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Abstract
Background: ACMG/AMP and AMP/ASCO/CAP have released guidelines for var-
iation interpretation, and ESHG for diagnostic sequencing. These guidelines contain 
recommendations including the use of computational prediction methods. The guide-
lines per se and the way they are implemented cause some problems.
Methods: Logical reasoning based on domain knowledge.
Results: According to the guidelines, several methods have to be used and they have 
to agree. This means that the methods with the poorest performance overrule the bet-
ter ones. The choice of the prediction method(s) should be made by experts  based 
on systematic benchmarking studies reporting all the relevant performance measures. 
Currently variation interpretation methods have been applied mainly to amino acid 
substitutions and splice site variants; however, predictors for some other types of 
variations are available and there will be tools for new application areas in the near 
future. Common problems in prediction method usage are discussed. The number 
of features used for method training or the number of variation types predicted by 
a tool are not indicators of method performance. Many published gene, protein or 
disease-specific benchmark studies suffer from too small dataset rendering the re-
sults useless. In the case of binary predictors, equal number of positive and negative 
cases is beneficial for training, the imbalance has to be corrected for performance 
assessment. Predictors cannot be better than the data they are based on and used for 
training and testing. Minor allele frequency (MAF) can help to detect likely benign 
cases, but the recommended MAF threshold is apparently too high. The fact that 
many rare variants are disease-causing or -related does not mean that rare variants 
in general would be harmful. How large a portion of the tested variants a tool can 
predict (coverage) is not a quality measure. 
Conclusion: Methods used for variation interpretation have to be carefully selected. It 
should be possible to use only one predictor, with proven good performance or a lim-
ited number of complementary predictors with state-of-the-art performance. Bear in 
mind that diseases and pathogenicity have a continuum and variants are not dichotomic 
i.e. either pathogenic or benign, either.
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1 |  BACKGROUND

Variation interpretation has become the bottleneck of using 
genetic information. Sequencing methods are highly efficient 
and increasingly accurate. Guidelines and standards have 
been published for the use and interpretation of variation data 
by the American College of Medical Genetics and Genomics, 
and the Association for Molecular Pathology (ACMG/AMP) 
(Richards et al., 2015) and of AMP, the American Society of 
Clinical Oncology, and the College of American Pathologists 
(AMP/ASCO/CAP) (Li et al., 2017). The European Society 
for Human Genetics (ESHG) has released guidelines for di-
agnostic next-generation sequencing and they include also 
variation interpretation (Matthijs et al., 2016). These guide-
lines for systematic schemes and especially the ACMG/
AMP guideline, although an American recommendation, are 
widely followed in many countries and laboratories.

Variation interpretation is a difficult task that brings 
together many and different kinds of data, methods, and 

expertise. Computational methods have been used for many 
years to predict the disease relevance, pathogenicity, or toler-
ance of variants. Computational solutions are essential due to 
the vast numbers of variants and as with experimental meth-
ods it is impossible to investigate significance of all the mil-
lions of variants that every genome contains in relation to a 
reference genome sequence.

Since their release, a number of changes have been sug-
gested to the ACMG/AMP guidelines including changes 
to criterion PVS1 (Abou Tayoun et al., 2018), to the entire 
process (Nykamp et al., 2017), allele frequency thresholds 
(Kelly et al., 2018; Kobayashi et al., 2017; Nykamp et al., 
2017; Rim et al., 2019; Whiffin et al., 2017), etc.

Here, I discuss problems related to the recommendations 
about the use of computational methods, including problems 
with the schemes per se and problems on how they are imple-
mented in practice. The way the guidelines are implemented 
and followed today hampers optimal variation interpretation 
and thereby does not serve the best of the patients as the full 
power of predictions, together with other evidence, is not 
taken into account. Therefore, pathogenicity of a substantial 
portion of the variants is not considered due to overly conser-
vative recommendations and practices.

2 |  GUIDELINES FOR USE OF 
COMPUTATIONAL PREDICTORS IN 
VARIATION INTERPRETATION

In this article, the focus is on the use of prediction methods for 
variation interpretation. The ACMG/AMP guidelines for using 
computational and predictive data are shown in Figure 1. In the 
scheme, the criteria are divided into two categories for benign 
(supporting and strong) and into four categories for pathogenic 
classification (supporting, moderate, strong, and very strong). 
Of the items listed in Figure 1, only BP4, BP7, and PP3 require 
and use computational predictors. According to the guidelines, 
prediction methods should be considered as supporting, when 
multiple lines of computational evidence support the effect. 
Furthermore, predictions should be used carefully and not as a 
sole source of evidence to make a clinical assertion. Quotations 
from the guidelines are indicated in italics, along with the 
source. This one is from ACMG/AMP.

Some available prediction methods are listed in all three 
guidelines, in ACMG/AMP in Table 2, in AMP/ASCO/CAP 
in Table 2, and in ESHG guidelines in Supplementary Table 
S1. These methods include predictors for amino acid substi-
tutions, splice sites, and sequence conservation.

K E Y W O R D S

ACMG/AMP guidelines, benchmark datasets, continuum of disease, majority vote, pathogenicity model, 
pathogenicity prediction, prediction methods, variation interpretation

F I G U R E  1  ACMG/AMP guidelines for the use of computational 
and prediction methods, taken from Richards et al. (2015). Of the 
individual items, BP4, BP7, and PP3 include the use of computational 
tools
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Computational methods are widely used because of their 
availability, as they can handle large numbers of variations 
in exome and genome scale, and because they can provide 
rather reliable predictions. Functional studies would be the 
optimal choice, however, they are costly, time consuming, 
and often not reimbursed. Every genome and exome still con-
tains a huge number of unique variants, analysis of which is 
not experimentally feasible.

