in addition to tracheal stenosis and
cleft palate. Collectively, our findings suggest that upper
respiratory tract malformation and lung immaturity are most
likely the cause of neonatal lethality in Dyrk2−/− mice.

Dyrk2 is required to form a subepithelial-to-distal expression
gradient of Foxf1. We investigated the potential role of Dyrk2 in
lung hypoplasia and airway branching defects, as the fusion of the
right lung lobes was observed in the Dyrk2−/− mutants (Fig. 2j,
k). At E11.5, the primordial lung displayed the main branch,
demarcating the left and right lungs, followed by several branched
lung buds (Fig. 5a). The normal lung showed four tips of lung
buds in the right and three tips in the left. However, the Dyrk2−/−

lungs displayed lung buds with three on the right and two on the
left. In addition, the mutants showed increased bronchial width,
compared with the lung of WT mice (Fig. 5a, b). Furthermore,
while the normal lung showed abundant cell proliferation and cell
death in mesenchyme7,32, the Dyrk2−/− lungs reduced both cell
proliferation and cell death (Fig. 5c). These observations suggest
that Dyrk2 is necessary for the development of airway branching.

We then sought to identify the molecular phenotype of
Dyrk2−/− responsible for these effects on branching morphogen-
esis, and thus re-examined the expression reduction phenotype of
Foxf1. The transcription factor Foxf1 plays an important role in
epithelial–mesenchymal signaling. Foxf1 heterozygote mutant
mice have been previously found to display abnormal lung
morphogenesis and a narrowing of the esophagus and trachea,

although homozygous Foxf1-null mice died before E1015,16. To
better understand how Dyrk2 is involved in early lung
development, we examined the expression of Dyrk2 and Foxf1.
Dyrk2 was detected in epithelial cells at E11.5 and E18.5 (Fig. 5d),
particularly, the subapical region of ciliated cells (FoxJ1/
Acetylated tubulin-positive cells) at late stage (Fig. 5e, f). These
findings suggest that Dyrk2 express epithelial cells throughout
lung development. Interestingly, a gradient expression pattern of
Foxf1 protein between the subepithelial and distal mesenchyme
was observed in the lungs of WT mice (Fig. 5g). Consistent with
our qRT-PCR analysis (Fig. 3d), Foxf1 expression was signifi-
cantly reduced in the subepithelial area of E11.5 Dyrk2−/− lungs,
which resulted in an altered gradient expression pattern
(Fig. 5g–i). Accordingly, E14.5 Dyrk2−/− lungs also displayed
reduced expression of the Foxf1 target genes, including αSMA,
Myocd, and Hoxb7, and increased Wif1 expression, as described
previously (Fig. 5j)31. To determine whether the kinase activity of
Dyrk2 is required for Foxf1 expression, we conducted ex vivo
embryonic lung culture with DYRK inhibitor, harmine (Fig. 5k).
As expected, inhibition of the Dyrk2’s kinase activity reduced
Foxf1 expression. Previous reports show that in mouse models,
mesenchymal Foxf1 transcription is activated by epithelial Shh
and is required for airway branching morphogenesis15,16. To
determine whether Shh activation is required for Foxf1 expres-
sion, we next conducted ex vivo Dyrk2−/− lung culture with Shh
activator, smoothened agonist (SAG). In the Dyrk2−/− lungs, as
expected, Shh activation restore Foxf1 expression and its targets
(Fig. 5l).

These findings suggest that Dyrk2 is required to form a
subepithelial-to-distal expression gradient of Foxf1 via inducing
Shh signaling, which contributes to proper airway branching
morphogenesis through the induction of downstream
target genes.

Discussion
In the present study, we demonstrated that the loss of Dyrk2
represents developmental abnormalities and congenital mal-
formations of multiple organs (Fig. 6a). We discovered that
Dyrk2 is an important regulator of embryogenesis, which is
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required for a subepithelial-to-distal expression gradient of Foxf1
via inducing Shh signaling in the primordial lung (Fig. 6b). Its
disruption could be the cause of altered airway branching
and alveolar development in the mutant. In this context, the
Dyrk2 gene was found to be closely related to lung development
by regulating the expression pattern of Foxf1 through Shh
signaling.

Based on our findings, we propose that an interaction between
Dyrk2 and Shh-Foxf1 signaling is particularly important in lung
development. Therefore, its disruption results in neonatal leth-
ality due to respiratory failure. Foxf1 is a transcription factor,
which is expressed in lung mesenchyme, endothelial cells, and
airway smooth muscle cells31,33. Foxf1 promotes
mesenchymal–epithelial signaling and stimulates cellular pro-
liferation. Haploinsufficiency of Foxf1 causes severe lung mal-
formations such as hypoplasia, fusion of right lung lobes,
esophageal and tracheal stenosis, the hypoplastic tracheal carti-
lage, and airway branching defects15. Genetic studies of mice have
previously demonstrated that Foxf1 acts downstream of Shh-Gli
signaling via epithelial-to-mesenchymal interaction and is
required for airway branching morphogenesis and lung
lobation15,16.

