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Abstract 

Background: The availability of both mouse and human draft genomes has marked the beginning
of a new era of comparative mammalian genomics. The two available mouse genome assemblies,
from the public mouse genome sequencing consortium and Celera Genomics, were obtained
using different clone libraries and different assembly methods.

Results: We present here a critical comparison of the two latest mouse genome assemblies. The
utility of the combined genomes is further demonstrated by comparing them with the human
‘golden path’ and through a subsequent analysis of a resulting conserved sequence element (CSE)
database, which allows us to identify over 6,000 potential novel genes and to derive independent
estimates of the number of human protein-coding genes.

Conclusion: The Celera and public mouse assemblies differ in about 10% of the mouse genome.
Each assembly has advantages over the other: Celera has higher accuracy in base-pairs and overall
higher coverage of the genome; the public assembly, however, has higher sequence quality in
some newly finished bacterial artifical chromosome clone (BAC) regions and the data are freely
accessible. Perhaps most important, by combining both assemblies, we can get a better
annotation of the human genome; in particular, we can obtain the most complete set of CSEs,
one third of which are related to known genes and some others are related to other functional
genomic regions. More than half the CSEs are of unknown function. From the CSEs, we estimate
the total number of human protein-coding genes to be about 40,000. This searchable publicly
available online CSEdb will expedite new discoveries through comparative genomics.
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Background 
In May 2002, two new mouse genome assemblies were

released. One was the second version of the mouse genome

assembly from Celera Genomics, created by using both private

and public sequence information (denoted Cel2 [1]), and the

other was the third version of the assembly from the public

Mouse Genome Sequencing Consortium (denoted MGSCv3

[2]). Both these draft mouse genomes were obtained using a

whole-genome shotgun (WGS) strategy, but using different

mouse strains and distinct sequence-assembly algorithms.

Assembled by direct overlapping sequence fragments, Cel2

has about 260,000 contigs with a total size of 2.51 x 109

base-pairs (2.51 gigabases (Gb)), whereas MGSCv3 has

about 220,000 contigs and covers 2.475 Gb of the mouse

genome. By incorporating pair-end sequence information,
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Cel2 and MGSCv3 contain around 47,000 scaffolds and

around 43,000 supercontigs, respectively. After using physi-

cal map information, such as sequence-tagged sites (STSs),

20 mouse chromosomes were constructed together with an

‘unassigned’ chromosome called chromosome UA in Cel2 and

chromosome Un in MGSCv3. The total sizes of these chromo-

somes in Cel2 and MGSCv3 are about 2.62 Gb and 2.59 Gb,

respectively. The gaps in these chromosomes occupy 4.1% of

genome in Cel2 and 4.5% in MGSCv3. The average size of the

contigs, gaps and scaffolds/supercontigs of both the genome

assemblies are comparable (data not shown).

Results 
Comparison of the two mouse assemblies 
To compare the coverage and accuracy of Cel2 and MGSCv3,

we used BLAT [3] to compare 8,434 mouse mRNA sequences

in the RefSeq database of the National Center for Biotechnol-

ogy Information (NCBI) ([4], 12 April, 2002) with these

assemblies. As a basis for comparison, we determined the

numbers of mRNAs that have more than 50%, 80%, 90% and

97% of base-pairs that match in both Cel2 and MGSCv3, in

one assembly only, or in neither assembly (Figure 1). Although

most mRNAs could be matched with both assemblies, there

were some mRNAs that could be matched well in only one

assembly. We also found that more mRNAs had higher per-

centage matches in Cel2 than in MGSCv3 (that is, > 97%). As

a further test, we especially investigated how well long

mRNAs can be matched to each assembly. The 10 longest

mRNA sequences are all matched well with both assemblies,

except for the piccolo (Pico) gene (coding for a presynaptic

cytomatrix protein): paradoxically, it is matched in chromo-

some 12 in Cel2 and in chromosome 5 in MGSCv3.

mRNA sequences can only be used to check the quality of

assembly in the gene regions, and, for this, the accuracy can

be determined only within exons. Therefore, we also used 39

newly finished mouse bacterial artificial chromosomes

(BACs) with known chromosome locations (data from 14

May to 23 May, 2002 in NCBI daily updates) to test the cov-

erage and accuracy of long continuous regions. Although all

BACs matched at the correct chromosomal locations in both

assemblies, MGSCv3 exhibited higher matching quality in

these BAC regions. In MGSCv3, only two BACs had less than

90% coverage: AC087780 (74% in chromosome 1) and

AC099773 (84% in chromosome 5) while four BACs in Cel2

had less than 90% coverage: AC090479 (11% in chromosome

18), AC023789 (85% in chromosome 4), AC021063 (86% in

chromosome 18), and AC087115 (89% in chromosome 8).