Comparison of the implementation and obtained diagnosis 
with ACMG/AMP guidelines in nine laboratories indicated 
that the PP3 criterion was the second most widely used (39% 
of cases) and BP4 was used in 16% of cases, thus, totally 55% 
of the investigated variants were interpreted based on computa-
tional predictions, along with other evidence (Amendola et al., 
2016). Therefore, it is important to implement these methods in 
a proper way. As discussed below, there are currently a number 
of practices that prevent optimal use of predictive data. With the 
suggested alteration to the practices, it would be possible to use 
computational tools for interpretation of numerous additional 
variations. In the case of exome- or genome-wide sequencing 
this will make a big difference.

3 |  PROBLEMS WITH THE 
GUIDELINES AND IN THEIR 
IMPLEMENTATION

According to the guidelines, multiple predictors should 
agree, and if they do not, prediction methods should not be 
used at all for the assessment of that variant. This recommen-
dation opens for severe problems. First, the methods with the 
poorest performance get the largest impact. Second, clinical 
and research laboratories are not necessarily experts in bioin-
formatics and thereby the choice of the methods has often not 
been optimal and even been problematic. Third, computa-
tional tools mentioned in the guidelines have been considered 
as recommendations when clearly better tools are available. 
Fourth, if the same or similar methods are used together, the 
outcome is biased. Fifth, the schemes implicitly promote an 
idea of dichotomic distribution of variations either to the be-
nign or the pathogenic class.

3.1 | Poor methods overrule good ones

Critical Assessment of Genome Interpretation (CAGI, https://
genom einte rpret ation.org/) challenges have shown that pre-
diction methods tend to agree with each other more than with 
the reality. On the other hand, analysis of the concordance of 
predictors indicated that 18 tested methods agreed on ClinVar 
data only for about 5% of benign cases and 39%–47% of path-
ogenic cases, depending on the dataset (Ghosh, Oak, & Plon, 
2017). In a benchmark study of 10 methods with about 40,000 

variants there was not a single variant that all the methods 
agreed upon (Thusberg, Olatubosun, & Vihinen, 2011). In 
another analysis with almost 60,000 variants, 10%–45% of 
predictions were contradictory depending on the choice of 
methods (de la Campa, Padilla, & Cruz, 2017).

The more methods, the smaller are the chances that they all 
agree. Thereby the coverage of variants that can be predicted 
reduces quickly when several methods are used together.

The most important outcome of the guidelines is that they 
give the decision power to the poorest methods (Figure 2). 
The methods with low-performance disagree most often with 
the well-performing ones and therefore they drag the overall 
performance down. Thus, the requirement for the predictors 
to agree overemphasizes the significance of poor methods 
and prevents the use of predictions for cases on which the 
high-quality methods agree, but which are not correctly pre-
dicted by the poor one(s).

3.2 | Lacking expertise in method 
choice and use

Amino acid substitutions have been the most studied varia-
tion type, and there are well over 100 predictors described in 
literature. Services like dbNSFP (Liu, Jian, & Boerwinkle, 
2011) and VarCards (Li et al., 2018) contain predictions for 
more than 20 tools making it easy to obtain the predictions. 
Domain knowledge is required to choose the best tools. The 
most widely used methods are about 10 or 20  years old. 
Nobody would use 20-year-old sequencer, but the same peo-
ple happily resort to old prediction methods, although the ad-
vancements have been even bigger in the interpretation field 
than in sequencing technology. The old methods are simply 
old methods and far behind in the performance in compari-
son to many new ones. As the benchmark studies mentioned 
above have indicated, there are 30% or even larger differ-
ences between the state-of-the-art tools and some others. In 
no other field in medicine it is possible to use methods with 
such low performance.

Therefore, when using multiple predictors (see Figure 2), 
one has to choose methods that have state-of-the-art perfor-
mance and which are not based on too similar principles. 
To do this in a best way, it is necessary to understand how 
the methods work and how they have been implemented 
and trained. This expertise is lacking in many diagnostic 
laboratories.

3.3 | Named methods are considered as 
recommendations

Many laboratories seem to consider the methods mentioned 
in the guidelines as recommendations. This has apparently, 

https://genomeinterpretation.org/
https://genomeinterpretation.org/
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or at least hopefully, not been the intention. One could even 
question how the listed methods have been chosen as many 
of them did not represent the state of the art at the time that 
the guidelines were published, or not even when the methods 
were released.

3.4 | Problematic majority vote

A further complication emerges when the predictions are 
combined. The majority vote approach, as implemented in 
the guidelines, may introduce problems, see Vihinen (2014). 
If similar or the same predictions are combined, the outcome 
is biased. In addition to including constituent methods and 
meta-predictors that utilize the same predictions, this may ap-
pear when methods with similar foundations are combined. 
For example, if one combines evolutionary data-based pre-
dictions together, the outcome will likely be concordant but 
definitely biased.

Methods are often chosen ad hoc, or taking those men-
tioned in the guidelines as recommendations, or using the same 
method as last time, or for last 10 years. Popularity does not 
equal performance. It requires expertise to pick the best-per-
forming methods and combinations that do not suffer from 
bias. As the field is moving fast, it is not relevant to name meth-
ods in here, instead to refer to benchmark studies (see below).

3.5 | Pathogenic-benign binarism

“Efforts to resolve the classification of the variant as patho-
genic or benign should be undertaken” (ACMG/AMP) and 
“A community activity is needed to collect and share the 
available information, with the aim to definitely classify 
the variants into pathogenic or benign” (ESHG, Statement 
28) indicate the common but flawed thinking to divide vari-
ants into binary, mutually exclusive categories of benign 
and pathogenic. The reality is that in every condition there 

is a continuum, discussed, and described in a pathogenicity 
model (Vihinen, 2017). There are variations that cannot be 
placed in either category because of variable phenotype, in-
complete penetrance, and other factors. This heterogeneity 
means that some variants can be benign for an individual but 
pathogenic or unclassifiable for another or pathogenic for an 
individual at later time. Therefore, it will not be possible to 
group all variants into only the two groups.