In the current study, our Dyrk2−/− mice exhibited significant
reduction of Foxf1 expression and lung malformations such as
hypoplasia, fusion of right lung lobes, esophageal, and tracheal
stenosis, the hypoplastic tracheal cartilage, and airway branching
defects. These defects are consistent with the phenotypes of
Foxf1+/− mice, suggesting that Dyrk2 acts as a positive regulator
of the Shh–Foxf1 interaction to generate the subepithelial-to-
distal expression gradient of Foxf1.

Based on this finding and the recently published paper (Yoshida
et al.28), we propose that the Dyrk2-Shh-Foxf1 axis plays a crucial
role in mouse organogenesis. Given that the kinase activity of
Dyrk2 is required for Foxf1 expression and the loss of Dyrk2
results in the downregulation of Shh expression at early lung
development, Dyrk2 may regulate epithelial-to-mesenchymal
interaction via inducing Shh ligand expression dependent upon
its kinase activity. Whereas it is still possible that other targets of
Dyrk2 would be involved in the morphogenesis defects in the
mutant, altered Dyrk2-Foxf1 axis is a promising pathway as a
cause of the lung hypoplasia phenotype in Dyrk2−/− mice. The
conditional expression of Dyrk2 and/or Shh signaling and Foxf1 in
developing endodermal epithelial or splanchnic mesodermal cells
may clarify this question. Further studies are required to better
understand the lung development to elucidate how Dyrk2 reg-
ulates Shh and Foxf1 expression during embryogenesis.

We also showed that Dyrk2 is expressed in epithelial cells
throughout the lung development, particularly in the subapical
region of ciliated cells in the late embryonic lungs. The ciliated
cells are the target of viral infection and play an important role in
respiratory health34. Therefore, detailed analysis of Dyrk2 in
ciliated cells could help to better understand the function of
ciliated cells how to contribute to respiratory health.

We discovered that Dyrk2−/− mice exhibit defects in the
multiorgan development, such as butterfly vertebrae, imperforate
anus, the left and right subclavian artery defects, tracheoeso-
phageal stenosis, shortened radial bone, polydactyly, and lung
hypoplasia in addition to omphalocele, truncated gastrointestinal
tract, hair follicular hypoplasia, cleft palates, and craniofacial
abnormalities. Dyrk2−/− mice also exhibited decreased expression
of transcription factors responsible for lung development, intes-
tine development, skeletal development, and cleft palate. These
findings indicate that Dyrk2 may play crucial roles in multi-organ
development by regulating these genes.

Several knockout mice of these genes exhibit congenital mal-
formations likewise the phenotypes of Dyrk2−/− mice. Indeed,
Foxl1−/− mice have delayed villus morphogenesis, such as fewer
and less defined villi35. Hoxd13−/− mice exhibit limb defects, such
as strong reductions in length, complete absences, or
improper segmentations of many metacarpal and phalangeal
bones36. Foxf2−/− mice died with cleft palate and air-distended GI
Tract within 18 h37. In contrast, Foxa2−/−, Notch1−/−, Cdx2−/−,
and Brachyury−/− mice show severe phenotypes that contribute to
embryonic lethality during mid-gestation38–41. Furthermore,
considering the knockout mice of Shh-Foxf1 signaling, Shh−/−,
Foxf1−/−, and Gli2−/−;Gli3−/− mice show severe embryonic lethal
phenotypes15,42–50. Conversely, Gli2−/−, Gli3−/−, Gli2−/−;
Gli3+/− and Foxf1+/− mice show the phenotypes of congenital
malformations mostly corresponding to those of Dyrk2−/− mice
(Gli2−/−; lack of vertebral body, Gli3−/−; anal stenosis and
polydactyly, Gli2−/−;Gli3+/−; agenesis of trachea and esophagus,
Foxf1+/−; lung malformations and the asymmetry attachment of
rib-sternum and tracheoesophageal stenosis)15,47,50,51. Since Shh
and Foxf1 expression were significantly reduced but not com-
pletely abolished in Dyrk2−/− mice, abnormal phenotypes
in Dyrk2−/− mice were not severe than those in Shh−/− and
Foxf1−/− mice. These findings collectively support that the Dyrk2
gene is closely related to Shh–Foxf1 signaling. In this regard,
Dyrk2−/− mice provide an insight into a novel understanding of
embryogenesis. Further studies are needed to better understand
the embryogenesis how Dyrk2 regulates responsible genes for
organogenesis.
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Interestingly, patients with microdeletion/mutation of the
FOXF1 gene display multiple phenotypes, such as alveolar
capillary dysplasia with misalignment of pulmonary veins (ACD/
MPV), esophageal atresia with/without tracheoesophageal fistula
(EA/TEF), and the VATER/VACTERL association52–55. In
addition, mutations in HOXD13 genes cause synpolydactyly, a
limb malformation characterized by an additional digit between
digits 3 and 4 and a fusion among these digits56. In the current
study, our Dyrk2−/− mice exhibited multiple developmental
abnormalities, such as butterfly vertebrae, imperforate anus, the
left and right subclavian artery defects, tracheoesophageal ste-
nosis, shortened radial bone, and polydactyly, and lung hypo-
plasia, and significant reduction of Foxf1 and Hoxd13 expression.
These findings may suggest that DYRK2 may involve in these
pediatric diseases.