For the BAC AC090479, which has only 11% coverage in
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Figure 1 
Distribution of 8,434 mouse RefSeq mRNAs matched in Cel2 and MGSCv3. Four criteria, that more than 50%, 80%, 90% and 97% of base-pairs in one
mRNA are matched, are used to count the number of mRNAs matched in: both assemblies; only in Cel2; only in MGSCv3; in neither of them. + indicates
this mRNA is matched. - indicates this mRNA in MGSCv3 or Cel2 is not matched under the given threshold.

−/+ : Only matched in MGSCv3
+/− : Only matched in Cel2

+/+ : Matched in both assemblies
−/− : Cannot be matched in either assembly
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Cel2, many of the matching genomic DNA fragments are in

the UA chromosome at present. This is probably due to the

fact that the BAC sequencing information that Cel2 used was

released before July 2001. Therefore, MGSCv3 could have a

better assembly in those regions where newer BAC informa-

tion had been incorporated. Interestingly, these two assem-

blies show some complementary features. For example, BAC

AC090479 was only 11% covered in Cel2 but 99% covered by

chromosome 18 in MGSCv3, whereas BAC AC087780 had

74% coverage in MGSCv3 but 94% coverage in chromosome

1 in Cel2. 

As well as using different assembly methods, Cel2 and

MGSCv3 also used different mouse strains. This may also

cause some slight differences when comparing mRNAs or

BACs from different strains with Cel2 and MGSCv3. 

From the above analyses of mouse mRNAs and BACs, we find

some features that are complementary between MGSCv3 and

Cel2. This complementarity partly originates from the fact

that MGSCv3 used more BAC sequencing information, which

produced higher sequence quality and coverage in the regions

covered by sequenced BACs. However, the mRNA test indi-

cates that the sequences in Cel2 are more accurate than

sequences in MGSCv3 in gene regions. Thus, it is highly rec-

ommended that the two mouse genome assemblies be used in

an integrated fashion rather than separately.

Comparison between the human genome golden path
and the two mouse assemblies 
The human genome project is well into the finishing stage

[5], providing the opportunity to compare the mouse and

human genomes. Comparing the human genome with the

mouse genome can greatly help our understanding of both

genomes. We used the BLASTN program [6] to compare the

December 2001 golden path freeze of the human genome,

which is also NCBI build 28, with each mouse assembly. We

first used RepeatMasker (A. Smit, unpublished work, and

[7]), to mask the repeats in all the three genomes. With a

fixed expect value (E-value) of 1.0e-1 we found 1,860,560

conserved sequence elements (CSEs) between the human

and MGSCv3 genome assemblies and 1,737,297 CSEs

between the human and Cel2. Each CSE includes one human

genome segment and one matched mouse genome segment.

The simplest cases, which we call ‘univalent CSEs’, are

matches between unique human and mouse regions.

However, there are some cases, which we call ‘multivalent

CSEs’, where more than one mouse region matches the same

human region, or conversely, more than one human region

matches a mouse region. For all multivalent CSEs, we chose

the longest matches, and added them to univalent CSEs to

make a new set, called ‘primary CSE set’.