ACMG guidelines state that Most tools … are not reli-
able at predicting missense variants with milder effect. This 
is indeed a more difficult prediction task than distinguishing 
pathogenic from neutral variants, but this area has obtained 
attention and the first tool is available for generic variant 
phenotype severity prediction, called PON-PS (Niroula & 
Vihinen, 2017).

4 |  COMMENTS TO ESHG 
GUIDELINES

Supplementary guidelines, Statement 18: The bioinformat-
ics pipeline must be tailored for the technical platform used. 
During pipeline validation the diagnostic specifications must 
be measured by assessing analytical sensitivity and specificity. 
This is a good recommendation, however, not sufficient for 
complete performance assessment; see the discussion below 
about measures to be used for performance assessment. More 
comprehensive analysis of the performance should be made.

Statement 20: The diagnostic laboratory has to validate 
all parts of the bioinformatics pipeline (public domain 
tools or commercial software packages) with standard 
datasets whenever relevant changes (new releases) are im-
plemented. This recommendation is reasonable and neces-
sary. There are a number of issues to be considered when 
testing and there are guidelines for doing that (Vihinen, 
2012, 2013). The dataset used for testing should not contain 
cases used for training the included methods; this should be 
checked every time the assessment is done. Furthermore, 

F I G U R E  2  Visualization of the 
problem when requiring several predictions 
methods to agree. The Venn diagram to the 
left indicates that prediction methods with 
high performance agree on many variations 
and therefore can predict large portion of 
cases. The intersection indicated in grey is 
for predictions that all the tools agree on. 
If the set of tools contains a poor method, 
as to the right, the number of cases that the 
tools agree is significantly reduced and the 
reduction is due to the poor tool
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these kinds of datasets are valuable but laborious to gen-
erate, therefore they should be made available, preferably 
via the VariBench database (Nair & Vihinen, 2013; Sarkar, 
Yang & Vihinen, 2020). Some methods utilize sequence 
conservation information based on blasting of sequence 
databases, which are changing constantly. In such cases, 
evaluations should be done at frequent intervals.

5 |  HOW TO TEST AND 
BENCHMARK PREDICTORS?

The first issue when using prediction methods is to choose suit-
able tools because for many variation types and effects numer-
ous tools are available and based on many different principles. 
For example, for amino acid substitutions there are three wide 
categories of tools including evolutionary conservation-based 
approaches, machine learning methods, and meta-predictors, 
see Niroula and Vihinen (2016). The choice of methods should 
be based on their proven performance. For this purpose a num-
ber of benchmark studies have been performed for different 
types of variations and predictors including protein substitution 
tolerance/pathogenicity (Bendl et al., 2014; Grimm et al., 2015; 
Masica & Karchin, 2016; Niroula, Urolagin, & Vihinen, 2015; 
Riera, Padilla, & Cruz, 2016; Thusberg et al., 2011; Sarkar et al. 
2020), variants affecting protein stability (Khan & Vihinen, 
2010; Potapov, Cohen, & Schreiber, 2009), protein localiza-
tion (Laurila & Vihinen, 2009), protein disorder (Ali, Urolagin, 
Gurarslan, & Vihinen, 2014), protein solubility (Yang, Niroula, 
Shen, & Vihinen, 2016), benign variants (Niroula & Vihinen, 
2019), variants in transmembrane proteins (Orioli & Vihinen, 
2019), alternative splicing (Desmet, Hamroun, Collod-Beroud, 
Claustres, & Beroud, 2010; Jian, Boerwinkle, & Liu, 2014), 
and phenotypes of amino acid substitutions (Anderson & 
Lassmann, 2018).

Benchmark studies have shown huge differences in per-
formances. A recent analysis of benign variants indicated 
that the best tool had accuracy of about 0.96 while some 
other widely used methods misclassified one of three cases 
(Niroula & Vihinen, 2019). Similar results have been ob-
tained in other benchmark studies.

Benchmark studies have to be based on gold standard 
cases with known, experimentally studied outcome. Such 
datasets are available in VariBench (Nair & Vihinen, 2013) 
and VariSNP (Schaafsma & Vihinen, 2015) and have been 
widely used. Recently, VariBench was updated with 419 
new datasets (Sarkar et al. 2020). Benchmarks have to ful-
fill a number criteria including relevance, representativeness, 
nonredundancy, containing experimentally verified cases 
both with positive and negative effect, and be scalable and 
reusable (Nair & Vihinen, 2013).

To obtain a full picture of performances of binary prediction 
methods at least six measures have to be provided and many 

other reporting requirements have to be fulfilled when publish-
ing such methods (Vihinen, 2012, 2013). These guidelines are 
also followed outside bioinformatics and medicine, that is, in 
technology. The recommendations include reporting method 
description, used datasets, performance assessment, and imple-
mentation. If the same or similar data are used for both method 
training and testing, the performance is inflated. Circularity 
(Grimm et al., 2015) has been common in publications. Method 
assessments have to be based on a substantial number of cases. 
Performance assessments are statistical in nature, therefore, a 
handful of instances are not sufficient.

6 |  PROBLEMS IN METHOD 
PEFORMANCE ASSESSMENT AND 
SELECTION

Despite the guidelines for performance assessment at avail-
able, misconceptions and wrong practices are common. The 
number of features used for method training or the number 
of variation types predicted by a tool does not tell anything 
about its performance. Many gene, protein, or disease-spe-
cific benchmark studies suffer from too small dataset render-
ing the results useless. In the case of binary predictors, there 
should be equal number of positive and negative cases or the 
imbalance has to be corrected.

6.1 | Number of features and predictions

The number of features used in a predictor or a number of 
predictions made does not correlate in any way with the 
performance of the method. Machine learning methods are 
trained on features that are related to the investigated phe-
nomenon. Method developers do not initially know which 
features are relevant, therefore, feature selection step usually 
is implemented. During this process the most important fea-
tures are identified and then used to train the final predictor. 
There are even some tools for which feature selection has not 
been made.