Our findings also suggest that DYRK2 is a candidate for a
genetic mutation in human congenital malformation. Until now,
a microdeletion in the chromosome 12q15, including the human
DYRK2 gene, or a point mutation in the gene body of DYRK2 has
never been identified in patients with human congenital mal-
formation. In this context, an exome sequencing analysis of these
patients could help to determine the relationship between the
DYRK2 gene and refractory pediatric disease.

Our results indicate that detailed analysis of the pathological
and molecular phenotypes of our Dyrk2−/− mice may help the
search for novel criteria and/or marker for the prenatal diagnosis
of congenital malformation. In the future studies, the functional
activation of DYRK2 during embryogenesis may have a beneficial
effect in the congenital malformation.

In summary, this study demonstrated that the phenotypes of
Dyrk2-deficient mice exhibit developmental abnormalities and
congenital malformation. We confirmed that Dyrk2 is essential
for survival and provide a basis for improving our understanding
of embryogenesis and refractory pediatric disease.

Methods
Animals. C57BL/6J and ICR mice were purchased from Charles River, Japan. All
animal experiments were approved by the Animal Care and Experimentation
Committee of Gunma University and Institutional Animal Care and Use Com-
mittee of Jikei University. The animals were housed in individual cages in a
temperature-controlled and light-controlled environment, and had ad libitum
access to chow and water.

Generation of Dyrk2-deficient mice. Dyrk2-deficient mice were generated using
the CRISPR/Cas9 nickase system57. Four paired single guide RNAs (sgRNAs)
(Supplementary Table 1) were designed for exons 1 and 3 of the Dyrk2 gene and
inserted into the gRNA cloning vector (Addgene). Candidate sgRNAs (Supple-
mentary Fig. 1a) were transfected into B6 ES cells. The gene editing efficiency for
the Dyrk2 gene was confirmed using a GeneArt Genomic Cleavage Detection Kit
(Thermo Fisher Scientific). Candidate 2 sgRNA was the most efficiently edited
(Supplementary Fig. 2a) and was thus used as the targeting gRNA of the Dyrk2
gene. In vitro transcribed hCas9 D10A mRNA and two sgRNAs were injected into
the cytoplasm of fertilized eggs from female C57BL/6J mice. The injected embryos
were transferred into the ampulla of the oviduct of pseudopregnant ICR females. A
total of thirteen pups were obtained as the offspring.

Genotyping. To detect indel mutations of Dyrk2, the target site of Dyrk2 alleles was
amplified and attached with dATP, followed by cloning into the T-vector pMD20
(Takara) and DNA sequencing analysis using the BigDye Terminator v3.1 Cycle
Sequencing Kit (Thermo Fisher Scientific). The primer sequences and indel
mutation of the pups are listed in Supplementary Tables 1 and 2.

Quantitative PCR (QPCR) analysis. Total RNA was isolated from the embryos by
using a RNeasy Mini Kit according to the manufacturer’s instructions (Qiagen).
Total RNA was synthesized using a PrimeScript™ 1st strand cDNA Synthesis Kit
(Takara). Quantitative PCR was performed using the primer sequences listed in
Supplementary Table 4, a KAPA SYBR FAST ABI Prism qPCR Kit (Kapa Bio-
systems), and PicoReal96 (Thermo Fisher Scientific), according to the manu-
facturer’s instructions. Gene expression was normalized to that of the input control
(36B4)58.