Table 1 shows the numbers of CSEs and the base-pairs

covered in the human or mouse genomes in the following

categories: all CSEs; human primary CSEs; mouse primary

CSEs; and univalent CSEs. We can see that the CSEs from

the Celera mouse assembly cover slightly more of the human

genome than CSEs from MGSCv3 assembly. Although the

numbers of univalent CSEs from two mouse assemblies are

almost the same (about 415,000), 31,000 univalent CSEs

could be identified in the human genome from MGSCv3

alone, while 31,194 were identified from Cel2. This indicates

again that the majority of univalent CSEs are common

between Cel2 and MGSCv3, yet some differences remain

between these two assemblies. We then constructed an

overall CSE set, which includes all CSEs found from both

MGSCv3 and Cel2 (named as aCSE) and its human primary

set (named as aCSE-hp). Figure 2a illustrates the length dis-

tribution of CSEs in set aCSE and aCSE-hp, and Figure 2b

shows the plot of the percentage identity versus length of

CSEs in set aCSE. Most of the CSEs show 80-95% identity

between the human and mouse genomes. Very short CSEs

overlap each other more frequently in the human or mouse

genomes than long CSEs because they are more likely to

happen by chance. At the E < 1.0e-1 level, the average length

of CSEs is 109 bp in the aCSE set and 151 bp in the aCSE-hp

set. The shortest one is only 26 bp, and the longest one

is 6,735 bp, which covers the human spastic ataxia of

Charlevoix-Saguenay (sacsin) gene. 

We compared the human genome regions covered by CSEs

from Cel2 and MGSCv3 and found that about 90 megabases

(Mb) (approximately 3% of the whole human genome) are

covered by all CSEs. CSEs from Cel2 and MGSCv3 covered

97% and 95% of this 90-Mb region, respectively. Among

them, 92% of the base-pairs were covered by both CSE sets.

Figure 3 shows the distribution of CSE locations in each

human chromosome. These results also suggest that the

Celera mouse assembly has slightly higher coverage than

MGSCv3 in the whole mouse genome. 
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Table 1

Statistics of CSE numbers and base-pairs covered

MGSCv3 Cel2

Number of CSEs 1,860,560 1,737,297

Number of human primary CSEs 552,900 561,534

Number of mouse primary CSEs 543,178 543,658

Human genome covered by primary 85,386,963 87,556,309
CSEs (bp)

Mouse genome covered by primary 82,812,007 84,214,212
CSEs (bp)

Number of human-mouse univalent CSEs 415,079 415,168

Human mouse univalent CSEs only found  31,000 31,194
in one mouse assembly, based on the 
human location

MGSCv3 + Cel2

Number of human primary CSEs 590,632

Human genome covered by primary CSEs (bps) 89,919,696



Cross-species sequence conservation information is widely

used in current gene-prediction tools, such as TwinScan [8],

SGP-1 [9] and SLAM (L. Patcher, personal communication).

Lack of conservation information may decrease the predic-

tion accuracy of these methods. The inconsistency of CSE

locations in the human genome from the two different

mouse assemblies suggests that, for reliability, it is advisable

to use both assemblies to search genes and to perform other

functional analyses. 

Functional analysis of CSEs 
Sequence conservation is usually related to functional regions

of the genome, such as those comprising protein-coding

genes, RNA genes and promoter regions. Using more com-

plete conservation information, it may be possible to discover

additional functional regions of the genome. In this section,

we describe some salient features of the human CSEs.

CSEs in the human RefSeq genes 
We used the human RefSeq gene annotation from golden

path December 2001 database to explore further the possible

functional implications of these CSEs. The locations of CSEs

in the human genome were compared with a total of 14,653

RefSeq gene structures. We found that 94.9% of these genes

and 81% of all exons (139,694) are covered by the CSEs in

aCSE-hp (data not shown). These CSEs also cover 57.2% of

the base-pairs in the exon regions. Coding regions (CDS)

have a higher degree of CSE coverage (77.7% at the

nucleotide level) than 5� untranslated regions (5� UTRs)

(24%) and 3� UTRs (18%). In addition, 35.3% of the CSEs

are located within RefSeq gene regions. Of these, 19.3% are

exon-related, 14.8% are intron-related, and 1.2% are ‘alter-

native exon’-related (that is, the location of the CSE in the

human genome is in an intron region according to one

mRNA transcript, but in an exon region according to

another mRNA transcript). Here, the relationship between a

CSE and an exon or an intron is defined by the location of

the middle point of the CSE. Clearly, most of the RefSeq

genes have at least one CSE hit.