The reason for performing feature selection is that the 
number of informative features is typically rather small. With 
an increasing number of features comes the so-called curse 
of dimensionality. The more there are features, the larger 
dataset is needed to represent the space of all possible com-
binations of features. The number of required cases grows 
exponentially along with the number of features. Therefore, 
it is beneficial to use the smallest possible number of relevant 
features. It makes also the predictions faster and more reliable 
as many weak and less informative features can reduce the 
method performance.

The number of prediction types made is no quality in-
dicator, either. It is possible to include large numbers of 
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predictions, however, from the end-user point of view it is 
relevant how good those predictions are and whether they 
have been systematically benchmarked. There are only a few 
variation prediction areas where systematic analyses have 
been conducted and have been possible. The limiting factor is 
the availability of suitable test datasets.

6.2 | Too small datasets

During the last few years there has been a flurry of papers 
where variant prediction methods have been tested on indi-
vidual genes/proteins/diseases or on small groups of diseases. 
Most of these studies do not have any predictive power since 
the tests have been based on too small numbers of cases. 
The smallest number this author has seen was nine cases! As 
benchmarking is a statistical approach, a substantial number 
of cases is needed; the actual number depends on the applica-
tion and test. In practice, there has to be at least in the order 
of 100 variants of certain effect/type to achieve reasonable 
performance and reliability, see the analysis of Riera et al. 
(2016).

Often the same authors who analyses method performance 
use the same too small dataset to train a novel predictor. The 
best generic tolerance/pathogenicity predictions are most of 
the time better than gene/protein-specific predictors (Riera 
et al., 2016). However, the performance of predictors varies 
for different genes/proteins, and there are examples where 
specific predictors are better. There are a number of reasons 
for generic methods to outperform specific tools. They are 
based on larger datasets and thereby can generalize more re-
liably. The mechanisms of variation effects are similar in all 
genes and proteins and thereby generic methods have a bene-
fit of including variations in different contexts.

As an example we can look at single amino acids substi-
tutions. There are altogether 380 alterations of which 150 
(39.5%) are possible by a single nucleotide change and are 
thus much more likely to occur. These variants appear in 
many different contexts in proteins and have different ef-
fects. Thus, ideally each variant type should be included 
several times and in different environments, diseases, and 
sequence/structure contexts. This means that for most 
genes and proteins there are not large enough datasets 
available.

6.3 | Imbalance of positive and 
neutral variants

Disease-causing variants are in many instances in minority 
compared with all the possible variants. When developing 
machine learning methods, the positive (having effect) and 
negative (not having an effect) cases should appear in equal 

numbers (Wei, Wang, Wang, Kruger, & Dunbrack, 2010). 
When testing method performance, there should be either 
equal numbers of positive and negative cases or the differ-
ence has to be somehow mitigated. Some of the performance 
scores are sensitive for class imbalance and can give highly 
misleading scores if not taken care of (Vihinen, 2012). It is 
quite common in literature that the class imbalance has not 
been mitigated when method performances are compared. 
Thereby some scores may be severely affected.

7 |  OTHER PROBLEMS AND 
ISSUES IN COMPUTATIONAL 
VARIATION INTERPRETATION

There are several other issues related to variation interpreta-
tion in general, not just about the guidelines. These are de-
scribed and justified briefly. Predictors cannot be better than 
the data they are based on and used for training and testing. 
Minor allele frequency (MAF) can help to detect likely be-
nign cases. The recommended MAF threshold is apparently 
too high. The fact that many rare variants are disease-causing 
or -related cannot be extrapolated to mean that rare variants 
in general would be harmful. How large a portion of the 
tested variants a tool can predict (coverage) is not a qual-
ity measure. Finally, the clinical and research communities 
should pay more attention to the language used for describing 
and naming variations.

7.1 | Training data quality

Prediction methods cannot be better than the data they are 
based on. High-quality variant datasets of substantial size are 
laborious and costly to collect as typically many manual steps 
are needed. Most of the existing variation datasets are avail-
able in VariBench (Nair & Vihinen, 2013; Sarkar et al. 2020) 
and VariSNP (Schaafsma & Vihinen, 2015).

As discussed above, representativeness is one of the crite-
ria for benchmark data. Representativeness means that cases 
in a dataset cover the possible space. None of the 24 tested 
datasets used for training machine learning methods were 
well representative when analyzing distribution and cover-
age of cases in chromosomes, protein structures, CATH do-
mains and classes, Pfam families, Enzyme Commission (EC) 
categories, and Gene Ontology annotations (Schaafsma & 
Vihinen, 2018). By considering representativeness it would 
be possible to achieve better predictor performance by cover-
ing the event space of variations better.

Relevance of a dataset means that the cases are indeed 
for the investigated phenomenon. The datasets used in the 
representativeness analysis contained <2% of disease-caus-
ing variants among the benign training sets (Schaafsma & 
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Vihinen, 2018). A minor allele frequency between 0.01 and 
0.25 in any of the ExAC populations (Lek et al., 2016) was 
used to reveal benign variants.

7.2 | Variant data quality

Variation interpretation does not increase the quality of sequenc-
ing data, therefore, variant calls have to be reliable. Sequencing 
methods have their problems and biases. It all starts with the 
quality of the sample (Chen, Liu, Evans, & Ettwiller, 2017).

Recently an approach was presented for blacklisting vari-
ants common in private cohorts but not in public databases 
(Maffucci et al., 2019). This is an intriguing idea, however, 
their approach does not detect many such variants; instead, 
it cleans sequencing and data processing errors, mainly in 
low complexity regions and repeats, where disease-related 
variants are rather rare. It is a useful addition to filtering ap-
proaches and facilitates identification of several pathogenic 
variants. It may be necessary to recalibrate blacklists once 
changes are made to sequencing techniques or data manage-
ment and analysis pipelines, as the sequencing artifacts may 
not remain the same.