Western blotting. Tissues were homogenized in buffer (10 mM Hepes, pH 7.4,
1 mM PMSF, cOmpleteTM Mini Protease Inhibitor Cocktail (Sigma)) using a Milti-
bead shocker (Yasui kikai) at 2500 rpm twice for 30 s. Tissue homogenates were
then lysed in buffer (1% TritonX-100, 100 mM NaCl) under gentle rotation for
30 min at 4 °C and centrifuged at 14,000 rpm for 10 min. Protein concentrations
were determined by DC Protein Assay (Bio-Rad). The tissue extracts (30–60 μg)
were separated by SDS‑PAGE and transferred to nitrocellulose membranes. The
membranes were incubated with the indicated antibodies and visualized using
chemiluminescence (PerkinElmer). The primary antibodies used are listed in
Supplementary Table 5.

Morphological analysis. Whole-body and tissues from the fetal lungs were fixed
in 10% neutral buffered formalin or 4% paraformaldehyde before paraffin
embedding or freezing, followed by processing on regular slides. Sections were
stained with hematoxylin and eosin (H&E) and the indicated antibodies. The
primary antibodies used are listed in Supplementary Table 5. Images were obtained
using a BZ-9000 fluorescence microscope (Keyence) and Olympus IX71 equipped
with an DP73 camera. The quantification of the mean Foxf1 fluorescence intensity
in the subepithelial mesenchyme of E11.5 lungs was measured using ImageJ in five
places. The plot profile image obtained showed the fluorescence intensity of foxf1
along the lines of interest on the indicated images. The calculation of the Ki67 or
cleaved caspase 3 positive cells in the mesenchyme of E11.5 lungs was measured
using ImageJ in ten places. For whole-mount immunostaining, fixed E11.5 lungs or
E10.5 embryos were stained with anti-E-Cadherin. The stained samples were
cleared using Tissue-Clearing Reagent CUBIC-L and CUBIC-R+ (Tokyo Chemical
Industry Co., Ltd.) and observed using fluorescence microscopy (BX51; Olympus).
The tip number and width were measured using ImageJ software. The lungs of the
P0 pups were assessed by micro-computerized tomography (CT) analysis (Latheta
LCT-200; Hitachi). The histological analysis of the hair follicles was carried out
according to morphological and histological criteria59.

Alcian Blue/Alizarin Red staining. Skeletal preparations by Alcian Blue/Alizarin
Red staining have also been described previously60. Samples were fixed in 99.5%
ethanol for 10 days, placed in acetone for 1 days, and stained in 0.3% alcian blue
in 70% ethanol/0.1% alizarin red in distilled water/acetic acid/70% ethanol
(1:1:1:17) for 12 h. After washing with distilled water, specimens were placed in
1% KOH for 5 days and cleared by incubation in 20, 50, and 80% glycerol
steps. The photos of the stained sample were taken using the digital camera
(D5500; Nikon).

Lung organ culture. The E11.5 lungs were dissected from WT and Dyrk2−/− mice.
The lungs were placed on a Transwell polyester membrane cell culture insert
(Corning) and cultured at the air liquid interface in DMEM/ Ham’s F12 medium
(Nacalai tesque) supplemented with 10% FBS, penicillin-streptomycin (Nacalai
tesque), and Amphotericin B (Sigma) with or without 50 μM Harmine (Tokyo
Chemical Industry Co., Ltd.) or 14.8 nM smoothened agonist (SAG) (Enzo Life
Sciences). DMSO was used as a diluent control. After 24 or 48 h incubation, the
lung explants were collected and used for further analysis.

Microarray analysis. Total RNA from embryos was hybridized using a SurePrint
G3 mouse GE microarray kit 8 × 60 K v3 (Agilent). The microarray data are
available on the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) (accession no. GSE146614). Gene ontology (GO)
analysis of the differentially expressed genes with a Z-score of over 2 or less than
−2 was performed using The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) Bioinformatics Resources 6.8. Hierarchical clustering
analysis and heatmap drawing were performed using the “pheatmap” package in
The Comprehensive R Archive Network with R (version 3.6.1).

Statistics and reproducibility. The data were analyzed with GraphPad Prism
software 9.0.0 and are presented as dot plots in addition to the individual samples.
Results are presented as the mean ± standard deviation (SD). Statistical significance
was determined using a two-tailed Student’s t-test. Chi-squared (χ2) analyses were
performed using the online calculation chi-square tool (http://www.quantpsy.org).
We repeated at least twice experiments and the exact sample size (n) for each
experiment appear in the figure legend.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Microarray data can be accessed through the Gene Expression Omnibus (GEO) under
the NCBI accession number GSE146614. Source data for all graphs in this article are
included in Supplementary Data 2. Uncropped data for all blots and gels in this article
are included in Supplementary Figs. 10 and 11. The information and data in this article
are available from the corresponding author on request.
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