CSEs in the known and predicted members of ETS-domain protein
family 
To determine whether CSEs are found within regions encoding

conserved protein motifs, we examined the relationship of CSE

locations and the protein-domain of a large gene family (the

ETS-domain family) found by our GeneFamilyScan software

(GFScan [10], Table 2). For all known human members in this

gene family, only one (TEL2) has no CSE hit. Additionally, all

five newly identified potential human ETS-domain genes have

CSE hits in the corresponding motif regions. Remarkably, for

the novel gene corresponding to Ensembl [11] predicted tran-

script ENST00000299272, we found a mouse ETS-domain

gene (Spi-C), which shares 67% protein sequence identity

with the human predicted transcript. Hence, the existence of

CSEs within a protein-domain region can help to find other

related novel genes.

CSEs in intronic regions of known genes 
To investigate the possible function of CSEs in intronic

regions, we examined a subset of intronic CSEs. The ten

longest intronic CSEs (see Supplementary Table 1 in the

additional data files) within known human genes, including

RefSeq genes and other genes with known mRNA sequences,
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Figure 2
Length distribution and percent identity of CSEs. (a) Length distributions
for all CSEs and all human primary CSEs. CSEs that are longer than 1,000
bp are binned together. (b) Plot of percent identity versus length of CSEs.

���

���

���

���

���

���

�
	


�


�
�
�
�

�	
 ������ ����

�	
 ������ ����

� ����
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�

��
��
�

��� �	
�

��� �
��� ������ �	
�

���

��

�
	


�!
�
�
��
� 

�"
�

��

��

��

��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

(a)

(b)



were further examined and compared with the human golden

path annotation [12]. Our analysis indicates that many long

intron-related CSEs may actually be alternative exons. For

example, we found that nine of these ten CSEs have spliced or

unspliced human expressed sequence tag (EST) matches.

Some of them also shared similarity with mouse mRNAs.

There was only one CSE for which we could not get any func-

tional information (CSE ID is chr1c_0024330, it is located at

human chr1:246028930-246030945 in an intron region of a

novel gene with mRNA accession number AL122093.) 

CSEs, genes and transcriptional activity in human chromosome 22 
To investigate whether the density of CSEs correlates with

gene density and resulting transcriptional activity, we chose

to examine chromosome 22, a well-finished and annotated

chromosome, more closely. We calculated the density of

base-pairs in the CSEs and Sanger Center annotated exons

in chromosome 22 separately. The distributions of these

densities are consistent across the length of the whole chro-

mosome (Figure 4), except one region around 21-22 Mb. The

average length of the exons in this 1-Mb region is 247 bp,

which is shorter than the average length of all exons in chro-

mosome 22 (302 bp). Although the average CSE length is

shorter than 247 bp, some very short conserved regions still

cannot be covered by CSEs, which causes the difference of

the base-pair densities between CSEs and exons in this

region. To further investigate this discrepancy, we used data

collected by Affymetrix. From Affymetrix oligonucleotide

array data [13], we obtained the density of the base-pairs

around all positive probes in this chromosome. The density

distribution of base-pairs in CSEs is more consistent with

that in exons than that in oligonucleotide probe regions for

this chromosome. This indicates that the Affymetrix

oligonucleotide array detected more transcripts that are less

conserved compared to the known exons, especially those

transcripts toward the end of the chromosome. 

CSEs between known genes 
Many long CSEs that are located in the intergenic regions

between the known human genes were also scrutinized

against ESTs and genes in other species. Although two of the

five longest intergenic region CSEs were determined to be
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Figure 3
Distribution of the human genome location density of Ensembl genes and CSEs from Cel2 and MGSCv3. Every 1-Mb region that has more than 1.7% base-
pairs in the exon regions of an Ensembl gene is displayed as a black bar in the middle. A 1-Mb region is displayed as a bar if its CSE coverage is higher than
3%. The left-hand bars show the CSEs from MGSCv3 (green) and the right-hand bars show the CSEs from Cel2 (red). (Ensembl genes’ information was
obtained from [12]). As examples, the UCSC human genome tracks combined with our CSEs tracks are displayed in two rectangles with arrows pointing
to one region where many CSEs found from Cel2 are located, and another region where many CSEs found only from MGSCv3 are located.