7.3 | Minor allele frequency

Frequent variants in populations are considered to be benign. 
Allele frequency is the most often used criteria in variation 
interpretation (Amendola et al., 2016). ACMG/AMP guide-
lines suggest a threshold of 0.05 to distinguish frequent and 
thus likely not disease-related variants. This threshold is 
ultraconservative. In many studies, including variation tol-
erance predictor development, a threshold of 0.01 has been 
used (see Niroula & Vihinen, 2019).

Lower allele frequencies have been suggested based on 
numerous publications, see, for example, the study of BRCA1 
and BRCA2 variants as well as alterations in additional 77 
genes (Kobayashi et al., 2017), hearing loss-related genes 
(Rim et al., 2019), and cardiomyopathy variants (Kelly 
et al., 2018). There is even a scheme to calculate the thresh-
old (Whiffin et al., 2017), and for taking the quality and 
abundance of the data and inheritance pattern into account 
(Nykamp et al., 2017). Common to all these papers is that the 
allele frequency threshold could be safely significantly lower 
than the recommended 0.05.

7.4 | Rare variant ≠ disease-causing variant

It has been claimed that most rare amino acid substitu-
tions would be disease related (Kryukov, Pennacchio, & 
Sunyaev, 2007). Rare variants contain disease-related 

alterations more often than frequent alleles (Marth et al., 
2011). However, both experimental studies and predic-
tions indicate that in many genes many variants, which are 
mainly rare, are benign or do not have a strong phenotype 
(Schaafsma & Vihinen, 2017). Massively parallel reporter 
assays have been used to investigate almost all variants or 
a large portion of them in some genes and proteins and 
found that there is always a large portion of variants that 
are benign or without phenotype, for example, in PPARG 
(Majithia et al., 2016) and BRCA1 RING domain (Starita 
et al., 2015).

7.5 | Coverage of predictions

None of the existing prediction methods is capable of predict-
ing all possible variants and even if they could the quality and 
performance would suffer. There are numerous reasons for 
the paucity of predictions, most often due to some essential 
parameter missing. This is typical in the case of variants in 
genes or proteins that are either unique for humans or shared 
only with a small number of other organisms. Evolutionary 
data, which practically all methods use, cannot be obtained 
in such cases.

High coverage is not indicative of high performance, 
either. Methods that classify variants to more than two cat-
egories can be more realistic and take the continuum of 
pathogenicity into account (Vihinen, 2017). In the end, only 
highly reliable data, including predicted outcomes, can be 
used for clinical assertion. This applies to any parameter used 
for the assessment and means that it will not be possible to 
predict and assert all variants.

7.6 | Terminology

ACMG/AMP guidelines have largely contributed toward 
terminology. Specifically, “variation” is now widely used 
instead of the fuzzy and often negative “mutation” that has 
several meanings which can confuse a meaning. The same 
applies to “polymorphism”. However, all the guidelines are 
still using some problematic wording, such as missense when 
describing amino acid substitutions (the sense in missense 
refers to RNA variation). Other common problematic terms, 
include nonsense, frameshift, indel, and functional variation. 
For the problems and their remedies, see Vihinen (2015a).

8 |  SUGGESTIONS

The ACMG/AMP, AMP/ASCO/CAP, and ESHG guidelines 
are useful and allow harmonization of variation interpreta-
tion over numerous laboratories and countries, as they are 
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followed in many places. However, as indicated in several 
contributions before and in the discussion above, there are 
certain issues that would benefit from amendments. As pre-
diction methods along with allele frequency information are 
the most widely used criteria (Amendola et al., 2016) in vari-
ation interpretation, it is important that these data are used in 
the most efficient and best possible way.

The major issue concerning computational predictions ac-
cording to ACMG/AMP and AMP/ASCO/CAP guidelines is 
the requirement that multiple predictors have to agree. This 
means that usually the poorest performing method dictates the 
outcome of the assessment. Furthermore, tools based on the 
same or similar characteristics usually agree. Thereby it is not 
a surprise that evolutionary methods have high concordance, 
however, it does not mean that the prediction would be correct. 
When using many similar methods the outcome is biased.

The requirement for concordant predictions does not 
serve and benefit the patient, not at least in the way the 
guidelines are most often implemented. The situation is 
analogous to US National Comprehensive Cancer Network 
guidelines for genetic testing, which, according to a recent 
study, miss up to 50% of actionable variants (Beitsch et al., 
2019).

My suggestion is therefore that even just one predictor, 
with proven good performance, could be used. Alternatively, 
a limited number of predictors could be used. Each of them 
should represent state-of-the-art performance and should be 
complementary, not based on the same principles and reus-
ing the same data and predictions (Vihinen, 2014). Details 
for method development as well as the used data should be 
available. This is often a problem with commercial solutions, 
which typically do not reveal details and performance and 
essentially sell a pig in a poke (Vihinen, 2015b). Authorities 
should refrain from mentioning prediction and other methods 
as better methods will be released during years. However, if 
tools are mentioned, they should represent the best current 
performance instead of methods that may be widely used but 
which have poor performance.

The choice of the prediction method(s) should be based 
on systematic benchmarking studies reporting all the relevant 
performance measures. Laboratories should consult bioinfor-
maticians when choosing prediction methods and this should 
happen rather frequently as new and improved methods are 
published every now and then. In addition to amino acid sub-
stitutions and splice site variants, there are now tools for many 
other types and effects of variations. The spectrum of predicted 
features and variation types will expand in the near future along 
with the availability of increasing experimental information.

ACKNOWLEDGMENTS
Financial support from Vetenskapsrådet, Swedish Cancer 
Society, and Alfred Österlunds Stiftelse is gratefully 
acknowledged.

CONFLICT OF INTEREST
None.

ORCID
Mauno Vihinen   https://orcid.org/0000-0002-9614-7976 

REFERENCES
Abou Tayoun, A. N., Pesaran, T., DiStefano, M. T., Oza, A., Rehm, H. 

L., Biesecker, L. G., & Harrison, S. M. (2018). Recommendations 
for interpreting the loss of function PVS1 ACMG/AMP variant cri-
terion. Human Mutation, 39, 1517–1524. https://doi.org/10.1002/
humu.23626

Ali, H., Urolagin, S., Gurarslan, O., & Vihinen, M. (2014). 
Performance of protein disorder prediction programs on amino 
acid substitutions. Human Mutation, 35, 794–804. https://doi.
org/10.1002/humu.22564

Amendola, L. M., Jarvik, G. P., Leo, M. C., McLaughlin, H. M., 
Akkari, Y., Amaral, M. D., … Rehm, H. L. (2016). Performance of 
ACMG-AMP variant-interpretation guidelines among nine labora-
tories in the Clinical Sequencing Exploratory Research Consortium. 
American Journal of Human Genetics, 98, 1067–1076. https://doi.
org/10.1016/j.ajhg.2016.03.024

Anderson, D., & Lassmann, T. (2018). A phenotype centric benchmark 
of variant prioritisation tools. NPJ Genomic Medicine, 3, 5.

Beitsch, P. D., Whitworth, P. W., Hughes, K., Patel, R., Rosen, B., 
Compagnoni, G., … Nussbaum, R. L. (2019). Underdiagnosis of 
hereditary breast cancer: Are genetic testing guidelines a tool or an 
obstacle? Journal of Clinical Oncology, 37, 453–460. https://doi.
org/10.1200/jco.18.01631

Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, 
J., … Damborsky, J. (2014). PredictSNP: Robust and accurate con-
sensus classifier for prediction of disease-related mutations. PLoS 
Computational Biology, 10, e1003440. https://doi.org/10.1371/
journ al.pcbi.1003440

Chen, L., Liu, P., Evans, T. C. Jr, & Ettwiller, L. M. (2017). DNA dam-
age is a pervasive cause of sequencing errors, directly confounding 
variant identification. Science, 355, 752–756.

de la Campa, E. A., Padilla, N., & de la Cruz, X. (2017). Development 
of pathogenicity predictors specific for variants that do not 
comply with clinical guidelines for the use of computational 
evidence. BMC Genomics, 18, 569. https://doi.org/10.1186/
s12864-017-3914-0

Desmet, F., Hamroun, G., Collod-Beroud, G., Claustres, M., & Beroud, 
C. (2010). Bioinformatics identification of splice site signals and 
prediction of mutation effects. In R. M. Mohan (Ed.), Research ad-
vances in nucleic acids research (pp. 1–16). Kerala: Global Reseach 
Network.

Ghosh, R., Oak, N., & Plon, S. E. (2017). Evaluation of in silico al-
gorithms for use with ACMG/AMP clinical variant interpretation 
guidelines. Genome Biology, 18, 225. https://doi.org/10.1186/
s13059-017-1353-5

Grimm, D. G., Azencott, C. A., Aicheler, F., Gieraths, U., MacArthur, 
D. G., Samocha, K. E., … Borgwardt, K. M. (2015). The evalua-
tion of tools used to predict the impact of missense variants is hin-
dered by two types of circularity. Human Mutation, 37, 1013–1024. 
https://doi.org/10.1002/humu.22768

Jian, X., Boerwinkle, E., & Liu, X. (2014). In silico prediction of 
splice-altering single nucleotide variants in the human genome. 

https://orcid.org/0000-0002-9614-7976
https://orcid.org/0000-0002-9614-7976
https://doi.org/10.1002/humu.23626
https://doi.org/10.1002/humu.23626
https://doi.org/10.1002/humu.22564
https://doi.org/10.1002/humu.22564
https://doi.org/10.1016/j.ajhg.2016.03.024
https://doi.org/10.1016/j.ajhg.2016.03.024
https://doi.org/10.1200/jco.18.01631
https://doi.org/10.1200/jco.18.01631
https://doi.org/10.1371/journal.pcbi.1003440
https://doi.org/10.1371/journal.pcbi.1003440
https://doi.org/10.1186/s12864-017-3914-0
https://doi.org/10.1186/s12864-017-3914-0
https://doi.org/10.1186/s13059-017-1353-5
https://doi.org/10.1186/s13059-017-1353-5
https://doi.org/10.1002/humu.22768


   | 9 of 10VIHINEN

Nucleic Acids Research, 42, 13534–13544. https://doi.org/10.1093/
nar/gku1206

Kelly, M. A., Caleshu, C., Morales, A., Buchan, J., Wolf, Z., Harrison, S. 
M., … Funke, B. (2018). Adaptation and validation of the ACMG/
AMP variant classification framework for MYH7-associated inher-
ited cardiomyopathies: Recommendations by ClinGen's Inherited 
Cardiomyopathy Expert Panel. Genetics in Medicine, 20, 351–359. 
https://doi.org/10.1038/gim.2017.218

Khan, S., & Vihinen, M. (2010). Performance of protein stability pre-
dictors. Human Mutation, 31, 675–684. https://doi.org/10.1002/
humu.21242

Kobayashi, Y., Yang, S., Nykamp, K., Garcia, J., Lincoln, S. E., & 
Topper, S. E. (2017). Pathogenic variant burden in the ExAC da-
tabase: An empirical approach to evaluating population data for 
clinical variant interpretation. Genome Medicine, 9, 13. https://doi.
org/10.1186/s13073-017-0403-7

Kryukov, G. V., Pennacchio, L. A., & Sunyaev, S. R. (2007). Most rare 
missense alleles are deleterious in humans: Implications for com-
plex disease and association studies. American Journal of Human 
Genetics, 80, 727–739. https://doi.org/10.1086/513473

Laurila, K., & Vihinen, M. (2009). Prediction of disease-related muta-
tions affecting protein localization. BMC Genomics, 10, 122. https://
doi.org/10.1186/1471-2164-10-122

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., 
Fennell, T., … MacArthur, D. G. (2016). Analysis of protein-coding 
genetic variation in 60,706 humans. Nature, 536, 285–291. https://
doi.org/10.1038/natur e19057

Li, J., Shi, L., Zhang, K., Zhang, Y., Hu, S., Zhao, T., … Sun, Z. 
(2018). VarCards: An integrated genetic and clinical database for 
coding variants in the human genome. Nucleic Acids Research, 46, 
D1039–D1048. https://doi.org/10.1093/nar/gkx1039

Li, M. M., Datto, M., Duncavage, E. J., Kulkarni, S., Lindeman, N. I., 
Roy, S., … Nikiforova, M. N. (2017). Standards and guidelines for 
the interpretation and reporting of sequence variants in cancer: A 
Joint Consensus Recommendation of the Association for Molecular 
Pathology, American Society of Clinical Oncology, and College of 
American Pathologists. The Journal of Molecular Diagnostics, 19, 
4–23.