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY



pseudogenes, two others appeared to be gene-related. CSE

chr9p_0053719 is located in the 17707984-17709816 region

of human chromosome 9. In the corresponding mouse region,

transcript mCT3199 was predicted in the Celera database and

a zinc-finger protein basonuclin-like gene (XM_143875) was

also annotated by NCBI. CSE chr6p_0056662 (human loca-

tion: chr6: 51140014-51141656) also overlaps one annotated

novel gene, dJ402H5.2 in NCBI. Of these five CSEs, only CSE

chr6p_0077382 does not have any annotation information.

However, we found a genomic region in the rat genome that

matches the human location (chr6:105053471-105055327)

with 94% identity, which is not much lower than 95% within

this CSE. Even in the well-finished and annotated human

chromosomes, such as 20 and 22, some long intergenic region

CSEs can still be found. Some of them are pseudogenes, while

others appear to be related to novel genes. For example, in

the human genomic region around CSE chr20p_0001494, a

novel gene is predicted by GenomeScan [14] in NCBI

(XM_104356), but is not otherwise confirmed. In the whole

human genome, we found 6,259 NCBI-annotated novel

human gene models that are covered by at least one CSE.

Although we do not know the clear functions for these novel

gene-related CSEs, they obviously deserve immediate experi-

mental verification.

CSEs in promoter regions 
It is probable that many CSEs located in promoter regions

contain cis-regulatory elements. For example, transcription

factor 8 (TCF8) can repress interleukin 2 (IL2) expression by

binding to a negative regulatory element 100 bp upstream of
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Table 2

ETS-domain genes’ location and related CSEs

Human genome location Human gene Related CSEs Mouse gene

chr1:210860086-210860134 ELK4 Chr1c_0005362 Sap1a

chr1:156788585-156790244 ETV3/PEP1 Chr1c_0104026

Chr1c_0103962 Pe1

chr1:156753621-156753914 ENST00000239810* Chr1c_0104167

Chr1c_0103959 -

chr2:218742679-218742727 FEV Chr2c_0009719 mPet-1

chr6:46207850-46207898 TEL2 - -

chr7:6597152-6597200 ETV1 Chr7c_0058663 Etv-1/Er81

chr7:64780186-64780234 ENS00000297422* Chr7c_0032792 Gabp

chr11:134075280-134075328 ETS1 Chr11c_0058817 Ets-1

chr11:133727180-133727228 FLI1 Chr11c_0058489 Fli-1

chr11:34407740-34407788 - - -

chr12:12284048-12284096 ETV6 Chr12c_0058396 ETV6/Tel

chr12:12396310-12396358 C12000289† Chr12c_0058397 -

chr12:97911097-97911145 ELK3 Chr12c_0031833 Elk-3

chr12:104562931-104562979 ENST00000299272* Chr12c_0038845 Spi-C

chr19:51415380-51415428 ETV2/ER71 Chr19c_0149961 Etsrp71

chr19:67794768-67794816 SPIB Chr19c_0199661 Spi-B

chr19:58654497-58654933 ERF Chr19c_0189501

Chr19c_0189572 Erf

chr19:58976760-58977199 ENST00000270081* Chr19c_0189538

Chr19c_0189495 -

chr21:36771224-36771272 ETS2 Chr21c_0005326 Ets-2

chr21:23715872-23720136 GABPA Chr21c_0000791

Chr21c_0000793 Gabp

chr21:36332246-36332294 ERG Chr21c_0005320 Erg

chrX:45072030-45072078 ELK1 chrXc_0011713 Elk-1

*Predicted gene in Ensembl database [11]. †Gene predicted by FGENESH [21]. 



the IL2 transcription start site [15]. We found that this pro-

moter region is hit by our CSE chr4p_0043880 (its human

location is chr4: 124039778-124040406). In a separate

study, we are systematically investigating how to incorporate

CSE information into promoter analysis.

CSEs in RNA genes 
We found that 439 CSEs are related to non-translated RNA

genes (from golden path April 2001 human genome annota-

tion), such as ribosomal RNA, microRNA, small nucleolar

RNA (snoRNA), and the like. For example, Z30 small nucle-

olar RNA [16] (accession number: AJ007733), located at

human chr17: 34803858-34803954, is a methylation guide

molecule for U6 snRNA. The whole genomic DNA region of

Z30 is hit by our CSE chr17p_0010358 (human location:

chr17: 34803845-34803959). By checking the corresponding

mouse genome location of this CSE, we discovered the corre-

sponding mouse Z30 gene (accession number: AJ007734).