Liu, X., Jian, X., & Boerwinkle, E. (2011). dbNSFP: A lightweight 
database of human nonsynonymous SNPs and their functional pre-
dictions. Human Mutation, 32, 894–899. https://doi.org/10.1002/
humu.21517

Maffucci, P., Bigio, B., Rapaport, F., Cobat, A., Borghesi, A., Lopez, 
M., … Itan, Y. (2019). Blacklisting variants common in pri-
vate cohorts but not in public databases optimizes human exome 
analysis. Proceedings of the National Academy of Sciences of the 
United States of America, 116, 950–959. https://doi.org/10.1073/
pnas.18084 03116

Majithia, A. R., Tsuda, B., Agostini, M., Gnanapradeepan, K., Rice, R., 
Peloso, G., … Altshuler, D. (2016). Prospective functional classifi-
cation of all possible missense variants in PPARG. Nature Genetics, 
48, 1570–1575. https://doi.org/10.1038/ng.3700

Marth, G. T., Yu, F., Indap, A. R., Garimella, K., Gravel, S., Leong, W. 
F., … Gibbs, R. (2011). The functional spectrum of low-frequency 
coding variation. Genome Biology, 12, R84. https://doi.org/10.1186/
gb-2011-12-9-r84

Masica, D. L., & Karchin, R. (2016). Towards increasing the clini-
cal relevance of in silico methods to predict pathogenic missense 
variants. PLoS Computational Biology, 12, e1004725. https://doi.
org/10.1371/journ al.pcbi.1004725

Matthijs, G., Souche, E., Alders, M., Corveleyn, A., Eck, S., Feenstra, 
I., … Bauer, P. (2016). Guidelines for diagnostic next-generation 
sequencing. European Journal of Human Genetics, 24, 2–5. https://
doi.org/10.1038/ejhg.2015.226

Nair, P. S., & Vihinen, M. (2013). VariBench: A benchmark database 
for variations. Human Mutation, 34, 42–49. https://doi.org/10.1002/
humu.22204

Niroula, A., Urolagin, S., & Vihinen, M. (2015). PON-P2: Prediction 
method for fast and reliable identification of harmful variants. 
PLoS ONE, 10(2), e0117380. https://doi.org/10.1371/journ 
al.pone.0117380

Niroula, A., & Vihinen, M. (2016). Variation interpretation predictors: 
Principles, types, performance, and choice. Human Mutation, 37, 
579–597. https://doi.org/10.1002/humu.22987

Niroula, A., & Vihinen, M. (2017). Predicting severity of disease-caus-
ing variants. Human Mutation, 38, 357–364. https://doi.org/10.1002/
humu.23173

Niroula, A., & Vihinen, M. (2019). How good are pathogenicity predic-
tors in detecting benign variants? PLoS Computational Biology, 15, 
e1006481. https://doi.org/10.1371/journ al.pcbi.1006481

Nykamp, K., Anderson, M., Powers, M., Garcia, J., Herrera, B., Ho, 
Y. Y., … Topper, S. (2017). Sherloc: A comprehensive refinement 
of the ACMG-AMP variant classification criteria. Genetics in 
Medicine, 19, 1105–1117. https://doi.org/10.1038/gim.2017.37

Orioli, T., & Vihinen, M. (2019). Benchmarking membrane proteins: 
Subcellular localization and variant tolerance predictors. BMC 
Genomics, 20(Suppl 8, 547).

Potapov, V., Cohen, M., & Schreiber, G. (2009). Assessing computa-
tional methods for predicting protein stability upon mutation: Good 
on average but not in the details. Protein Engineering, Design and 
Selection, 22, 553–560. https://doi.org/10.1093/prote in/gzp030

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., 
… Rehm, H. L. (2015). Standards and guidelines for the interpre-
tation of sequence variants: A joint consensus recommendation of 
the American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genetics in Medicine, 17, 
405–423. https://doi.org/10.1038/gim.2015.30

Riera, C., Padilla, N., & de la Cruz, X. (2016). The complementarity 
between protein-specific and general pathogenicity predictors for 
amino acid substitutions. Human Mutation, 37, 1012–1024. https://
doi.org/10.1002/humu.23048

Rim, J. H., Lee, J. S., Jung, J., Lee, J. H., Lee, S. T., Choi, J. R., … 
Gee, H. Y. (2019). Systematic evaluation of gene variants linked 
to hearing loss based on allele frequency threshold and filtering al-
lele frequency. Scientific Reports, 9, 4583. https://doi.org/10.1038/
s41598-019-41068-6

Sarkar, A., Yang, Y, & Vihinen, M. (2020). Variation benchmark data-
sets: update, criteria, quality and applications. Database. baz117.

Schaafsma, G. C., & Vihinen, M. (2015). VariSNP, A benchmark da-
tabase for variations from dbSNP. Human Mutation, 36, 161–166. 
https://doi.org/10.1002/humu.22727

Schaafsma, G. C. P., & Vihinen, M. (2017). Large differences in pro-
portions of harmful and benign amino acid substitutions between 
proteins and diseases. Human Mutation, 38, 839–848. https://doi.
org/10.1002/humu.23236

Schaafsma, G. C., & Vihinen, M. (2018). Representativeness of varia-
tion benchmark datasets. BMC Bioinformatics, 19(1), 461. https://
doi.org/10.1186/s12859-018-2478-6

Starita, L. M., Young, D. L., Islam, M., Kitzman, J. O., Gullingsrud, 
J., Hause, R. J., … Fields, S. (2015). Massively parallel functional 

https://doi.org/10.1093/nar/gku1206
https://doi.org/10.1093/nar/gku1206
https://doi.org/10.1038/gim.2017.218
https://doi.org/10.1002/humu.21242
https://doi.org/10.1002/humu.21242
https://doi.org/10.1186/s13073-017-0403-7
https://doi.org/10.1186/s13073-017-0403-7
https://doi.org/10.1086/513473
https://doi.org/10.1186/1471-2164-10-122
https://doi.org/10.1186/1471-2164-10-122
https://doi.org/10.1038/nature19057
https://doi.org/10.1038/nature19057
https://doi.org/10.1093/nar/gkx1039
https://doi.org/10.1002/humu.21517
https://doi.org/10.1002/humu.21517
https://doi.org/10.1073/pnas.1808403116
https://doi.org/10.1073/pnas.1808403116
https://doi.org/10.1038/ng.3700
https://doi.org/10.1186/gb-2011-12-9-r84
https://doi.org/10.1186/gb-2011-12-9-r84
https://doi.org/10.1371/journal.pcbi.1004725
https://doi.org/10.1371/journal.pcbi.1004725
https://doi.org/10.1038/ejhg.2015.226
https://doi.org/10.1038/ejhg.2015.226
https://doi.org/10.1002/humu.22204
https://doi.org/10.1002/humu.22204
https://doi.org/10.1371/journal.pone.0117380
https://doi.org/10.1371/journal.pone.0117380
https://doi.org/10.1002/humu.22987
https://doi.org/10.1002/humu.23173
https://doi.org/10.1002/humu.23173
https://doi.org/10.1371/journal.pcbi.1006481
https://doi.org/10.1038/gim.2017.37
https://doi.org/10.1093/protein/gzp030
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1002/humu.23048
https://doi.org/10.1002/humu.23048
https://doi.org/10.1038/s41598-019-41068-6
https://doi.org/10.1038/s41598-019-41068-6
https://doi.org/10.1002/humu.22727
https://doi.org/10.1002/humu.23236
https://doi.org/10.1002/humu.23236
https://doi.org/10.1186/s12859-018-2478-6
https://doi.org/10.1186/s12859-018-2478-6


10 of 10 |   VIHINEN

analysis of BRCA1 RING domain variants. Genetics, 200, 413–422. 
https://doi.org/10.1534/genet ics.115.175802

Thusberg, J., Olatubosun, A., & Vihinen, M. (2011). Performance of 
mutation pathogenicity prediction methods on missense variants. 
Human Mutation, 32, 358–368. https://doi.org/10.1002/humu.21445

Vihinen, M. (2012). How to evaluate performance of prediction 
methods? Measures and their interpretation in variation ef-
fect analysis. BMC Genomics, 13(Suppl 4), S2. https://doi.
org/10.1186/1471-2164-13-s4-s2

Vihinen, M. (2013). Guidelines for reporting and using prediction 
tools for genetic variation analysis. Human Mutation, 34, 275–282. 
https://doi.org/10.1002/humu.22253

Vihinen, M. (2014). Majority vote and other problems when using 
computational tools. Human Mutation, 35, 912–914. https://doi.
org/10.1002/humu.22600

Vihinen, M. (2015a). Muddled genetic terms miss and mess the mes-
sage. Trends in Genetics, 31, 423–425. https://doi.org/10.1016/j.
tig.2015.05.008

Vihinen, M. (2015b). No more hidden solutions in bioinformatics. 
Nature, 521, 261. https://doi.org/10.1038/521261a

Vihinen, M. (2017). How to define pathogenicity, health, and disease? 
Human Mutation, 38, 129–136. https://doi.org/10.1002/humu.23144

Wei, Q., Wang, L., Wang, Q., Kruger, W. D., & Dunbrack, R. L. Jr 
(2010). Testing computational prediction of missense mutation phe-
notypes: Functional characterization of 204 mutations of human 
cystathionine beta synthase. Proteins, 78, 2058–2074.

Whiffin, N., Minikel, E., Walsh, R., O'Donnell-Luria, A. H., Karczewski, 
K., Ing, A. Y., … Ware, J. S. (2017). Using high-resolution variant 
frequencies to empower clinical genome interpretation. Genetics in 
Medicine, 19, 1151–1158. https://doi.org/10.1038/gim.2017.26

Yang, Y., Niroula, A., Shen, B., & Vihinen, M. (2016). PON-Sol: 
Prediction of effects of amino acid substitutions on protein solubil-
ity. Bioinformatics, 32, 2032–2034. https://doi.org/10.1093/bioin 
forma tics/btw066

How to cite this article: Vihinen M. Problems in 
variation interpretation guidelines and in their 
implementation in computational tools. Mol Genet 
Genomic Med. 2020;8:e1206. https://doi.org/10.1002/
mgg3.1206

https://doi.org/10.1534/genetics.115.175802
https://doi.org/10.1002/humu.21445
https://doi.org/10.1186/1471-2164-13-s4-s2
https://doi.org/10.1186/1471-2164-13-s4-s2
https://doi.org/10.1002/humu.22253
https://doi.org/10.1002/humu.22600
https://doi.org/10.1002/humu.22600
https://doi.org/10.1016/j.tig.2015.05.008
https://doi.org/10.1016/j.tig.2015.05.008
https://doi.org/10.1038/521261a
https://doi.org/10.1002/humu.23144
https://doi.org/10.1038/gim.2017.26
https://doi.org/10.1093/bioinformatics/btw066
https://doi.org/10.1093/bioinformatics/btw066
https://doi.org/10.1002/mgg3.1206
https://doi.org/10.1002/mgg3.1206