Therefore, genomic sequence conservation between different

species can effectively facilitate the discovery of RNA genes.

CSEs and human genomic segment duplication 
Multivalent CSEs can be used to find genomic segment

duplication because these CSEs that hit once in one genome

hit multiple times in the other genome. We used CSEs of

length greater than 100 bp found by BLAST with E value

< 1.0e-10 from MGSCv3 to analyze human genomic

sequence duplication. As an example, we used one type of

multivalent CSEs, in which a mouse region can match two

separate human regions, to find doublet duplications in the

human genome relative to the mouse genome. The human

and mouse regions in some of these type of CSEs are located

in the genomes with the same order. In this case, we can link

them together and collect a pair of human genome segments

and one mouse genome segment. With length constraint of

these segments (> 10 kb), we found 451 pairs of human seg-

ments and their corresponding 451 segments in the 19

mouse autosomal chromosomes. We defined a pair of

human segments as doublet duplication when the segment

length difference is less than 10% of the shorter one. For all

451 doublet duplications, the identity between two human

segments varies from 37% to 100%, whereas the length of

segments varies from 10 Kb to 257 Kb (the data are available

in our ftp server [17] and Supplementary Table 2 in the addi-

tional data files). Because there may have been much artifi-

cial duplication in the human working draft sequences due

to misassembly, we checked those 451 human duplication

segments against the newest human genome assembly

(NCBI human build 30), which has only become available

very recently. We found that only 79 duplications exist

according to this updated assembly, as shown in Figure 5. As

the known repeats in both genomes were masked before we

constructed CSEs, these doublet duplications in the human

genome may point to either true expansion regions or

further assembly errors. As we have limited the length of the

duplication regions to longer than 10 kb, and the length dif-

ference between two duplicated regions to less than 10%,

these pairs of human regions look more like direct duplica-

tions of genomic DNA than a pseudogene. But their true

identity may require experimental verification. We are trying

to use CSEs to find more expansion or contraction regions in

the human and mouse genomes.

Although many CSEs are related to different functional

regions in the genome, more than half of all CSEs are still

mysterious. Experimental approaches and further theoreti-

cal characterizations are needed to discover the function of

these conserved elements. All the CSEs and their available

functional information are accessible and searchable in our

CSEdb, which may be accessed through the genome browser

link at [18]. 

Human gene number estimation by human-mouse
comparison 
We analyzed the correlation between CSE number and chro-

mosome length. We found that they are not correlated very

well (see Supplementary Figure 1 in the additional data

files). From Figure 3, we found that most human regions

with high Ensembl gene density also have high CSE density,

although some regions may lack this kind of correlation,

probably because of the divergence between the human and

mouse. Together with the statistics of the RefSeq genes, in

which most RefSeq genes have at least one CSE hit (see

RefSeq data above), we believe that it is more meaningful

and accurate to estimate protein-coding gene number from

CSEs instead of from chromosome length. Because human

chromosomes 20, 21 and 22 have been finished and anno-

tated, we used the number of CSEs and protein-coding genes

in these three chromosomes and the number of total CSEs to
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Figure 4
Density distribution of base-pairs in CSEs, Sanger Center annotated
exons and positive oligonucleotide probes in human chromosome 22.
Density is calculated by counting the number of base-pairs in CSEs, exons
and positive probes within a 57-kb window.
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estimate: first, the number of the human and mouse homol-

ogous genes that share at least one CSE; and second, the

total number of the human genes. By our estimates, the total

number of human protein-coding genes is 37,000, of which

30,000 are related to mouse through a CSE. The estimated

number of all human genes at different E-values is almost

constant. The estimated homologous gene numbers

increased with increasing E-value as expected (Figure 6).

Materials and methods 
BLAT search 
BLAT was used to match all mouse mRNA sequences and

BAC sequences to both mouse assemblies with the default

parameter setting. As the chromosome information is known

for each BAC, we only calculated the coverage of BAC by the

corresponding chromosome in order to check the accuracy

of the assembly.

BLAST search 
The BLAST comparison of the human golden path with Cel2

and MGSCv3 mouse genome assemblies were finished on an

80-CPU LINUX cluster in 4 days. NCBI BLAST was used

with different E-values as the threshold (1.0e-10, 1.0e-4, and

1.0e-1) in this project. We found that 1.0e-1 appeared to be

the best parameter for covering both gene-related and non-

coding CSEs, because the average length of exons is about

150 bp and that of regulatory elements is much shorter.

Another reason to choose 1.0e-1 is that we can use only those

more highly significant CSEs if needed. The CSE number is

super-exponentially decreased when increasing the signifi-

cance from 1.0e-1 to 1.0e-10. The other options of BLAST use

default settings.

Density of base-pairs in CSEs 
The density of base-pairs in CSEs or Sanger Center annotated

exons is calculated by counting the number of base-pairs in
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Figure 5
The human doublet duplications and their matched mouse segments. Each green bar is a mouse chromosome, labeled with the chromosome name. The
human chromosomes are shown as gray bars with the name above or under the bars. Each black vertical bar represents a mouse or human segment. The
red or blue line between two vertical bars means a match relationship, where red and green mean that separate human segments match the same mouse
segment. The horizontal length of the bar is proportional to the sequence length. Only segments related to the mouse autosomal chromosomes and the
human duplications found in NCBI human genome build 30 are shown.
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CSEs or exons within every 5.7-Mb window. This 5.7-Mb

window is slided 57 kb in each step. Oligonucleotide array data

was downloaded from the University of California Santa Cruz

golden path server. The probe whose score is higher than 80

in at least one cell line is regarded as the positive probe. The

following 35 base-pairs of the positive probes are counted to

calculate the base-pair density in a 57-kb window [13].

Pseudogene test 
To test whether a human region in a CSE encoded a pseudo-

gene, we used the human genomic DNA region of this CSE to

search the whole human genome with BLAT. If this continu-

ous human region contained internal splice sites like a cDNA,

we regarded this region as a potential pseudogene location.

Gene number estimation 
Estimation of the number of human protein-coding genes

and of human-mouse homologs is based on two assumptions.

As the only training data at present are three finished human

chromosomes, (chromosomes 20, 21 and 22), the first

assumption is that the percentage of the gene-related CSEs in

three finished chromosomes is approximately the same as the

percentage in the whole genome. The second assumption is

that the average CSE number per gene calculated in the three

finished chromosomes is approximately the same as in the

whole genome. Under these assumptions, we could estimate

the total number of human-mouse homologous genes

(nGENEhm) from the total number of CSEs in a CSE-hp

(nCSEa-hp) set, the number of human primary CSEs in three

finished chromosomes (nCSE3chr-hp) and the total genes in

these three chromosomes covered by CSEs (nGENEc):

nCSEa-hp * nGENEc
nGENEhm = ———————————— .

nCSE3chr-hp

And the total number of human genes (nGENE
m

h ) could be

estimated by:

nCSEa-hp * nGENE3chr
nGENEh

m
= —————————————— ,

nCSE3chr-hp

where nGENE3chr is the total number of annotated genes in

chromosomes 20, 21 and 22, which is equal to 1,595 (the

overlapping genes were only counted once and non-coding

genes are not counted) from the present data. Of these, 1,291

are covered by CSEs and the total number of human primary

CSEs within these three chromosomes is 25,578. Thus, we

obtain the total number of human-mouse homologous genes

as 590,675 x (1,291/25,578) = 29,813 at E-values less than

1.0e-1, and the total number of human genes is therefore

estimated as 590,675 x (1595/25578) = 36,833.

We also tried to use information from these three chromo-

somes to estimate gene number separately, and got the mean

number 35,322 with a standard deviation of 9,705.

Availability
Data concerning 6,259 novel genes are available from [19]

and from the CSEdb browser at [18]. The human duplicated

segments data is available from [20].

Additional data files 
Supplementary tables listing the 10 longest intron-region

CSEs and 396 mouse genomic segments and their matched

human segment pairs, and a figure showing the correlation

between portions of CSEs and chromosome length of one

chromosome in the whole genome are available as additional

data files with the online version of this paper. 
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